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Schwinger-boson mean-field theory of the Heisenberg ferrimagnetic spin chain
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The Schwinger-boson mean-field theory is applied to the quantum ferrimagnetic Heisenberg chain. There is
a ferrimagnetic long-range order in the ground state. We observe two branches of the low-lying excitation and
calculate the spin reduction, the gap of the antiferromagnetic branch, and the spin fluctu@itiod a&. These
results agree with the established numerical results quite well. At finite temperatures, the long-range order is
destroyed because of the disappearance of the Bose condensation. The thermodynamic observables, such as the
free energy, magnetic susceptibility, specific heat, and the spin correlatior-@t K, are calculated. The
Txuni has a minimum at intermediate temperatures and the spin-correlation length behaves atslow
temperatures. These qualitatively agree with the numerical results and the difference is small at low tempera-
tures.[S0163-1829)07225-3

I. INTRODUCTION renormalization-group methoa@®@MRG) and QMC to calcu-
late the thermodynamic observables.

A variety of exotic physical phenomena in the low- In this paper we study the ferrimagnetic spin chain by
dimensional magnetic systems have been attracting much imeans of the Schwinger-boson mean-field thd@BMFT).
terest in recent years. In these systems, the physical picturdhe theory has been applied successfully to the integer
obtained from the classical approach are often greatly modiHeisenberg chai?],presumably due to the neglect of topo-
fied or even in contradiction with the result of the stronglogical excitations in the SBMFT. It can also be extended to
quantum fluctuation and topological effect. Haldaoenjec-  the case of the magnetic order rabgey identifying the
tured that the one-dimensional integer-spin chain with th@nagnetic order with the Bose condensation of the Schwinger
nearest-neighbor coupling has an energy gap in the spin eyosons. In the Heisenberg ferrimagnetic spin chain, we find
citation spectrum and the spin correlation decays exponerthat the SMBFT theory is suitable to describe both the
tially with distance, whereas that of the half-odd-integer spinground state with the ferrimagnetic long-range order and the
chain is gapless and the spin correlation decays algebraicaltiermodynamic properties at finite temperatures. The mean-
with distance. field theory gives rise to the leading term in a systematit 1/

It is very interesting to discuss the physical phenomenaxpansiofl and the effects of fluctuation beyond the mean-
for the spin chain mixed by different kinds of spins. Re-field theory can also be discussed, as we will mention later.
cently, the one-dimensional Heisenberg ferrimagnetic spin In our SBMFT approach, the ground state has a long-
chain, which is made of two kinds of spin§*=1/2 and  range ferrimagnetic order arising from the condensation of
SP=1, has been consideréd This one-dimensional chain the Schwinger bosons dt=0 K. There are two different

can be described by the Hamiltonian kinds of excitation: One is gapless and ferromagnetic and the
N other is gapful and antiferromagnetic, which has been

2p 2B pointed out by Brehmeet al? The spin reduction, the gap of

HZI:EM S S D the antiferromagnetic branch, and the spin correlatioil at

=0 K are calculated and the results are in good agreement
where the antiferromagnetic coupling enetljg set to equal  with those of the QMC and DMR&® WhenT>0 K, the
1. N is the number of unit cells, ang is the index of the two branches of excitation are both gapful, so that the Bose
nearest neighbors. Brehmet al? showed that the absolute condensation disappears and there is no real long-range or-
ground state of this model has a ferrimagnetic long-rangeler. This is just what the Wigner-Mermin theorem tells us
order and obtained the low-lying excitation, by using thefor one dimension. The gap of the ferromagnetic branch is
spin-wave theory(SWT) and the quantum Monte Carlo proportional toT? and the spin-correlation length is diver-
method(QMC), which is confirmed by Kolezhut al with gent as IF. The thermodynamic observables, such as the
the matrix product approach. It is also consistent withfree energy, the magnetic susceptibility, and the specific
Tian's® rigorous theorem that the absolute ground state foheat, are calculated. They agree with the numerical résults
the one-dimensional antiferromagnetic Heisenberg modeajualitatively and the difference is small at low temperatures.
with unequal spins has both antiferromagnetic and ferromag- This paper is organized as follows: In the second section
netic long-range orders. Furthermore, Yamanettal® used we construct the mean-field theory of the ferrimagnetic
the modified spin-wave theofMSWT), the density-matrix chain. In the third section we give the ground-state proper-
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ties. In the fourth section we study the thermodynamic prop- At Bt
erties. Conclusions are made and advantages and limitations HMF:kz {Aay sax o+ Nby by o}
compared with other approaches are discussed in the final 7

section. .
—kE {D*zyi (g 1b g —ay by 1)

