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Near-threshold-energy conductance of a thin wire
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We show~1! that a single impurity can have an extremely strong impact on the conductance of a thin wire;
~2! that in such a thin wire a couple of two-dimensional impurities may be responsible to strong resonances.~3!
Further, we study rough wire transmission in the low-energy regime. We obtain strong localization behavior
T>exp(2L/j) @L is the wire length andjv→v th

;1/ln(v2vth), v is the particle energy andv th

[(\p/d)2/2m is the threshold energy of a similar wire but without the roughness#. We also show that for very
long wires the difference between the threshold energy for transmission (vTH) andv th increases logarithmi-
cally with the wire lengthvTH2v th; ln L. @S0163-1829~99!09639-3#
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The passage from one-dimensional~1D! wires to higher
dimensional ones is not trivial~see, for example, Refs. 1–4!.
One-dimensional wires have no width, and thus transve
modes do not exist. The difference between 1D and 2D w
is most pronounced when an incoming wave confronts so
sort of imperfection. In this case the scattering picture is
as degenerated as in the 1D case. The wave can be sca
to all directions, while the dynamics become quite compl
A special case is the impact of rough boundaries on cond
tion ~see, for this subject, Refs. 6 and 7!. This case is par-
ticularly interesting for it is impossible to construct a perfe
quantum wire. All the up-to-date techniques~nanolithogra-
phy, etching and cleaving, epitaxial growth, etc.! reveal their
incompetence when dealing with perfect nanostructu
Take, for example, GaAs/AlAs quantum wires grown on
vicinal surface by molecular beam epitaxy.5 Not only are the
boundaries of the GaAs wire quite rough, but there are a
impurities of AlAs within it. This is not merely a technolog
cal problem, it is clear that any sort of contamination w
eventually percolate into the wire~no matter how clean it
was initially!. Thus, the implications of such imperfection
on the conductance are very important.

In this paper we study the transmission through a c
taminated wire in the low-energy regime. Within this regim
the impurities have their strongest influence on the transm
sion. Moreover, it is then clear that the higher modes~the
first mode is the dominant one! have a negligible contribu
tion, and the wire exhibits a quasi-1D behavior. Thus,
present an exact 2D model of a contaminated wire with
aid of a 2D point scatterer,8 and investigate it mainly in the
low-energy regime.

We first examine the case shown in Fig. 1: A scatter
problem over a single surface point defect in a thin wire. T
2D Schrödinger equation is

¹2c1~E2V!c52D~r2r0!c

~where we use the units\52m51!. V is the potential of the
wire walls (V50 inside the wire andV5` outside it!, D is
the defect potential, andr05« ŷ is the impurity location.
Since the defect has the properties of a pointlike impurity
PRB 600163-1829/99/60~15!/10664~4!/$15.00
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right-hand term of the Schro¨dinger equation can be writte
D(r2r0)c(r0),8 which allows for an exact scattering solu
tion.

We hit the impurity with an incoming wavec inc

5sin(py)exp(iAv2p2x). In this expression, the length pa
rameters are normalized to the orifice width, i.e.,y51 is
actuallyY (the real coordinate)5d (the orifice width).

Taking advantage of the pointlike nature of the impuri
the scattered wave function due to the defect is9

cscar~r !5c inc~r !

2
G~r ,r0!c inc~r0!

11*dr 8G~r 8,r0!D~r 82r0!
E dr 8D~r 82r0!,

~1!

whereG(r 8,r0) is the ‘‘outgoing’’ 2D-Green function of the
geometry~the wire!. It should be pointed out that if the im
purity was not ideal~that is, it was not a point impurity!, Eq.
~1! would be merely a first-order approximation in th
asymptotic solutionur u→`.

The Green function takes the form

G~r ,r 8![(
n

sin~npy!sin~np«!

2iAE2~np!2
eiAE2~np!2uxu. ~2!

For the defect potential we choose8

D~r !'dr21p21/2d~x!exp@2y2/r2#, ~3!

wherer→0 is the impurity dimension andd is its strength.

FIG. 1. Defects in a thin wire may cause abrupt changes
resonances in the wire transmission.
10 664 ©1999 The American Physical Society
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Later on, it will be assumed that«!1 so that the defect is
a surface one. Hence,

csc~r !5c inc~r !1c inc~r0!(
n

an sin~npy!eiAc2~np!2uxu,

~4!

where

an[ i
sin~np«!

