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Near-threshold-energy conductance of a thin wire
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We show(1) that a single impurity can have an extremely strong impact on the conductance of a thin wire;
(2) that in such a thin wire a couple of two-dimensional impurities may be responsible to strong resof®nces.
Further, we study rough wire transmission in the low-energy regime. We obtain strong localization behavior
T=exp(-L/§) [L is the wire length and, .., ~1/IN(e—wy), o is the particle energy andoy,
= (A /d)?/2m is the threshold energy of a similar wire but without the roughhéfe also show that for very
long wires the difference between the threshold energy for transmissigy) @nd wy, increases logarithmi-
cally with the wire lengthwy— oy ~In L. [S0163-182809)09639-3

The passage from one-dimensioriaD) wires to higher right-hand term of the Schdinger equation can be written
dimensional ones is not trividkee, for example, Refs. 1%:4  D(r—ry) #(ro),® which allows for an exact scattering solu-
One-dimensional wires have no width, and thus transversaion.
modes do not exist. The difference between 1D and 2D wires We hit the impurity with an incoming wavey;,.
is most pronounced when an incoming wave confronts some- sin(my)exp{w— 72x). In this expression, the length pa-
sort of imperfection. In this case the scattering picture is notameters are normalized to the orifice width, iy=1 is
as degenerated as in the 1D case. The wave can be scatteggdually Y (the real coordinatey d (the orifice width).
to all directions, while the dynamics become quite complex. Taking advantage of the pointlike nature of the impurity,
A special case is the impact of rough boundaries on conduahe scattered wave function due to the defett is
tion (see, for this subject, Refs. 6 angl This case is par-
ticularly interesting for it is impossible to construct a perfect gcofr) = ¥inc(r)
quantum wire. All the up-to-date techniquésanolithogra-

phy, etching and cleaving, epitaxial growth, gteveal their _ G(r,ro) Yinc(ro) f dr'D(r' —ro)
incompetence when dealing with perfect nanostructures. 14+ fdr'G(r',ro)D(r’' —ry) o
Take, for example, GaAs/AlAs quantum wires grown on a 1)

vicinal surface by molecular beam epitakiXot only are the

boundaries of the GaAs wire quite rough, but there are alswhereG(r’,rg) is the “outgoing” 2D-Green function of the
impurities of AlAs within it. This is not merely a technologi- geometry(the wirg. It should be pointed out that if the im-
cal problem, it is clear that any sort of contamination will purity was not idealthat is, it was not a point impurijy Eq.
eventually percolate into the wirgho matter how clean it (1) would be merely a first-order approximation in the
was initially). Thus, the implications of such imperfections asymptotic solutiorjr|— .

on the conductance are very important. The Green function takes the form

In this paper we study the transmission through a con-
taminated wire in the low-energy regime. Within this regime sinnwy)sin(nme) = ——
the impurities have their strongest influence on the transmis- ~ G(r,r')=2, — s— e Ve )
sion. Moreover, it is then clear that the higher modee " 2iVE-(nm)
first mode is the dominant opndave a negligible contribu- Eq; the defect potential we chodse
tion, and the wire exhibits a quasi-1D behavior. Thus, we
present an exact 2D model of a contaminated wire with the D(r)~dp~ 17~ ¥25(x)exd — y% p?], 3)
aid of a 2D point scatterérand investigate it mainly in the
low-energy regime. wherep—0 is the impurity dimension and is its strength.

We first examine the case shown in Fig. 1. A scattering
problem over a single surface point defect in a thin wire. The . _ i L scattered
2D Schralinger equation is Incoming waves . waves

, ,_l_‘> T é:>
Vey+(E=V)¢p=—-D(r—ro)¢ IS G
(where we use the units=2m=1). V is the potential of the |
defects

wire walls (V=0 inside the wire an& =< outside i}, D is
the defect potential, andy,=¢y is the impurity location. FIG. 1. Defects in a thin wire may cause abrupt changes and
Since the defect has the properties of a pointlike impurity thaesonances in the wire transmission.
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Later on, it will be assumed that<1 so that the defect is
a surface one. Hence,

Y1) = tine(1) + Yincl(10) Dy @, sin(nary)el V=171,
(4)

where
a=i sin(ne) _1—|2 sif(mme) e—(mwp/2)2 -t
\/oz)—(l’lﬂ')2 m \/w—(mﬂ')2

Since ¢in(ro) =sin(me) the scattering coefficient from the
first mode to thenth one goes likd,,~ne? or generallyt,,,
~kne? (the scattering coefficient from theth mode to the
nth one and the transmission to theh mode is thus

T~ (kn)%e4, (5

which is an extremely small quantifgincee<1).

