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Slowly varying amplitude approximation appraised by transfer-matrix approach
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The slowly varying amplitude approximation that is widely adopted in nonlinear optics is appraised by the
transfer-matrix method. Rigorous solution for second harmonic generation in nonlinear optical superlattices
shows that this approximation is invalid when the reflection of the second har@&ievave from the crystal
interface cannot be neglected. When the modulation period of the superlattice is comparable to the wavelength
of the SH wave, the approximation is far from accurate even if no reflection from the crystal interface occurs.
The transfer-matrix method may provide a novel approach to investigate various nonlinear optical processes in
superlattices in a precise way50163-182609)13139-4

Since the invention of lasers, nonlinear optics has beenjTaO,, and KTiOPQ with patterned electrodes. The con-
developed into a fascinating field of broadest scope and ineept of Quasi—phase-matchficf has been realized in such
fluential proponent&? Originated from experimental work periodic and quasi-periodic superlattices to achieve harmonic
by Franken and co-worketand theoretical work by Bloem- generations and other nonlinear processes with high
bergen and co-workefsthis field now finds applications in efficiency®-*®
many areas of sciences. The schematic configuration of superlattice is displayed in

The propagation of nonlinear waves in nonlinear crystald=ig. 1. The crystal(Region 1) is assumed to lie inside a
is governed by the coupled-wave equations, which are basdtbmogeneous background dielectifiRegions | and Il with
on Maxwell’s equation$.Understanding of fruitful nonlinear a refractive index ofn,. The nonlinear crystal is excited
optical phenomena involves solving such complex nonlineawith a plane wave of fundamental ligtfW), whose electric
differential equations, a difficult task when one takes intofield reads E(z)=E€*1? with k;=n;(w)w/c. Heren;(w)
account practical conditions in experiments. Thus in actuals the refractive index of crystal for the FW. The modulation
cases, several simplifying approximations are often nfade. function of nonlinear superlattice is a discrete function,
Among them are the slowly varying amplitud8VA) ap-  where x(z)=x; in theith unit cell forz;_;<z=<z, andy;
proximation, the infinite plane-wave approximation, andtakes two discrete valuedg; and —d33 for the positive and
constant pump intensity approximation. From a realistic exnegative polarization of unit cell, respectively. Assume that
perimental view point, some corrections were made. For inzo=0 andz,=d, whered is the length of superlattice ma-
stance, sum-frequency generation with high conversion effiterial.
ciency beyond constant pump intensity approximatiand In the approximation of negligible pump power depletion,
nonlinear processes excited by focused beams other thadhe electric field Kz) of the second harmonic wave in the
plane wave$Swere investigated in detail. However, little at- 1D superlattice satisfies the following inhomogeneous wave
tention was paid to the SVA approximation. Although it was equation:
revealed in Ref. 1 that the physical implication of this ap-

proximation consisted in neglecting the oppositely propagat- Region | |_— Region Il _.| Region Il
ing nonlinear wave, this conclusion remains qualitative and 22, e 22, e 2.2
obscure. Quantitative and clear appraisal of this approxima-negative SHG
tion is necessary.

In this paper we will appraise the SVA approximation
with use of the transfer matrix method. Our aim is to dem- 'ncident FW —
onstrate the break down of the SVA approximation. There-
fore, for concreteness, we focus our consideration on one- . 1. Schematic configuration of 1D nonlinear optical super-

dimensional(1D) nonlinear optical superlattices where the |attice (Region I) inside a homogeneous dielectric backgrodRé-
linear susceptibility is homogeneous, while second-ordegions | and I1). Second-harmonic generation is excited by a plane
nonlinear susceptibility is modulated by alternate laminar dofundamental light. The superlattice is composedno&lternative
mains with positive and negative polarizations. This can b@aminar domains with positivéblack cell§ and negative(white
accomplished in many ferroelectric crystals such as LifNbO cells) polarizations.