Av2~np!2 Fd212 i(
m

sin2~mp«!

Av2~mp!2
e2~mpr/2!2G21

.

Since c inc(r0)5sin(p«) the scattering coefficient from th
first mode to thenth one goes liket ln'n«2 or generallytkn
'kn«2 ~the scattering coefficient from thekth mode to the
nth one! and the transmission to thenth mode is thus

T'~kn!2«4, ~5!

which is an extremely small quantity~since«!1!.
However, whenv'(mp)2 for a certain integerm the

dynamics could be quite different. Whenv5(mp)21d2

~for d!1! the transmitted wave (x.0) becomes

csc~r !'sin~py!eiAm221pxS 12
1

m2p

d

Am221
D

2sin~mpy!eidx
1

m
, ~6!

that is, the transmission probability from the first mode to
mth mode is

T1m'd/~m2pAm221!. ~7!

Note that the transmission to any other mode is much sma
T1k(kÞm)'d2. Equation~7! exhibits no dependence at a
on the defect size or strength, any defect will lead to
same result. Surely, Eq.~7! can easily be generalized to an
incoming modepÞ1, and receiving similar dependence, i.
T'd. However, there is one exception: when the incom
mode ism the dynamics is different.

In this special case, the incoming wave looks likec inc
5sin(mpy)exp(idx), and instead of Eq.~4! we get,csc(r )
'c inc(r )1c inc(r0)am sin(mpy)exp(iduxu) where

am[ i
mp«

d Fd212 i(
m8

sin2~m8p«!

Av2~m8p!2
e2~m8pr/2!2G21

.

~8!

In order to derive Eq.~8! we can use the pointlike charact
of the defect, i.e., more explicitlyr!m21. Moreover, since
we consider a surface defect we have«!m21 andc inc(r0)
5mp«.

The summation in Eq.~8! can be rewritten: (m8
'(m8,m1(mp«)2d21e2mpr/21(m8.m . Each part should
be approximated differently to receive~in the limit r→0!
am→ imp«d21

„d212 i (mp«)2/d1 ln(2mpr/2)1g…21 ~g
is the Euler’s constant!. A suitable choice for a 2D scattere
would be an impurity D function~IDF!,8 for which d21

[ ln(rb /r). rb characterizes the defect, which is related to
Bohr radius.
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The transmitted mode is then csc(x.0)
'sin(mpy)eidxtmm where the transition coefficient is

tmm'12F11 i
pd

~mp«!2G21

, ~9!

wherep[ ln(22prbm)1g.
This result@Eq. ~9!# suggests a richer dynamics: There

a competition between two small parametersd and«2. When
1@«2@d Tmm5utmmu2'upu2d2(mp«)24. This is a small
quantity but not necessarily smaller than'«4 @Eq. ~5!# or
'd @Eq. ~7!# Whend/«4!1, most of the particles are sca
tered to other modes with the transmission amplitudeTmk

5utmku2'(k/m)2d(pAm22k2)21.
On the other hand, when«2!d!1 the transmission is

close to one:tmm'12 i (mp«)2/(pd). Thus, for d/«2@1
the transmission is very close toT51, while for d/«2!1,
T5T11'upu2d2(p«)24 is a very small quantity.

The sensitivity of the transmission@Eq. ~9!# on the param-
eter« suggests the possibility to detect strong resonance
an orifice with numerous defects. Resonances are very c
mon when more than a single defect are present. In part
lar, when we consider two defects, the spatial distance
tween them is usually related to some resona
wavelengths. However, when more than one dimension
concerned, these resonances are usually quite weak~in the
sense that the transmission change at the resonance i
very drastic!. That is because most of the energy is usua
transferred to other modes, which are present in systems
have more dimensions than one. Moreover, even when o
the first mode is dominant~e.g., when low energy is con
cerned! the influence of the defect is usually minuscule, a
can be neglected.

Taking account of the previous calculations, we find th
we can overcome these difficulties when considering en
gies, which are very close top2 ~in the normalized units!. In
this case we have only to consider the first mode, but still
defects have a strong scattering effect.

Let us consider the following system: In a thin orifice w
scatter a wave with a close to threshold energy~i.e., E'p2!
over two impurities~defects! placed a distanceL apart~see
Fig. 1!. In this case the scattered wave has the form

c5c inc1(
j

c jE dr 8D j~r 82r j !G~r 8,r !. ~10!