However, whenw~(mm)? for a certain integem the
dynamics could be quite different. When=(mar)2+ 62
(for 6<1) the transmitted wavex(>0) becomes

Jed D) ~sin(myye T 1 0
SC mz,ﬂ_ m2_1

(6)

1
. iox_—
sin(lmmwry)e o
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The transmitted mode is  then s (x>0)
~ sin(mmy)e *t,,, where the transition coefficient is
-1

, (€)

tym~1—

i

wherep=In(—2mp,m)+7y.

This result{Eq. (9)] suggests a richer dynamics: There is
a competition between two small parametéende?. When
1>£2> 6 Tom=|tmml?~|p|26%(mme) 4. This is a small
quantity but not necessarily smaller thare* [Eq. (5)] or
~&8[Eq. (7)] When 6/*<1, most of the particles are scat-
tered to other modes with the transmission amplitdgg
=t 2~ (k/m)28(mym?—k?) 1.

On the other hand, whes?<5<1 the transmission is
close to onet,~1—i(mme)?/(pd). Thus, for &/e?>1
the transmission is very close =1, while for 6/e?<1,
T=T.,~|p|?6%(7e) * is a very small quantity.

The sensitivity of the transmissid&g. (9)] on the param-
etere suggests the possibility to detect strong resonances in
an orifice with numerous defects. Resonances are very com-
mon when more than a single defect are present. In particu-
lar, when we consider two defects, the spatial distance be-
tween them is usually related to some resonance
wavelengths. However, when more than one dimension is
concerned, these resonances are usually quite \iirake
sense that the transmission change at the resonance is not
very drasti¢. That is because most of the energy is usually
transferred to other modes, which are present in systems that
have more dimensions than one. Moreover, even when only

that is, the transmission probability from the first mode to they o first mode is dominarte.g., when low energy is con-

mth mode is

Ty~ 8l(m?mym?—1). (7)

cerned the influence of the defect is usually minuscule, and
can be neglected.
Taking account of the previous calculations, we find that

Note that the transmission to any other mode is much smallef¢ can overcome these difficulties when considering ener-
T.1(k# m)~ 8% Equation(7) exhibits no dependence at all 9i€s, which are very close t° (in the normalized unifs In
on the defect size or strength, any defect will lead to thghis case we have only to consider the first mode, but still the

same result. Surely, E§7) can easily be generalized to any

incoming modep# 1, and receiving similar dependence, i.e., 4 _
T~ 8. However, there is one exception: when the incomingScatter a wave with a close to threshold eneligy., E~

mode ism the dynamics is different.

In this special case, the incoming wave looks liég
=sin(mmy)exp(dX), and instead of Eq(4) we get, s (r)
~ Yinc(1) + Yine(1 0) @m SIN(MAY)EXP( 51X|) where

-1

H !
L 1S sirf(m’ e ) o o2
m ) . ’ 2
m' Jo—(m'T)

®)

In order to derive Eq(8) we can use the pointlike character
of the defect, i.e., more explicitiy<m~1. Moreover, since
we consider a surface defect we hav&m ™t and i,(ro)
=Mme.

The summation in EQ.(8) can be rewritten:X,,
~3 v emt+(Mmme)28 e M2+ . Each part should
be approximated differently to receiven the limit p—0)
ap—imme s Hd t—i(mme)2 5+ In(—mmpl2)+y) "L (y
is the Euler's constaitA suitable choice for a 2D scatterer
would be an impurity D functionIDF),2 for which d~*

defects have a strong scattering effect.
Let us consider the following system: In a thin orifice we
2
)
over two impurities(defect$ placed a distance apart(see
Fig. 1). In this case the scattered wave has the form

z/;=¢//inc+; z/fjfdr’Dj(r’—rj)G(r’,r). (10

The ¢inc=sin(my)é'E"™* is the incoming wave,;(j
=1,2) are constantD;(j=1,2) are the defects potentials,
and the integrals are taken over the whole 2D volume. The
solutions to the constanig comes directly from:

¢:A71‘Mncv (12)

where ¢, , and ¢i,(r,,) are the elements ofy and i,
respectively, and the elements of th&2 matrix A are Aj;
=1—[dr'Dj(r")G(r") andAj;=—G(r;,rj)fdr'D;(r") for
i #].

