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Slowly varying amplitude approximation appraised by transfer-matrix approach
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The slowly varying amplitude approximation that is widely adopted in nonlinear optics is appraised by the
transfer-matrix method. Rigorous solution for second harmonic generation in nonlinear optical superlattices
shows that this approximation is invalid when the reflection of the second harmonic~SH! wave from the crystal
interface cannot be neglected. When the modulation period of the superlattice is comparable to the wavelength
of the SH wave, the approximation is far from accurate even if no reflection from the crystal interface occurs.
The transfer-matrix method may provide a novel approach to investigate various nonlinear optical processes in
superlattices in a precise way.@S0163-1829~99!13139-4#
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Since the invention of lasers, nonlinear optics has b
developed into a fascinating field of broadest scope and
fluential proponents.1,2 Originated from experimental work
by Franken and co-workers3 and theoretical work by Bloem
bergen and co-workers,4 this field now finds applications in
many areas of sciences.

The propagation of nonlinear waves in nonlinear cryst
is governed by the coupled-wave equations, which are ba
on Maxwell’s equations.1 Understanding of fruitful nonlinea
optical phenomena involves solving such complex nonlin
differential equations, a difficult task when one takes in
account practical conditions in experiments. Thus in act
cases, several simplifying approximations are often mad4,5

Among them are the slowly varying amplitude~SVA! ap-
proximation, the infinite plane-wave approximation, a
constant pump intensity approximation. From a realistic
perimental view point, some corrections were made. For
stance, sum-frequency generation with high conversion e
ciency beyond constant pump intensity approximation1 and
nonlinear processes excited by focused beams other
plane waves6 were investigated in detail. However, little a
tention was paid to the SVA approximation. Although it w
revealed in Ref. 1 that the physical implication of this a
proximation consisted in neglecting the oppositely propag
ing nonlinear wave, this conclusion remains qualitative a
obscure. Quantitative and clear appraisal of this approxi
tion is necessary.

In this paper we will appraise the SVA approximatio
with use of the transfer matrix method. Our aim is to de
onstrate the break down of the SVA approximation. The
fore, for concreteness, we focus our consideration on o
dimensional~1D! nonlinear optical superlattices where th
linear susceptibility is homogeneous, while second-or
nonlinear susceptibility is modulated by alternate laminar
mains with positive and negative polarizations. This can
accomplished in many ferroelectric crystals such as LiNbO3,
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LiTaO3, and KTiOPO4 with patterned electrodes. The con
cept of Quasi–phase-matching4,7,8 has been realized in suc
periodic and quasi-periodic superlattices to achieve harmo
generations and other nonlinear processes with h
efficiency.8–18

The schematic configuration of superlattice is displayed
Fig. 1. The crystal~Region II! is assumed to lie inside a
homogeneous background dielectric~Regions I and III! with
a refractive index ofnb . The nonlinear crystal is excited
with a plane wave of fundamental light~FW!, whose electric
field reads E1(z)5Eeik1z with k15n1(v)v/c. Here n1(v)
is the refractive index of crystal for the FW. The modulatio
function of nonlinear superlattice is a discrete functio
wherex(z)5x i in the ith unit cell for zi 21<z<zi , andx i
takes two discrete values,d33 and2d33 for the positive and
negative polarization of unit cell, respectively. Assume th
z050 andzn5d, whered is the length of superlattice ma
terial.

In the approximation of negligible pump power depletio
the electric field E2(z) of the second harmonic wave in th
1D superlattice satisfies the following inhomogeneous w
equation:

FIG. 1. Schematic configuration of 1D nonlinear optical sup
lattice~Region II! inside a homogeneous dielectric background~Re-
gions I and III!. Second-harmonic generation is excited by a pla
fundamental light. The superlattice is composed ofn alternative
laminar domains with positive~black cells! and negative~white
cells! polarizations.
10 644 ©1999 The American Physical Society
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¹2E2~z!1k2
2E2~z!52k0

2x~z!E1
2~z!, ~1!

where k052v/c, and k25n2(2v)k with n2 being the re-
fractive index for the SH wave. For most nonlinear crysta
n1Þn2 due to the dispersion of light in crystals.