The c inc5sin(py)eiAE2p2x is the incoming wave,c j ( j
51,2) are constant,D j ( j 51,2) are the defects potential
and the integrals are taken over the whole 2D volume. T
solutions to the constantsc j comes directly from:

c5A21cinc , ~11!

where c1,2 and c inc(r1,2) are the elements ofc and cinc ,
respectively, and the elements of the 232 matrix A areAj j
512*dr 8D j (r 8)G(r 8) andAi j 52G(r i ,r j )*dr 8Di(r 8) for
iÞ j .

We take the approximation G(r1 ,r2)>
2( i /2)sin(p«1)sin(p«2)e

iAE2p2L(E2p2)21/2 ~we choser1
5 ŷ«1 and r25 ŷ«21 x̂L for the defects locations!. This is a
very good approximation, because in the case un
consideration,L'(E2p2)21/2 ~since we are intereste
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10 666 PRB 60BRIEF REPORTS
in the resonance! and sinceE→p2, the next mode has
an exponentially small contribution: exp(iAE24p2L)
'exp„2A3p2/(E2p2)…. After some tedious but straight
forward algebra, we finally get for the scattered wavex
.L): c5t• sin(py)eidx when

t5@11~c11c2!1c1c2~12e2idL!#21 ~12!

~compare it with Ref. 10! wherecj[sin2(p«j)/(iddj) ~for j
51,2!, dj[(4p)21ln(2p2/Ej) and finally Ej[4e2y(rb

j )22

is the resonance energy of a similar defect in a free 2D sp
From Eq.~12! we learn the following: The resonance e

ergies are the ones for whichdL5mp ~for an integer num-
berm!. This is not a surprise, it could have been anticipat
Moreover, we could have also predict the value of the ‘‘o
of-resonance’’~OR! transmission:

utORu2'
1

uc1c2u2
;

d4

sin4~p«1!sin4~p«2!
. ~13!

This is merely the product of the probabilities to pass the t
defects. However, the nature of the resonance~R! value is
quite subtle. In an ordinary case

utRu2'uc11c2u22'minjd
2sin24~p« j !. ~14!

The ‘‘minj’’ refers to the one with the minimal value~see
Ref. 10!.

The magnitude of Eq.~14! is much larger than Eq.~13!,
but in the limit d→0 it is still a tiny quantity.

There is, however, a case where the resonance is m
larger. Consider the case wherec1>2c2 . That is, according
to the definition ofcj ,

«15«2 or «1512«2 ~15a!

and, by the definition ofdj ,

E1E25p4. ~15b!

In this special case

t5
1

12c2~12e2idL!
~16a!

(c5c15c2), which implies utu2>@112(2dL2mp)h#21

where

h[16p2
sin4p« j

d2

p22 ln2~p2/Ej !

p21 ln2~p2/Ej !
. ~16b!

In that case, the resonances, which take place atdL5mp,
correspond to an almost perfect transmission (utu2>1) with a
very thin width ~sincec is very large!. The resonances em
phasize that even the tiniest~and the weakest! defects can
lead to enormously strong resonances.

Another peculiar behavior is that in order to achie
strong resonances, the defects do not have to be identica
an ordinary resonant tunneling system the two barr
should be the same in order to get perfect transmission.
we do not find it here, rather the contrary: first, they do n
have to be at the same place@Eq. ~15a!#, but more important,
there is no need for them to have the same character
energy. Instead, they should maintain@Eq. ~15b!#, which in-
dicates that strong resonances and identical defects coin
e.
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only whenE15E25p2. From Eq.~16b! we also see, tha
this is the case where the resonance width is the narrow

Next, we consider the transmission through a rough s
faces wire ~see Fig. 2! within the low-energy regime (v
→p2, d→0), i.e., the incoming energy is close to the thres
old one. Let us, for example, assume that the transve
coordinates of the surface defects have the following dis
bution: P(«5«1)5«0

21 exp(2«1 /«0), whereP stands for the
probability and«0 is the characteristic distance between t
defects and the boundary.