We take the approximation G(rq,rp)=
—(i/2)sin(mey)sin(me)e E-TH(E—72) "2 (we choser,
=¥e, andr,=Vye,+XL for the defects locationsThis is a

=In(p,/p). pp Characterizes the defect, which is related to itsvery good approximation, because in the case under

Bohr radius.

consideration, L~ (E—x?)~¥? (since we are interested
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in the resonandeand sinceE— 72, the next mode has A

an exponentially small contribution: exglE—47L) - <_; — -—

~exp(— 372/ (E—2)). After some tedious but straight- incoming wave

forward algebra, we finally get for the scattered wawe ( —

>L): ¢=t- sin(my)e*™ when e e T
t=[1+(cy+Cp)+CiCp(1—eo)] 7t (12) L

(corrzl)pa(;e it(é\ll\/it)h_ﬁr?(f- ig/vge;igj ?nsziﬂ;(?j)/geﬁgjy)( (fjo)r_jz FIG. 2. Orifice with rough boundaries. Within the near-to-
= 1,2), dj=(4m - j) and i= Pb threshold regime, the transmission is dominated by the boundaries
is the resonance energy of a similar defect in a free 2D spac@efacts A is the mean distance between defects.

From Eq.(12) we learn the following: The resonance en-
ergies are the ones for whigfL =m (for an integer num-  only whenE,=E,= =2 From Eq.(16b we also see, that

berm). This is not a surprise, it could have been anticipatedihis is the case where the resonance width is the narrowest.
Moreover, we could have also predict the value of the “out-  Next, we consider the transmission through a rough sur-

of-resonance’(OR) transmission: faces wire(see Fig. 2 within the low-energy regime o
1 5 —7?, 6—0), i.e., the incoming energy is close to the thresh-
|torl 2~ 5~ —— _ ) (13)  old one. Let us, for example, assume that the transversal
lciCo|?  sinf(mreq)sin’(mre,) coordinates of the surface defects have the following distri-

This is merely the product of the probabilities to pass the twd?Ution: P(e=z1) =&, * exp(~&1 /&), whereP stands for the
defects. However, the nature of the resonafRevalue is  Probability andeg is the characteristic distance between the

quite subtle. In an ordinary case defects and the boundary. _ _
In the general case, this problem is very complicated and
|trl?=~|c1+cy “Z~min; 8%sin~*(7re;)). (14  demands multiple scattering treatment. However, we can

learn from the previous section that the— w2 case ¢

—0) is of particular simplicity. In this case the incoming
wavelength is much larger than the interdefects distances.
Therefore, none of the system resonances is dominant in the
&Qattering process. Moreover, since whén0 the reso-
nances are very narrow and shaspe Eqs(16a and(16b)],

the scattering process is insensitive to them. Actually, this is
a totally out of resonance process, and hence all of the mul-

The “min;” refers to the one with the minimal valuesee
Ref. 10.

The magnitude of Eq(14) is much larger than Eq13),
but in the limit 6—0 it is still a tiny quantity.

There is, however, a case where the resonance is mu
larger. Consider the case wherg=—c,. That is, according
to the definition ofc;,

g1=e, OF 81=1—¢g, (159 tiple interference effects can be ignored.
o Therefore, we can adopt E(®) to calculate the transmis-
and, by the definition ofl;, sion through an orifice witiN successive surface defects:
In this special case i T (e18pen)?
1 [we have conjectured here that the impurities are identical,
t= m (1639 ie., pE'In(—Zw'pb)erfor all of them. However, this is not a
restrictive conjecture
(c=cy=c,), which implies |t|?>=[1+2(26L—mm) 7] ! If we further assume that the mean distance between suc-
where cessive defects is a certaly Eq. (17) can be approximated
to
_1s ZSin47TSj 772—|n2(77'2/Ej) 168
n=16m"—— —7 In2(72/E;) " (16b T=exp(—L/§), (18
In that case, the resonances, which take placsLat mr, \(/\I/:r;erez)l._ is the distance and is the localization length
correspond to an almost perfect transmissigff&€ 1) with a 9. 2
very thin width (sincec is very large. The resonances em- =_A/ln(S =|ple27/s2 19
phasize that even the tinie&nd the weakeptdefects can (8wo), wo=p| £or (19
lead to enormously strong resonances. and vy is the Euler constant.

