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Quantum size effects on excitonic Coulomb and exchange energies
in finite-barrier semiconductor quantum dots
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The size dependence of the one-particle band gap and the Coulomb and exchange excitonic corrections of
spherical quantum dots are calculated using the effective-mass approximation with finite confining potentials.
Full analytical expressions are found for the three magnitudes, and it is shown that the Coulomb and exchange
excitonic corrections are in good qualitative and quantitative agreement with available state-of-the-art calcu-
lations (for Si, GaAs, and CdSeand experimentsgfor InP). [S0163-18289)16435-X]

The experimental and theoretical study of quantum size H=H.+Hp+Hep, )
effects in quantum dotQD) semiconductor heterostructures
has become a very active research area, both because of theinere H;= — %2V 1/2m;(r;)V+V,(r;) is the single-particle
unique physical properties and prospect for applicatfos.  Hamiltonian (=e,h), and H.,=—es|re—ry| is the
the size of the QD is reduced, both the single-particle banelectron-hole Coulomb attractioWg(r.) andVy(ry) are the
gap increasetblueshify and the electron-hole excitonic cor- electron and hole-confining potentials, respectively, defined
rection becomes more pronouncéedshif). However, as asV;(r;)=0 if r;y< aandV,(r;)=V;, if r;>a. Here,m;(r;)
the size dependence of the former is usually stronger than thie the particle effective mass, with valugs,; (m;,) inside
exciton size dependence, this results in an overall blueshiftoutside the quantum dot, and is the dielectric constant of
of the optical-absorption spectrufas compared with the the well-acting semiconductdt.As the exact solution of Eq.
bulk). Additional impulse to these studies was provided by(1) is not known, even in the simplest situati®f,— <, we
the discovery of visible luminescence from porous’ 9il- should resort to some approximate treatment. Keeping in
though the microscopic mechanism, which is behind the phomind that most of the above quoted calculations are re-
toluminescence, is still under debate, there exists a growingtricted to sizesd=2a small compared with the exciton
consensus that quantum confinement is involved in produdBohr-radiusae, (ae=5 nm for bulk S)j, we will employ
ing this phenomenon. the so-called strong-confinement approximatit®CA),

From the theoretical point of view, the electronic structurewhich amounts to consider the electron-hole Coulomb inter-
of small quantum dots has been studied by a variety of methaction as a small perturbation against the single-particle
ods: single-band effective-mass approximatidBMA),*  terms®® The approximation, that is asymptotically exact in
multiband effective-mass approximation with infinite confin- thea/a.,<1 limit, has also been employed in Refs. Sige
ing barriers’ empirical tight-binding (ETB),° empirical  single exception being the ETB calculation of Refd)$ and
pseudopotential metha@EPM),” andab initio pseudopoten- applied to study the problem of doping QD’s with
tial calculation€ There is a tendency to disregard the EMA impurities'* Accordingly, we will concentrate first on the
as a quantitative and even qualitative method for the study abne-particle solutions af; .
these nanocrystallites, mainly because the comparison of the Proposing a separable solution ¢y (r;)
EMA with the latter more sophisticated and reliable tech-=R,(r;)Y,(6;,¢;) and takingl=m=0 (ground statg the
niques shows large discrepancies, as, for instance, a grosslutions of Hi¢oo(ri) =E deo(r;) are given by ¢gor;)
EMA overestimation of the one-particle band gap. This is an=R(r,)/ /4, whereRy(r;) = A, sin(ar;)/r; if r;<a, while
important issue, as the great advantage of the EMA is it (r,)=B,e #"i/r, if r,>a. A; and B, are normalization
erXIbIIIty and Versatility, in addition to aIIOWing a quite constants, Wh"eai:(ZmilEi/ﬁz)l/Z and Bi:[zmil(ViZ
natural extension to situations with electric and magnetic ex-—g,)/#2]Y2 From the Daniel-Duke boundary conditidns
ternal fields, the presence of impurities, 2. point worth Ro(a”)=Ry(a*) andRj(a~)/m;;=Rj(a*)/m;,, we obtain
noting is that most ofteri.e., Refs. €c), 6(d), 7, and § 1o implicit eigenvalue equatién
EMA is associated with the infinite barrier approximation for
the quantum dot confining barri@iEMA ); this is clearly the
simplest version of the EMA, but obviously the less accurate.
It is the aim of this work to demonstrate that just by relaxing
this hard-wall boundary condition, the finite barrier versionThe size-dependent one-particle band gap is defined as
of the EMA (FEMA) gives quantum size effects for Cou- Eg(d)=Egy(*)+E¢(d)+Ex(d), where Ey() is the one-
lomb and exchange exciton energies in quite good agreemeparticle band gap of the semiconductor QD bulk material,
with the more accurate calculations available to date. and E.(d), En(d) are the size-dependent solutions of Eq.

Using the envelope function approach to the effective{2), with i =e,h, respectively.
mass approximation, the Hamiltonian of the electron-hole In the limitE;/V;,<1, we obtain an analytical expression
system in a spherical dStof radiusa is given by for the size-dependent gap

(adl2)cot ad2)=1— —— —(B;dI2). (2

mi; My
Mz M,
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TABLE |. Electronic parameters for the indicated crystalline
materials.

