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Application of an on-site self-interaction-corrected method to Ce and thea-Ce surface
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A restricted implementation of the self-interaction-corrected density-functional method is described, and
applied to thea-g transition in fcc Ce and to thea-Ce surface. The method, based on a full-potential linear
muffin-tin orbital method, does not allow full minimization of the local-density approximation–self-
interaction-corrected energy functional, but does contain all of the fundamental energetics of electron local-
ization. This allows an essentially parameter-free, yet economical, determination of whether localization is
energetically favored. Application of this method to thea-g transition in Ce achieves good agreement with
other self-interaction-corrected calculations, while the Ce surface provides a good demonstration of the utility
of the method. The calculations predict a monolayer of localizedf states on the surface, and the resulting
surface relaxation is examined.@S0163-1829~99!01332-6#
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Rare-earth and actinide materials often exhibit a hig
correlated electronic structure, characterized primarily
varying degrees off-state localization. This localization, an
changes in the localization, affect a number of observa
properties, including structural properties. One well-stud
example is the isostructurala-g transition in fcc cerium, in
which the material undergoes a 17% volume collapse fr
the high-volumeg phase to the lower-volumea phase.
While the nature of the transition has been the subjec
some controversy,1 one proposed theory is that this is a Mo
transition, with the Ce 4f changing from a localized to de
localized, hybridized state. Another example in Ce is
surface ofa-Ce, which photoemission data2 suggest are more
g-like in electronic structure, with a localization of thosef
states at or near the surface.

Standard LDA~local-density approximation! calculations
fail to describe such transitions between delocalized and
calized states, and it is well known that this is due to
failure of the LDA energy functional to obtain the decrea
in Coulomb energy that results from localization, which
turn is closely related to the LDA’s inclusion of substant
self-interaction energies. Perdew and Zunger3 have intro-
duced a self-interaction-corrected~SIC! density-functional
method, and several recent calculations of rare-earth4,5 and
actinide6 properties have applied this SIC method with go
success. In particular, SIC calculations of thea-g transition
in Ce have reproduced the volume collapse, and other p
erties, fairly well. Use of the SIC method has been limite
however, by the difficulty of its full incorporation into cal
culations of extended systems. The SIC method descr
here, while approximate in some respects, contains all of
essential physics of localization, and is easily implemen
within an all-electron density-functional program, with e
sentially no cost in computational requirements.~This
method is in essence quite similar to a method, describe
Ref. 7, that has been developed and applied largely
crystal-field splittings and magnetic properties. There a
however, several technical differences between the
methods.!

In the self-interaction-corrected density-function
method,3 the ground-state density is obtained, as in
PRB 600163-1829/99/60~15!/10588~3!/$15.00
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Kohn-Sham method, by minimizing an energy function
with respect to variations in a set of occupied, orthonorm
one-electron states. The SIC energy functional is, howe
made explicitly interaction free for each orbital, with th
result that the states are determined using an orb
dependent effective potential;Vi(r )5VLDA(r )2VSIC(r ),
where the correction to the LDA effective potential,VSIC, is
the Hartree and exchange-correlation potential calcula
from the i th state’s density. This correction is zero for e
tended states, but may be substantial for localized sta3

The computational difficulties arise from the fact that a
localized states are not Bloch states~and should, in principle,
be calculated using a supercell approach!; and from the re-
quirement that all of the orbitals, while calculated from d
ferent effective potentials, must still form a set of orthogon
states.3,8

The approximate SIC method employed here is a va
tion on the ‘‘f in core’’ approach tof localization, and makes
the assumption that the localizedf states are confined to on
atomic site. In this case, the form of the localizedf states can
be obtained reasonably well by calculating thef states as are
the core states, by solution of the Dirac equation in a sph
cally averaged potential. Thisf in core technique for localiz-
ing the f states has been in use for some time,8–11 and has
been shown capable of predicting equilibrium volumes a
bulk moduli in systems where it is assumed that thef’s are
localized, including fcc Ce. This is becausef in core does, of
course, remove thosef states from the bond-forming valenc
band. It is usually accompanied by complete removal of
basis functions from the valence basis set.~A method similar
to the f in core method has been applied to the actinides
Ref. 12. An LDA1U approach to actinides has also be
investigated.13

Simply putting thef’s in core in LDA calculations has two
central drawbacks, which are addressed by the pre
method. First, without any self-interaction correction, t
calculated energy does not contain the decrease in ele
static energy obtained by localization, and so cannot be u
to predict whether or not localization is favorable. This d
ficiency is easily addressed by including the self-interact
correction for the coref’s much as in atomic calculations,3
10 588 ©1999 The American Physical Society
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PRB 60 10 589BRIEF REPORTS
using the spherically averaged density of a coref state to
determine the SIC potential and energy.