The solution of Eq.~1! in the ith unit cell can be written
as

E2~z!5Ei
1eik2z1Ei

2e2 ik2z1Eie
i2k1z, zi 21<z<zi ,

~2!

whereEi
1 andEi

2 are amplitudes of second harmonic~SH!
waves propagating forwardly and backwardly,Ei

5k0
2x iE

2/(4k1
22k2

2) is the amplitude of inhomogeneous S
wave. The transmitted and reflected SH waves in the die
tric background are both plane waves,

E2~z!5Ete
ikbz, z.zn5d, ~3!

E2~z!5Ere
2 ikbz, z,z050, ~4!

where Et and Er are both complex constants, andkb
52vnb /c. The intensity of second-harmonic generati
~SHG! signal in the forward and backward directions a
proportional toI t5nbuEtu2 and I r5nbuEr u2, respectively.

The amplitudes$Ei
1 ,Ei

2 ,i 51, . . . ,n% as well asEt and
Er can be solved through the match of boundary conditi
at each interface of unit cell. Atz5z050 andz5zn5d we
have

S0T15SrTr , SnTn5StTt . ~5!

At the interface ofz5zi , we have the following recurrenc
formula:

Si~Ti2Ti 11!5~Ei 112Ei !Pi , i 51, . . . ,n21. ~6!

The matrices in Eqs.~5! and ~6! are defined as

Sr5S e2 ikbz0

2kbe2 ikbz0

2ei2k1z0

22k1e2 i2k1z0D , Tr5S Er

E1
D ,

St5S eikbzn

kbe2 ikbzn

2ei2k1zn

22k1e2 i2k1znD , Tt5S Et

En
D ,

and

Si5S eik2zi

k2eik2zi

e2 ik2zi

2k2e2 ik2zi D , Ti5S Ei
1

Ei
2D ,

Pi5S ei2k1zi

2k1ei2k1zi D .

From Eq.~6! we get

Tn2T152 (
i 51

n21

~Ei 112Ei !Si
21Pi . ~7!

The substitution of Eq.~5! into Eq. ~7! yields the ampli-
tudes of the transmitted and reflected SH waves:

Et5a(
i 51

n

Ei~eiDkzi2eiDkzi 21!1b(
i 51

n

Ei~eik3zi2eik3zi 21!,

~8a!
,

c-

s

Er5s1(
i 51

n

Ei~eiDkzi2eiDkzi 21!1s2(
i 51

n

Ei~eik3zi2eik3zi 21!.

~8b!

The coefficients are

a52S 1

2
1

k1

k2
D S 1

2
1

kb

2k2
D /ss,

b5S 1

2
2

k1

k2
D S 1

2
2

kb

2k2
D /ss,

s152S 1

2
1

k1

k2
D S 1

2
2

kb

2k2
Deik5d/ss,

s25S 1

2
2

k1

k2
D S 1

2
1

kb

2k2
De2 ik4d/ss,

where ss5(1/21 kb/2k2)2e2 ik4d2(1/22 kb/2k2)2eik5d, Dk
52k12k2 is the phase mismatch, andk352k11k2 , k4
5k22kb , k55k21kb . It is clear from Eqs.~8a! and ~8b!
that the forward and backward propagating waves, wh
wave vectors areDk andk3 respectively, both contribute to
the transmitted and reflected SH waves. In the case of ph
match, namely, 2k15k2 , Dk50, b5s250, the contribution
from backward propagating wave vanishes. AfterEt andEr
are solved, the amplitudes of homogeneous SH wa
Ei

1 ,Ei
2 in each unit cell of the nonlinear superlattice can

calculated according to Eqs.~5! and ~7!. Then the distribu-
tion of the SH field in the superlattice can be calculat
directly from Eq.~2!. It should be noted that nonlinear optic
of multilayer thin film can also be solved by a Green’s fun
tion formalism developed by Sipe and co-workers.19,20How-
ever, as the nonlinear medium is excited by a plane wav
is more convenient to apply the transfer-matrix approa
which is essentially based on a plane-wave expansion
malism.