Me1 (M) Mp1(Mo) Ve (V) J(meV)
Si 0.262 0.232 4b 0.15°¢
GaAs 0.07 0.682 4° 0.03°
InP 0.07%F 0.4° 4b
CdSe 0.13 0.45 49
8Reference 19.
bReference 20.
‘Reference 15.
dReference 16.
®Reference 4.

hZ 2’7T 2 o . -1

Eg(d):Eg(oo)—i—ﬂ o —E¢e—Ef o+ O(Viy), ©)

where u=mg My, /(Mg +mMyq) is the exciton reduced mass
of the QD semiconductoE;” = (27#/d)?/2m;, are the elec-
tron and hole solutions of Eq2) with V,, Vp,—o0, and
8, = \8m;,%2/m?d?V,,. In addition to its relative utility for
guantitative estimationgsee below, Eqg. (3) is, however,
quite useful to obtain a qualitative understanding on the
fluence of the system parameters Bg(d). For instance,
taking V,,— %, we recover thed 2 scaling for the size-
dependent one-particle band gap, frequently quoted as

n

gross failure of the EMA. This is corrected, however, by the

third and fourth terms in Eq.3), which, being negative and
scaling agd 3, lead to a softer dependencetf(d) ond of
the typed™” (with vy typically between 1 and)2It is also
interesting to realize that for a constant value of the confin
ing barriers the correction increases by decreadiagd also

if the effective mass of the particle in the surrounding me-

dium is larger than inside the QD.

Next, and following the spirit of the SCA, we have cal-
culated the Coulomb excitonic contribution, by taking the
matrix element oH ., with the uncorrelated excitonic state
Weolle rn)=doo(re) doo(rn) of our FEMA. We define

ECouI(d)E _<q,ex(revrh)|He—h|q,ex(revrh)>

=(e%e)(I1+1,+13) (4)

with
1

li
2a,

AZAZd
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ae

X[Si(aé—a,’])+Si(aé+a,’1)]) +e=h, (5)

AZB2d sina, ,
2= 74 1- — | E1(B) +e=h, (6)
ae
2n?
eBh -B! ’ ’ ’
3= [e"PeE1(Bh) —Ex(Bet+ Bp)]+e=h, (7)

2,

wherea| = a;d, B{ = £;d, and Sik) and E(x) are the sine
and exponential integral functions, respectively. All three
contributions toEc,,(d) have a transparent physical inter-
pretation:l; (I3) corresponds to a situation where both elec-
tron and hole are insidéoutside the QD, whilel, corre-
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FIG. 1. Unscreened $a), GaAs(b), and CdSéc) exciton Cou-
lomb energies as a function of the quantum dot diametdrhick
line, IEMA; thin line, FEMA; dashed line, FEMAasymptoti¢.
Solid squares, EPNIRef. 7b)]; open circlesab initio pseudopo-
tential methodRef. 8.

sponds to a situation with one particle inside the dot and the
second particle outside. In typical situatioms<1 nm), both
I, andl; are 2—3 orders of magnitude smaller tHan Ex-
panding Eqs(5)—(7) around the hard-wall limit, we obtain
the asymptotic expression
Ecoul @) =E&ou( [ 1= (St 8p)/4]+O(V;5Y),  (8)

where Ecou(d)=4e?[1—Si(2m)/2m+ Si(4m) /4]l ed
=3.572%/ed is the corresponding result for infinite confin-
ing barriers, as obtained by Bri$Similarly to the situation
for the size dependence of the one-particle band gap, the
“universal” scaling of the typed ~* of E¢,,(d) is modified
by the finite barrier correction, which being negative and
scaling agl 2 leads to a softer size dependenceEgf,,(d).

Another interesting QD size effect is the enhancement of
the electron-hole exchange interaction, which gives the en-
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FIG. 2. Single-particle and excitonic band gaps for InP quantum ooz
dots of different sizes. Open circles, experimental excitonic band
gap from Ref. 22; dashed line, single-particle band Bg{dl) [eV]
=1.45+37.2958 [A]**®from Ref. 23; solid line, calculated exci- 0.00 -
tonic band gagEy(d) — Ecey(d). (@)
ergy difference between spin-singlet and spin-triplet exci- o0
tons. Although being only a fraction of meV in bulk &ef.
15) and GaAs® it could reach a few meV in Si nanocrystals,
porous Si, and GaAs QD’s because of the strong confine- ooer
ment. We defing18
Eexcr(d)zwagx\]f dr|Weyr,n)|?, 9 —_—
3
wherel is the exchange energy of the hulk exciton. Using %
for the calculation ofEc,,(d) the uncorrelated excitonic w004
state, we obtain the analytic expression
Eexer(d)=(a3/4)(J1+35), (10 ez
where
AgAﬁ a ap| @ a
= —_ 1 B — i —_— + —Qj I =
Ji=— sir? 5 sir? > |+ 5 Silee) = oool
®)
X[Si(a’—a,@)+Si(a’+a{1)]} +eh, (11) FIG. 3. Electron-hole Si and GaAs exchange interaction as a
© © function of the quantum dot diametet Same convention as in
Fig. 1.
J,=(2BZB{/d)Ex( Be+ Br). (12)