The second drawback is the all or nothing aspect of
technique, wherein if even one localizedf state is occupied
the valence states are forced to lose all 4f character. Here a
method was developed which allows moving onef electron
at a time from valence to core. This is accomplished
including in the valence Hamiltonian, for each occupiedf
core stateu f i&, the projection operatorE0u f i&^ f i u, whereE0
is an arbitrary large energy~200 Ry here!, so that the corre-
spondingf state is effectively unavailable for occupation b
the valence states. This partial retention off character in the
valence basis set~absent in the method of Ref. 7! was found
to have a non-negligible influence on the calculated resu
including equilibrium volumes and crystal-field splitting
Thus this self-interaction correctedf in core technique con
tains all the major features of localization: the localizedf is
taken out of bonding hybridizations; the decrease in elec
static energy is included; and all of the occupied states
main ~largely! orthogonal, without extraneous constraints.

This method does not, however, contain a variational
termination of the SIC localized state: Thef states are eigen
states of a spherically symmetric potential~with nonspherical
corrections as described below!, not the periodic LDA poten-
tial plus SIC potential. Nonetheless, as long as orthogo
states are occupied, a correct evaluation of the SIC-L
energy functional will provide an upper bound for the ener
of the localized system, and so can be used to search fo
onset of localization. Since the localized states are not va
tional, their construction—that is, the choice for the sphe
cally symmetric potential—is to some extent arbitrary.
this work the spherically averaged effective potential w
used out to the point where this function reached a ma
mum, typically at about half of the nearest-neighbor dista
~and outside the muffin-tin radius!. Beyond that radial dis-
tance, the potential was kept constant. In addition, a smo
potential barrier was included beyond this point. This w
done not only~as in the light actinides, to be described in
later publication! to provide bound states, but also to preve
overlap with neighboring localized states, and so maint
orthogonality between them. For Ce, thef states are fairly
well contained near the parent nuclear site, and so the sh
and even to some extent the existence, of the barrier did
have a significant effect upon calculated results.

As in other SIC implementations,4–7 another question to
be addressed concerns whichf states to localize. Here th
localized states were allowed to be any linear combination
the 14 members of thef multiplet, and the final choice wa
made through minimization of the total energy, examini
the most physically motivated linear combinations, includi
total angular-momentum eigenstates and members of
ducible representations of the point group.~For a singly oc-
cupiedf state, or for any occupation which is less than a f
representation of the point group, the projection operator
cluded in the one-electron Hamiltonian does not posses
full Oh point-group symmetry of the lattice. The set ofk
points were chosen accordingly, but onlyOh compatible
terms were kept in the potential and density.! Finally, the
interaction of the localizedf states with the nonspherica
components of the potential were included through fir
order perturbation theory,DE5S i^ f i udV(r¢)u f i&; however,
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the nonspherical components of the localizedf-states elec-
tron density were not included in the self-consistent elect
density, and therefore not in the state’s self-interaction c
rection.

This simplified SIC method was applied to thea-g phase
transition in bulk fcc Ce, and to the~001! surface ofa-Ce. A
full-potential linear muffin-tin orbital~LMTO! method14 was
used; with the 5s and 5p semicore states included in th
valence set; with 5s, 5p, 6d, 7s, and 7p ‘‘double-k’’ basis
functions and a ‘‘single-k’’ 4 f basis function; and with in-
clusion of spin-orbit matrix elements. As in other SIC calc
lations of thea-g transition,4,5 the low volumea phase is
assumed to be represented by the standard LDA calcula
and the LDA energy versus volume curve is shown in Fig
The calculated equilibrium lattice constant is 8.57 a.u., ab
6% smaller than the experimental value of 9.16 a.u.1 While
this difference is larger than usually obtained by LDA calc
lations, it appears to be in good agreement with some o
full-potential calculations.9