The SVA approximation assumes that the amplitude
the SH wave is a slowly varying function, namely, E2(z)
5F(z)eik2z, where F(z) satisfies u ]2/]z2 F(z)u
!uk2 ]/]z F(z)u. Then the second-order wave equation
Eq. ~1! can be simplified into a simple first-order differenti
equation, which can be integrated out for the superlattice

F~d!5E
0

d ik0
2

2k2
x~z!E2eiDkzdz

5Et5(
i 51

n

Ei~eiDkzi2eiDkzi 21!, ~9!

andF(0)50 in the absence of SH wave input. Equation~9!
means that no backward propagating wave is generated
the superlattice. Compared with Eqs.~8a! and ~8b!, this ap-
proximation works exactly only when the coefficients ofb
5s15s250, and a521. It requires the phase matchin
condition ofDk50 and a match of refractive index for crys
tal and background dielectric, i.e.,nb5n(2v) and k25kb ,
for example, an infinite nonlinear crystal. At other cases,
SVA approximation will result in some inaccuracies. O
course, as the dispersion is weak for many nonlinear crys
then Dk!k2'2k1 , and we haveubu!uau, s150, and
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us2u!uau at the refractive index match. In this case the co
tribution of the backward propagating wave to SHG can
neglected, unless the summation terms with a large w
vector ofk3 are much greater than theDk term.

Physically, the SVA approximation means that the ene
transferred from the FW to the SH wave is significant on
after the waves travel over a distance much longer than t
wavelengths. However, in the nonlinear superlattices,
modulation of nonlinear susceptibilityx(z) may result in a
rapid variation of the SH field. In addition, the multirefle
tion effect of interfaces between unit cells as well as betw
the crystal and the background medium will generate n
negligible backward propagating SH wave. Therefore, s
nificant deviation from the conventional SVA approximatio
may be expected in such nonlinear superlattices.

We first consider a homogeneous nonlinear crystal, wh
x(z) in Eq. ~2! is a constant. Parameters of the system
taken as: Crystal lengthd5100mm, wavelength of FWl
51.064mm, the refractive indices of the FW and SHG a
n152.1404 andn252.1403, respectively. The coheren
length of the system isD l 5p/Dk52661mm, far larger than
the crystal length, allowing a phase match condition. It
well-known in nonlinear optics that when the SVA approx
mation holds, SHG reaches its maximum value at ph
matchDk50. However, the multireflection effect occurrin
at interfaces may compete with the phase-match effec
achieving the maximum SHG. This was verified by the n
merical simulation. The dependence of the SHG sig
~transmitted wave! on the phase mismatch for the homog
neous crystal withnb5n2 andnb51.0 is shown in Fig. 2 by
solid and dotted lines, respectively. Heren1 is fixed at
2.1404, andl51.064mm. The maximum of SHG fornb
51.0 lies at Dk520.34(p/d) instead atDk50 for nb
5n2 . Another lower signal peak lies atDk50.54(p/d).
This difference can be attributed to the multiple reflectio
from the crystal-air interface, which can be well described
the interference factor ss5(1/21 kb/2k2)2e2 ik4d2(1/2
2 kb/2k2)2eik5d in Eqs.~8a! and~8b!. This factor is unity at
nb5n2 (kb5k2), while it is a rapid oscillating function a
nbÞn2 . Irrespective of remarkable difference for a sm
phase mismatch, the SHG in both cases decays rapidly a
phase mismatch increases. It should be noted that the p

FIG. 2. Dependence of the second-harmonic generation si
on the phase mismatch fornb5n2 ~solid line! andnb51.0 ~dotted
line!.
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tion of signal peak varies versus the crystal length, and
some cases the peak is atDk50.

Investigations of the SH field inside the crystal also de
onstrate the violation of the SVA approximation when t
reflection from the crystal interface is appreciable. The
field in Eq. ~2! can be rewritten as E2(z)5( f r1 i f i)e

ik2z

1(br1 ibi)e
2 ik2z, wheref r , f i , br , andbi are the real and

imaginary parts of complex amplitudes, respectively. T
SVA approximation remains reasonable only whenbr andbi

are small compared tof r and f i . It was found that at refrac-
tive index match,f r and f i are both proportional to the
propagation distance, andbr andbi are both negligible, the
SVA approximation works accurately. However, when t
mismatch of refractive index occurs,br and bi are compa-
rable to f r and f i , then the SVA approximation does no
hold.