that the electron and hole effective masses in vacuum are
larger than inside the QD contributes in the right direction by
decreasing the one-particle band gap, but still the effects are
e -1 not large enough to lead our FEMA results in good agree-
Eexcil ) = Bexed d)[1=3(de+ 0n)/4]+ O(Viz), (19 ment vsith more accurate calculations. The discrepancy in-
where EZ (d) = 7[ Si(27) — Si(47)/2]3(2a,,/d)®  creases as dot size decreases: definifig(d)=[E;~"*(d)
~2.111)(2a,,/d)>.1” Comparison of the asymptotic expres- —Eg""(d)1/Eg""(d), we obtainAE4(4 nm)=5%, while
sions(3), (8), and (13) reveals that in all cases the leading AE4(2.5 nm)=21%, both for Si; replacingey=""(d) with
correction to the IEMA can be described in terms of theE{™*(d) we obtain for AE4(4 nm)=~12% and
dimensionless parametefs and J}, . AE4(2.5 nm)=40%. On the other side and as we will see in
For the quantitative evaluation &gy(d), Ecou(d), and  what follows, this being the main point of this contribution,
Eexcr(d), We use the material parameters given in Talfte I. excitonic energies being less sensitive to the details of the
In addition, assuming that the QD’s are in vacuum, we adopQD electronic structure are quite well described by the
Me, =My, =Mg, Ve, as given by the electron affinity of the FEMA (but not by the IEMA.
corresponding bulk material, and,,—c°. Equipped with We have collected in Fig. 1 the results from different
thesebulk (that is, not adjustabjeparameters, we evaluate calculations for the unscreened Coulomb interaction
Ey(d), Ecou(d), andEg,c{d); the results for the excitonic eEcq,(d) for Si, GaAs, and CdSe QD’s. The softening al-
properties are displayed in Figs. 1-3. lowed above is readily seen from this figure, with the effect
As expected, our results fd,(d) (not shown, although  being quite important in the small size limit. For Si, the
well below the infinite barrier results, still lie above the more comparison with the empirical arab initio pseudopotential
accurate results obtained from ETB or EPM calculations. Agalculations of Refs. (€) and 8 is quite encouraging, the
discussed above, both the use of finite barriers and the faeigreement being better with the empirical results. We give

Expansion of Eqs(11) and (12) around the infinite barrier
limit, yields the asymptotic approximation
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the corresponding results for GaAs and CdSe QD’s in theegime. The explanation is quite natural from E®), as the
middle and lower panels, respectively. The agreement witlparameter that matters in this regime g, is J agx; as
the EPM results is even better than for Si QD’s. As an ex-a.(GaAs}>a.(Si), this more than compensates for the fact
ample of the practical use of FEMA, we provide in Fig. 2 athat the bulk exchange excitonic splitting is much smaller in
comparison between experimental and theoretical excitoniGaAs as compared with Si.
band gaps for InP dots of different sizes. To correct the In summary, we have included two simple but realistic
above discussed failure of FEMA in reproducing the size-effects in the EMA: the finite height of the confining QD
dependent single-particle band gap, we propose to takarriers and the difference between electron and hole effec-
Eg(d) from a more microscopic appro&‘ﬁ and Correcting tive masses inside and outside the QD Contrary to the some-
it with Eco,(d) as given by FEMA. As can be seen from how widespread belief, these modifications bring the FEMA
Fig. 2, proceeding in this way, we obtain good agreementesults on the Coulomb and exchange excitonic energies of
between experimental and calculated excitonic band Haps. semiconductor QD's in close agreement with full numerical
We collect all the results foE,{d) in Si QD’s in the state-of-the-art calculations, mainly smaller energies and
upper panel of Fig. 3. Once more, FEMA leads to a sizesofter power-law dependence on dot sizes for both correc-
dependence foE,,{d) slower than thel 2 hard-wall scal- tions, as compared with IEMA. Based on this success, en-
ing. Even so, the excitonic exchange interaction in QD’s car'anced by the fact that we have no adjustable parameters in
easily be enhanced in 2 orders of magnitude over the bulRur theory, we believe that FEMA can be quite useful as a
value by quantum confinement, remaining however mucteomplementary tool for thg more accurate_calculatlons_ of
smaller tharEco,(d). The lower panel of Fig. 3 corresponds QD, for example, by ext_endlng these calculations to dot sizes
t0 Eq,(d) for GaAs QD's. In addition to the overall re- Where they are not availablel£3 nm).
markable agreement between FEMA and EPM calculations One of us(J.M.F) is indebted to CONICET of Argentina
displayed in Fig. 3, it is interesting to note that while in bulk for financial support at the starting stage of this project; the
the energy difference between spin-singlet and spin-tripleauthors thank Pablo Bolcatto for help with the numerical
excitons is much larger in Si than in Gaf3(Si)/J(GaAs) calculations and Karen Hallberg for a careful reading of the
=5] the situation is the opposite in the strong-confinemenmanuscript.
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