Positive SHG
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V2Ey(z) + K5Ex(2) = —k§x(2)EX(2), (1)

whereky=2w/c, andk,=n,(2w)k with n, being the re-
fractive index for the SH wave. For most nonlinear crystals,

ni#n, due to the dispersion of light in crystals.

The solution of Eq(1) in theith unit cell can be written

as

Ex(z)=Ee*?+E e 2+ Ee??  z_ <z=z,

2
whereE;" andE;” are amplitudes of second harmort&H)
waves propagating forwardly and backwardlyE;

=k3xE?/(4k?—k2) is the amplitude of inhomogeneous SH
wave. The transmitted and reflected SH waves in the dielec-

tric background are both plane waves,
Exz)=E&*? z>z,=d, (3)
Ex(z)=E;e”?,  z<zy=0, 4

where E; and E, are both complex constants, ardg,

=2wny/c. The intensity of second-harmonic generation
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Erzslz EI(eIAkZl_eIAkzl,l)_FSZZ Ei(eik3Zi_eik3Zi,l)'
=1 i=1
(8b)
The coefficients are

ENERCATENLSY
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where ss=(1/2+ ky/2k,)2e 49— (1/2— ky/2k,)%eksd, Ak
=2k;—k, is the phase mismatch, and=2k;+k,, ky4
=k,—kp, ks=k,+ky. It is clear from Egs(8a and (8b)

(SHG) signal in the forward and backward directions arethat the forward and backward propagating waves, whose

proportional tol,=ng|E|? and|,=ny|E,|?, respectively.
The amplitudeqE;" ,E; ,i=1,... n} as well asE; and

E, can be solved through the match of boundary condition

at each interface of unit cell. A=z,=0 andz=z,=d we
have

SoT1=ST;, STh=5T:. 5
At the interface ofz=z;, we have the following recurrence
formula:
S(Ti—Tit)=(E+1—E)P;, i=1,... n=1. (6
The matrices in Eq95) and (6) are defined as
e ikpzg _ ei2k120 Er
S,=( —kye ko — 2k e %% Tr:(El),
eikbzn _ ei2klzn Et
St:(kbeikbzn _Zkleizklzn), Tt:(En)’
and
eikzZi e*ikzZi E+
I
Si:(kzeikzzi _kze—ikzzi), Ti:(Ei—)
eizklzi
Pi= 2klei2klzi)-
From Eq.(6) we get
n—-1
To=Ti== 2, (Ei.1-E)S 'Pi. (7)

The substitution of Eq(5) into Eq. (7) yields the ampli-
tudes of the transmitted and reflected SH waves:

n n

Et:az Ei(eiAkzi_eiAkzi_l)+bE Ei(eik3zi—eik3zi—1),
=1 =1
(8a)

wave vectors ardk andk; respectively, both contribute to
the transmitted and reflected SH waves. In the case of phase
atch, namely, R;=k,, Ak=0, b=s,=0, the contribution
rom backward propagating wave vanishes. Aftigrand E,
are solved, the amplitudes of homogeneous SH waves
E;" ,E; in each unit cell of the nonlinear superlattice can be
calculated according to Eqé&5) and (7). Then the distribu-
tion of the SH field in the superlattice can be calculated
directly from Eq.(2). It should be noted that nonlinear optics
of multilayer thin film can also be solved by a Green'’s func-
tion formalism developed by Sipe and co-work&t&® How-
ever, as the nonlinear medium is excited by a plane wave, it
is more convenient to apply the transfer-matrix approach,
which is essentially based on a plane-wave expansion for-
malism.