We now consider a realistic nonlinear material of LiTaO3,
wheren152.1404 andn252.1073 atl51.064mm, and the
coherent length isD l 58.036mm. The quasiphase match ca
be obtained in periodic or quasiperiodic superlattice with
ciprocal vectors equal to the phase mismatchDk or its inte-
ger multiples,9,10,13–15 as according to Eqs.~8a! and ~8b!,
only the first sum term~forward propagating wave! contrib-
utes to the SH waves. As an example, we have calculated
SH field inside periodic superlattices with a period ofa
52D l 516.07mm. The behavior of a SHG signal appea
similar with the above homogeneous crystal. At refract
index match ofnb5n252.1073, the backward propagatin
SH wave is negligible@s150 at Eqs.~8b!# due to the absence
of interface multireflection. Therefore,br5bi50, andf r and
f i increase linearly with propagation length, which results
a parabolic dependence of SHG signal on the crystal len
as shown in Fig. 3 by the smooth line. In contrast, at refr
tive index mismatch ofnb51.0, br and bi are comparable
with f r and f i . The SH field inside the superlattice oscillat
rapidly, so does the SHG signal versus the crystal length
shown in Fig. 3 by the oscillating curve. This means that
SVA approximation does not hold any more.

In addition to the interface reflection, the rapid variatio
of the nonlinear susceptibilityx(z) may result in the failure
of the SVA approximation, since in such superlattices
backward propagating wave can overwhelm the SHG. T

al

FIG. 3. Plots of second-harmonic generation signal as a func
of crystal length fornb5n2 ~smooth line! andnb51.0 ~oscillating
curve! in a periodic TaLiO3 superlattice with a period ofa
516.07mm.
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can be clearly seen in Eqs.~8a! and~8b!. Whenx(z) varies
rapidly in a length comparable with the SH wavelength,
first sum term~forward propagating wave! in Eqs. ~8a! and
~8b! vanishes due to the rapid oscillation of the coefficie
Ei , while the second sum term~backward propagating wave!
dominates in the SHG. Therefore, in such short-period n
linear superlattices, the SVA approximation fails complete
In fact, recently such a backward SHG configuration h
been extensively investigated in both theoretical and exp
mental sides.16–18However, the SVA approximation was sti
adopted in the theoretical discussions.

To verify the above assumption, we have considere
periodic superlattice with a period ofa553(2p/k3)
50.63mm and a length ofd5125mm. According to Eqs.
~8a! and ~8b!, this superlattice can achieve a quasi-pha
match for the backward propagating wave instead of the
ward propagating wave. The simulation results demonst
that the amplitude of backward wave (br and bi) increases
with respect to its propagation distance~along the negative z
axis!, and overwhelms that of the forward wave (f r and f i).
Even in the absence of reflection from the crystal interfa
(nb5n2), the forward SH wave is negligible compared wi
the backward wave. It is also found that when the period
the superlattice decreases, the efficiency of SHG will
crease remarkably.

In the above discussions, we have assumed the app
mation of negligible pump power depletion. If the conve
sion efficiency of SHG is high, one has to solve the nonlin
coupled wave equations satisfied with the FW and the
ys
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fields. It is noted above that in the SVA approximation, t
amplitude of the SH wave is a slowly-varying functio
whose second derivative can be neglected. Then the sec
order coupled wave equations can be simplified into mu
simpler first-order coupled differential equations.1 This ap-
proximation greatly reduces the difficulty of solving the no
linear coupled equations. So, it may be expected that m
phenomena in nonlinear optics should be appraised in a m
rigorous way when the SVA approximation fails. This in
volves the solution of nonlinear coupled second-order diff
ential equations, a difficult task that needs further extens
investigations.

In summary, we have developed a transfer-matrix meth
to appraise the validity of the SVA approximation which
widely adopted in nonlinear optics. In particular, rigoro
solutions of SHG from nonlinear optical superlattices sh
that the SVA approximation is invalid when the reflection
SH wave from the crystal interface is appreciable. Furth
more, when the modulation period of superlattice is com
rable to the wavelength of the SH wave, the approximatio
far from accurate even when no reflection from the crys
interface occurs. The transfer-matrix method may provid
novel way to investigate various nonlinear optical proces
in superlattices in a precise way.
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