II. SCHWINGER-BOSON MEAN-FIELD THEORY

T T At T *
OF THE FERRIMAGNTIC HEISENBERG SPIN CHAIN +Dzyd(@ by~ 8 bly )} +2zND*D

, —2N(SM\A+SBAB) +ZNSSE. 4c
The spin operatoslA can be represented by the Schwinger ( ) (40
bosonsa; ; ,a; | , Herezis the number of the nearest-neighbor sites and equals
2 in the one-dimensional chain, andkz(llz)E,?e"‘”
) —al.a ) —al a =cosk. The sum ofk is restricted in the reduced first Bril-
AT SIS ST louin zone, which extends from /2 to /2.
Using the Bogoliubov transformation
A _E T _ At (2) .
&,Z_Z(amam ai,iaiyl)’ ak,T COSh@k Slnth ay bk,T
b',) \sinhg, coshe/\p", | \a",
i =13t a T a i i 3B .
with 3‘“— 2(a,,Ta,,T+z?1,,la,,l_) on each site of kind\, andS; coshé,  —sinhéy| [ Bu
can be represented in a similar way. = . + (5)
The Hamiltonian(1) is rewritten in this representation, —sinhé,  coshy |\ a’,
with 6 given by
1 N
:_E 2 (aIT i+l a bl+77T) hos |ZDyk| 5
tan = m, (6
A B AcB
X (3 1Div g a'vib'WvTHiZ,} Sy we obtain the energy spectrum
N
)\A_)\B )\A+ 2
=-22 D\, Diis,t 2SS, (3a) B, =~ + \/ —|zDyl? (6
i=1,7y i,m 2 2
1 )\A_)\B )\A-i- B\ 2
B —_ _ 2
Di’i+7]:§(ai’Tbi+”’l_ai’lbi_*_,]j). (3b) Ek,(r_ 2 + \/ 2 |ZD’YK| : (GC)

o . A The Hamiltonian is diagonalized and it is easy to write down
Considering the constraint a A =25 or X b oPi.c  the free energy

=25® on each site, we may mtroduce two klnds of Lagrang-

ian multipliersAf* and \? to impose the constraint. At the

mean-field level, we can take the average value of the bond HMF—Z {Ek(ak sk ot 2 +E (ﬂlﬂﬁk’(ﬂr 1/2)}
operator(DI .+7;> D to be uniform and static. And so are

(A=A and(\P)=\E. +22ZND*D —2N(S*+ /20 - 2N(SB+1/2)\ B
The mean- fleld Hamiltonian reads
+2ZNQ'S? (78
N MF
Hup=— 2 {D*(aibi,, —ai b, F w2 dk Bea il B s
i, 7 ” N B - In| 2 sin 2Ek +1In| 2 sin 2Ek
+(af bl , —al bl,, ) D} (4a) z
+zD*D—(SA+l/2))\A—(SB+1/2))\B+ESASB.
N

NS (af 8,28 (70
< (8,8,
I The mean-field self-consistent equations can be obtained by
minimizing the free energy, i.edF/6\*=0, 6F/S\B=0,
+)\BE (b b ,—25°) and 6F/8D* =0. After a simple algebra, the equations are
rearranged as

+2zND*D+2zNS'S?, (4b)
@2 dk
SP-SA= f (cothéEB—cothéEk , (83

in momentum space, which is transformed into — w227
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- =2 dk (N+NB)/2 Rescale the parameters\(AB,D,B)—(A1,A5,7,k)
S+ S +1—J77T/2£ AA_*_)\B > (Ref 8):
5| ~lzDnd® NN 1 NN
2 Ez 1 _E 17,
B B_.
x(cothEEercothEEk , (8b) NANE 1 A
2 EZAZ, = ? (9)
2
E:f“/z % |7 Then the angle of the Bogoliubov transformation is ex-
z J-m22m NA+\B) 2 . pressed in a compact form
—|zDy
cosh 29, = ! sinh 26, = 77 (10
K= s K= T
B B Vi-9%% Vi- 72
X { coth—Ef+coth-E{ . (80 _ ,
2 2 and the self-consistent equations read

SP-sh= f —{cotr[K<A V1= 72yE— Ag)]—cot k(A \1— 72y + A1}, (113

w/2dk[cotf'[K(A WNI= 7292 = Ay)]+cot k(A\1—7 yE+A2)]