The SVA approximation assumes that the amplitude of
the SH wave is a slowly varying function, namely;(B
=F(2)e2?, where F(z) satisfies |d%/9z°F(2)]
<|k, dldz F(2)|. Then the second-order wave equation of
Eqg. (1) can be simplified into a simple first-order differential
equation, which can be integrated out for the superlattice as

dik3 _
F(d)= f — x(z)E%e'*kxdz
0 2k,

n
:EIZE Ei(eiAkZi—eiAkzi’l), (9)
i=1

andF(0)=0 in the absence of SH wave input. Equati®n
means that no backward propagating wave is generated from
the superlattice. Compared with Ed8a) and (8b), this ap-
proximation works exactly only when the coefficients tof
=s,=5,=0, anda=—1. It requires the phase matching
condition ofAk=0 and a match of refractive index for crys-
tal and background dielectric, i.en,=n(2w) andk,=ky,

for example, an infinite nonlinear crystal. At other cases, the
SVA approximation will result in some inaccuracies. Of
course, as the dispersion is weak for many nonlinear crystals,
then Ak<k,~2k,;, and we have|b|<]|a|, s;=0, and
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Ak (n/d) FIG. 3. Plots of second-harmonic generation signal as a function

FIG. 2. Dependence of the second-harmonic generation sign&f crystal length fom,=n, (smooth ling andn,=1.0 (oscillating

on the phase mismatch fog,=n, (solid line) andn,=1.0 (dotted ~ CUrve® in a periodic TaLiQ superlattice with a period of
line). =16.07um.

|s,|<|a| at the refractive index match. In this case the con-tion Of signal peak varies versus the crystal length, and in

tribution of the backward propagating wave to SHG can beS0me cases the peak is&k=0.
neglected, unless the summation terms with a large wave Investigations of the SH field inside the crystal also dem-
vector ofks are much greater than thek term. onstra_te the violation of th_e SVA apprommat_lon when the
Physically, the SVA approximation means that the energ)}f.eflec.tlon from the crystal mtgrface is appremaple. Tkhe SH
transferred from the FW to the SH wave is significant onlyfield in Eq. (%) can be rewritten as Jz)=(f, +if;)e"2*
after the waves travel over a distance much longer than theit (0r +ibj)e™"?*, wheref, , f;, b;, andb; are the real and
wavelengths. However, in the nonlinear superlattices, thémaginary parts of complex amplitudes, respectively. The
modulation of nonlinear susceptibility(z) may result in a SVA approximation remains reasonable only wierandb;
rapid variation of the SH field. In addition, the multireflec- are small compared th andf;. It was found that at refrac-
tion effect of interfaces between unit cells as well as betweetive index match,f, and f; are both proportional to the
the crystal and the background medium will generate nonpropagation distance, arig andb; are both negligible, the
negligible backward propagating SH wave. Therefore, sigSVA approximation works accurately. However, when the
nificant deviation from the conventional SVA approximation mismatch of refractive index occurb, andb; are compa-
may be expected in such nonlinear superlattices. rable tof, and f;, then the SVA approximation does not
We first consider a homogeneous nonlinear crystal, whergold.
x(2) in Eq. (2) is a constant. Parameters of the system are We now consider a realistic nonlinear material of LiaO
taken as: Crystal lengtd=100um, wavelength of F\WA wheren;=2.1404 anch,=2.1073 atA = 1.064um, and the
=1.064um, the refractive indices of the FW and SHG are coherent length ial =8.036um. The quasiphase match can
n;=2.1404 andn,=2.1403, respectively. The coherence be obtained in periodic or quasiperiodic superlattice with re-
length of the system iAl = 7/Ak=2661um, far larger than ciprocal vectors equal to the phase mismatdhor its inte-
the crystal length, allowing a phase match condition. It isger multiples’®**~'®as according to Eqs(8a) and (8b),
well-known in nonlinear optics that when the SVA approxi- only the first sum terniforward propagating wayecontrib-
mation holds, SHG reaches its maximum value at phasates to the SH waves. As an example, we have calculated the
matchAk=0. However, the multireflection effect occurring SH field inside periodic superlattices with a period af
at interfaces may compete with the phase-match effect ir=2A1=16.07um. The behavior of a SHG signal appears
achieving the maximum SHG. This was verified by the nu-similar with the above homogeneous crystal. At refractive
merical simulation. The dependence of the SHG signalndex match ofn,=n,=2.1073, the backward propagating
(transmitted waveon the phase mismatch for the homoge- SH wave is negligiblés, =0 at Eqs(8b)] due to the absence
neous crystal witln,=n, andn,=1.0 is shown in Fig. 2 by of interface multireflection. Thereforb, =b;=0, andf, and
solid and dotted lines, respectively. Herg is fixed at f, increase linearly with propagation length, which results in
2.1404, and\=1.064um. The maximum of SHG fon, a parabolic dependence of SHG signal on the crystal length,
=1.0 lies atAk=—0.34(w/d) instead atAk=0 for n,  as shown in Fig. 3 by the smooth line. In contrast, at refrac-
=n,. Another lower signal peak lies atk=0.54(w/d). tive index mismatch oh,=1.0, b, andb; are comparable
This difference can be attributed to the multiple reflectionswith f, andf;. The SH field inside the superlattice oscillates
from the crystal-air interface, which can be well described byrapidly, so does the SHG signal versus the crystal length, as
the interference factorss=(1/2+ ky/2k,)%e 49— (1/2  shown in Fig. 3 by the oscillating curve. This means that the
— kp/2k,)%e'*s% in Egs.(8a) and(8b). This factor is unity at SVA approximation does not hold any more.
n,=n, (k,=Kks), while it is a rapid oscillating function at In addition to the interface reflection, the rapid variation
Ny#n,. Irrespective of remarkable difference for a small of the nonlinear susceptibility(z) may result in the failure
phase mismatch, the SHG in both cases decays rapidly as toé the SVA approximation, since in such superlattices the
phase mismatch increases. It should be noted that the posiackward propagating wave can overwhelm the SHG. This
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can be clearly seen in Eg&8a) and(8b). Wheny(z) varies fields. It is noted above that in the SVA approximation, the
rapidly in a length comparable with the SH wavelength, theamplitude of the SH wave is a slowly-varying function,
first sum term(forward propagating wayen Eqgs.(8a) and  whose second derivative can be neglected. Then the second-
(8b) vanishes due to the rapid oscillation of the coefficientorder coupled wave equations can be simplified into much
Ei, while the second sum tertbackward propagating wave simpler first-order coupled differential equationghis ap-
dominates in the SHG. Therefore, in such short-period nonproximation greatly reduces the difficulty of solving the non-
linear superlattices, the SVA approximation fail_s com_pletely."near coupled equations. So, it may be expected that many
In fact, recently such a backward SHG configuration hag)henomena in nonlinear optics should be appraised in a more
been ext.ens%/_ellg/ investigated in both theo_retlcgl and eXPeriigorous way when the SVA approximation fails. This in-
mental sides?**However, the SVA approximation was still \o1ves the solution of nonlinear coupled second-order differ-