Figure 1 also shows the energy of the SIC-LDA calcu
tion with one localizedf electron, representing the large
volume g phase. An examination of the relative energi
obtained by localizing total angular-momentum eigensta
confirmed that the spin-orbit interaction dominated other
fects, with j 55/2 andj 57/2 states being split in energy b
about 25 mRy. Within thej 55/2 multiplet, linear combina-
tions giving members of theG7

2 doublet andG8
2 quartet were

examined. Here, while the ‘‘bare crystal-field’’ splitting~the
expectation value of the nonspherical components of the
tential!, was on the order of 1 mRy, the final energies we
much closer, due to the differing cost in energy of projecti
G7

2 or G8
2 functions out of the valence set. The total ener

was 0.2 mRy lower, at equilibrium, forG7
2 occupation, and

these are the energies given in Fig. 1. The equilibrium lat
constant is again about 6% smaller than the experime
value ~a calculated 9.18 a.u., compared with theg-Ce
experimental1 value of 9.75 a.u.!, with the result that the

FIG. 1. Calculated energy of fcc cerium as a function of atom
volume, for both the LDA calculation and the SIC-LDA calculatio
with one localizedf electron per atom. The dotted line is the tange
to both curves.
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10 590 PRB 60BRIEF REPORTS
volume collapse is in good agreement with experiment. T
calculated volume collapse is 18.6%, while the experime
value is roughly 17%. Other SIC calculations4,5 of the a-g
transition have obtained volume collapses of around 24%
is not clear to what extent this small difference between c
culated results is due to the ‘‘on-site’’ approximation,
other considerations, such as the fact the earlier SIC ca
lations have been based on atomic-sphere-approxima
implementations of the LMTO method, rather than a fu
potential method.

The negative slope of the tangent line shown in Fig. 1
the predicted pressure required for the zero-temperature
sition, and the calculated value is equal to222 kbar. This is
to be compared to other~variational! SIC values of21 kbar,4

and 117 kbar,5 and an experimental value of27 kbar.1

These values are all relatively close, corresponding to u
form shifts in the SIC-LDA energy curve on the order of
mRy and again it is not possible to distinguish the contrib
tion of the on-site approximation versus full-potential a
other numerical considerations. It can be concluded that,
Ce, the current method provides a good reproduction of o
implementations of the self-interaction correction.

The efficiency of the current method allows the examin
tion of more complicated systems, of which localization
the Ce surface provides a good example. The~001! surface
of a-Ce was calculated using a nine-layer, repeated s
constructed with the calculated bulk equilibrium lattice co
stant. The slab calculation was performed three times: w
no f localization, with the surface monolayer given localiz
f states, and with the surface and subsurface layers local
The three relative total energies for the unrelaxed surf
clearly indicate that localization at the surface is favored,
only for the surface layer, and not for subsurface layers.
unrelaxed surface with one localized layer is 17 mRy~per
be
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surface atom! lower in energy than that with no localization
and 21 mRy lower in energy than the two-localized-lay
surface. The finding that localization is energetically favor
for just one layer is in agreement with a LDA plus orbita
polarization examination of the same system,15 and in agree-
ment with experiments2 which indicate localization occurs a
the surface, although for an undetermined number of lay

The increased volume of theg phase implies that the lo
calized surface layer is under compression, and it has b
suggested15 that this might result in surface reconstructio
Here, only the effect on surface relaxation has been ex
ined, for both the delocalized and the one-localized-layer c
culations. Both were found to have inward relaxations, co
mon to many metallic fcc systems, with the delocaliz
surface relaxation being found to be25.2% of an interlayer
spacing, and for the localized system, an inward relaxation
23.3%. The respective relaxation energies were 1.9 and
mRy per surface atom.

In conclusion, a simplified form of a self-interaction
corrected calculation has been developed which is eas
implement within an all-electron LDA method, and is com
putationally economical. It allows examination of wheth
on-site electron localization is energetically favored, and a
allows some means of including partial localization since,
systems with multiplef occupation, one electron at a tim
may be moved from localized to delocalized states. For
a-g transition in Ce, the method was able to reproduce e
lier SIC results in which the on-site restriction was not im
posed, obtaining comparable values for both the volume
lapse and transition pressure. Application to thea-Ce surface
shows that the SIC description of localization in Ce predi
a g-like monolayer at the~001! surface.
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