In the general case, this problem is very complicated a
demands multiple scattering treatment. However, we
learn from the previous section that thev→p2 case (d
→0) is of particular simplicity. In this case the incomin
wavelength is much larger than the interdefects distan
Therefore, none of the system resonances is dominant in
scattering process. Moreover, since whend→0 the reso-
nances are very narrow and sharp@see Eqs.~16a! and~16b!#,
the scattering process is insensitive to them. Actually, thi
a totally out of resonance process, and hence all of the m
tiple interference effects can be ignored.

Therefore, we can adopt Eq.~9! to calculate the transmis
sion through an orifice withN successive surface defects:

T5)
i

ut i u2>
~ upud/p2!2N

~«1«2¯«N!4 ~17!

@we have conjectured here that the impurities are identi
i.e., p[ ln(22prb)1g for all of them. However, this is not a
restrictive conjecture#.

If we further assume that the mean distance between
cessive defects is a certainD, Eq. ~17! can be approximated
to

T>exp~2L/j!, ~18!

where L is the distance andj is the localization length
~Fig. 2!:

j[2D/ ln~dv0!, v0[upue2g/«0
2, ~19!

andg is the Euler constant.
Equation~18! suggests a strong localization process d

to the one-dimensional characteristic behavior of the sys
~in the casev→p2 the process is essentially of a on
dimensional nature since the width of the wire is mu
smaller than the wavelength in thex direction!. By virtue of
Eq. ~19! the localization length diverges logarithmical
when approaching the threshold energyv→p2(d→0).

When the wire is empty of impurities a wave with ener
lower thanv th cannot propagate through the wire. In the ca

FIG. 2. Orifice with rough boundaries. Within the near-t
threshold regime, the transmission is dominated by the bounda
defects.D is the mean distance between defects.
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of a single defect@Eq. ~9!# we have seen a new thresho
energy ~will be denoted by vTH

i !: when v.vTH
i [v th

1d t
i@d t

i>(p«)2/upu# the transmission is almost unity, bu
whenv,v th1d t the transmission falls abruptly to a minis
cule quantity@Eq. ~9!#. Thus, when the wire is full of impu-
rities, each one of them has a corresponding energy ab
which it is almost transparent. Therefore, the impurity w
the largest distance from the boundaries~maximal« i! will be
the one to determine the threshold of the whole wire (vTH).

Where there areN impurities, the probability distribution
of the maximal parameter« i is of course11 P(maxi «i5«)
5(N/«0)(12e2«/«0)N21e2«/«0, which leads to a threshold
(vTH) value for the entire wire~for L→`!

vTH5E d«P~«!v th
i ~«!5v th1d t ,

where d t>@~p«0!2/upu# ln2~2L/D!.

Thus, the difference between the energy threshold of
dirty wire ~with many defects, i.e.,vTH! and the clean one
~without defects, i.e.,v th! increases logarithmically with the
wire length. That is,vTH~exponential!2p2; ln2(L/D).

In a similar way, it is straightforward to show that
Gaussian defects distribution, i.e., P(«5«1)
5(2/Ap«0)exp@2(«1 /«0)

2#, which is much more realistic~it
mimics the way corrosion penetrates the wire in a diffus
J.

ic
a

ys
ve

e

n

process!, leads to a milder dependence on the wire len
~but still logarithmic! vTH~Gaussian!2p2; ln(L/D).

To summarize, in this work we have studied the quant
transmission through a thin wire in the low-energy regim

~1! We showed that a single impurity~or a surface defect!
can decrease the wire transmission dramatically when
particles energy is close to the threshold one. Wh
upud(p«)24@1 ~whered[v2p2 is the deviation from the
threshold energy, and« is the impurity distance from the
boundary! the wire transmission is almost perfectT51, but
for upud(p«)24!1 the transmission drops toT
'upu2d2(p«)24.

~2! When two impurities are present we demonstrate v
strong resonances. Especially in the caseE1E25p4 ~theE’s
are the resonance energies of the corresponding impuri!
the transmissionT>@112(2dL2mp!Re(c2)#21 exhibits
strong resonance behavior fordL5mp.

~3! We calculate the transmission through a roug
boundaries wire. The transmission then looks likeT
>exp(2L/j) wherej52D/ ln(dv0) ~D andv0 characterize
the impurities andL is the wire length!, i.e., decays exponen
tially with the wire length. We also show, that the thresho
energy for transmission increases logarithmically with t
wire lengthvTH2p2; ln(L/D).

I am grateful to Professor Mark Azbel for enlightenin
discussions.
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