adopted in the theoretical discussions. , ential equations, a difficult task that needs further extensive

To yerlfy the a_bove gssumptlor), we have considered Fvestigations.
periodic superlattice with a period o&=5x(2m/k;) In summary, we have developed a transfer-matrix method
=0.63um and a length ofi=125um. According t0 EGS. 5 appraise the validity of the SVA approximation which is
(83 and (8b), this superlattice can achieve a quasi-phasgyigely adopted in nonlinear optics. In particular, rigorous
match for the backward propagating wave instead of the forgqytions of SHG from nonlinear optical superlattices show
ward propagating wave. The simulation results demonstratg, ot the SVA approximation is invalid when the reflection of
that the amplitude of backward wave,(andb;) increases g wave from the crystal interface is appreciable. Further-
with respect to its propagation distan@ong the negative Z e, when the modulation period of superlattice is compa-
axis), and overwhelms that of the forward wavi @ndf;).  rape to the wavelength of the SH wave, the approximation is
Even in the absence of reflection from the crystal interfacga; from accurate even when no reflection from the crystal
(np=ny), the forward SH wave is negligible compared with jnterface occurs. The transfer-matrix method may provide a
the backward wave. It is also found that when the period of,4ye| way to investigate various nonlinear optical processes
the superlattice decreases, the efficiency of SHG will in-, superlattices in a precise way.
crease remarkably.
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