Another peculiar behavior is that in order to achieve Equation(18) suggests a strong localization process due
strong resonances, the defects do not have to be identical. tn the one-dimensional characteristic behavior of the system
an ordinary resonant tunneling system the two barriersin the casew— 7 the process is essentially of a one-
should be the same in order to get perfect transmission. Butimensional nature since the width of the wire is much
we do not find it here, rather the contrary: first, they do notsmaller than the wavelength in tixedirection. By virtue of
have to be at the same pladgg. (158], but more important, Eq. (19) the localization length diverges logarithmically
there is no need for them to have the same characteristivhen approaching the threshold energy- m2(5—0).
energy. Instead, they should maintékg. (15b)], which in- When the wire is empty of impurities a wave with energy
dicates that strong resonances and identical defects coincid@wver thanw, cannot propagate through the wire. In the case
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of a single defecfEq. (9)] we have seen a new threshold proces$ leads to a milder dependence on the wire length
energy (will be denoted by wh,): when o>w' =w, (but still logarithmio wriygcaussan— 72~ IN(L/A).
+ 5it[5ig(778)2/|p|] the transmission is almost unity, but To s_ummarize, in this vyork_we_ have studied the quantum
when w< wy,+ &, the transmission falls abruptly to a minis- transmission through a thin wire in the low-energy regime.
cule quantity{Eq. (9)]. Thus, when the wire is full of impu- (1) We showed that a single impuritpr a surface defert
rities, each one of them has a corresponding energy abo\;@m.decrease the ‘Wwire transmission dramatically when the
which it is almost transparent. Therefore, the impurity withParticles energy is close to the threshold one. When
the largest distance from the boundariesximale;) will be [Pl 8(7e) ~*>1 (where 5=w— =" is the deviation from the
the one to determine the threshold of the whole wisg,().  threshold energy, and is the impurity distance from the
Where there ar&l impurities, the probability distribution Poundary the wire transmission is almost perfelt-1, but
of the maximal parametes; is of coursé® P(maxe=g) [Of |p|d(me) “<1 the transmission drops toT

~|nl2 52 Za
=(N/gg)(1—e e0)N~le=¢%0  which leads to a threshold =~PI°d°(me)™%
(w7y) value for the entire wiréfor L— ) (2) When two impurities are present we demonstrate very

strong resonances. Especially in the cBsE,= 7* (the E’s

i are the resonance energies of the corresponding impurities
wTH:f deP(e)wy(e) = ont &, the transmissionT=[1+2(25L—mm)Re(c?)] ! exhibits
strong resonance behavior fét. =mar.
where 8=[(meo)?/|p|lIN?(2L/A). (3) We calculate the transmission through a rough-

. boundaries wire. The transmission then looks IiKe
T_hus, f[he dl_fference between_the energy threshold of the&exp(—ng) where &= — A/In(dwp) (A and w, characterize
dirty wire (with many defects, i.e.wry) and the clean one

ithout def ) . | thmicallv with th the impurities and. is the wire length, i.e., decays exponen-
(V\."t out defects, '.‘e""th) Increases g’ga”zt mically with the tially with the wire length. We also show, that the threshold
wire length. That iswrhexponentia— 7~ INY(L/A).

T Hie é energy for transmission increases logarithmically with the
In a similar way, it is straightforward to show that a 9y g y

) e _ wire length wry— m2~In(L/A).
Gaussian defects distribution, i.e.,, P(e=¢gy) giwmy = (L3
= (2I7eq)exd —(e1/e0)?], which is much more realistitit | am grateful to Professor Mark Azbel for enlightening
mimics the way corrosion penetrates the wire in a diffusiondiscussions.
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