V1- 729

S+ s+ 1=f

(11b
0

ml2d k
S+ 1- A= fo —{cotf k(A1V1— 7%= Ag) ]+ cotlf k(A= ¥+ A INI- 7% (119

lll. PROPERTIES OF THE GROUND STATE

2
SB+SA+1— A pP=—E(n)+(SP—SNV1- 72
Notice that the Bogoliubov patrticles in thigbranch have S (m)+( ) 7
to condense aT=0 K as long asS*# SB, otherwise Eq. (129

(119 cannot be satisfied. The excitation eneigy has its HereE(#) andK(7) are the first- and second-type complete

minimal valueE;=0 atk=0 while thea branch has a gap Lo :
elliptic integrals. The parameters have been determined nu-
of 2A, at T= O K. Sarkeret al!! showed that the long- meFr)icaIIy fgor the caSe in$"=1/2 and =1 with 7

range order is related to the condensation of the Schwinger 8868.A,=1.9238. and\,=0.8890.
bosons in both the ferromagnetic and antiferromagnetic 1o averlage value of the2 spin on the e
Heisenberg models. We now arrive at the same conclusion
for the ferrimagnetism model at one dimension. This can be 1 1
contrasted to the antiferomagnetic case, where there is no (S7)=>(bf,b;;—b]/b; ;)= 55 > (bl;by; —bf by)),
long-range order even d=0 K at one dimension. k

Suppose that there is an infinitesimal external stagge _ : P )
magnetic field that is upward at th@site and downward at g?;tobre calculated &=0 K, by using the quasiparticle op
the A site. Then the3, branch has the lowest energy and the
bosons condense at the state@of—,. Because of the bose
condensation, the self-consistent equationg a0 K are (S5)=

! 0 g |
5nCOS OkNgirk=07-0 K
modified as follows: 2N

1+

) (SP-s=0.791. (133

1
i

Similarly, the average value of the spin on the gites

1 2
$7— 8= qeot k(A1V1= 7"~ Ap)l s, (123

AV1=7"=As, (12b

1
(SH)=~— ms'nhzgknﬁkﬂk:o,r_»o K

SB+SA+1=EK(77)+ (120 L 1—; (SB—s*=-0.291. (13b
p 5 0 .291.
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The spin reductionr=S8—(SP) on the siteB or r=S*  Similarly, the longitudinal fluctuations betwednsite andA

+(S}) on the siteA is given by site and betweeB site andB site can be given by
- (P+SY 1 (SB-SY (81,8 —(SP (S ) =If(RipI?, (150
=7 = - =0.209.
e (8D~ (SEASTH=IIR)IZ, (150
(130) 1,2,z i,z (4 ij )
From Eqg.(11a9, we can see that the number of the con- f(R)= f”lz %cosh 2,e kRij, (150
densed bosons on the st@e,_o is 2N(S?—S), which is W) ap2m

just the number of the Schwinger bosons on the Bitub-
tracted by that on the sit&. As long asS*+ S, there is a
ferrimagnetic long-range order, which agrees with Tian'’s rig-
orous proof We quote several known results for the value
of 7 to show the satisfactiom of our calculation. The QMC
(Ref. 2 gives 7=0.207+0.002 andr=0.221 in the matrix
product states approachThe naive SWT overestimates the

From Egs.(15b) and (156 we get the correlation length
= yl[8(1— 5?)]¥?=0.6785. Although the correlation func-
tions are not in a good exponential form becausés not
close to 1, we can still see that the correlation decays very
rapidly.

The three kinds of transverse correlation are given by

spin reduction and re_sults h*=|=0.3._2 _ _ (S,’ﬂSB,):(a;rTanLbjT)
The gap of the antiferromagnetic branch in our mean-field '
theory isA,,i=2A,=1.778, which is very close to that in =—|g(R;)|?
the exact diagonalizatichA ;= 1.759, and in the QME, 5 ca _
Anti=1.767. The naive SWTRef. 2 and the MSWT(Ref. —(S°=SMg(Ryj)sinh26,|x—o, (168
6) give the gapA ;=1 andA ;.= 1.676, respectively. ot +
We calculate the ground-state energy of one unit cell, (shsh-)=(aliai a] aj;)
which yields the zero-temperature free energy per unit cell, =|f(Rij)|2
Fue (™2 dk s Z. 5 o +2(SB—-SME(R;)sint? O x—o, (16b)
_ M _ _ (1 _ - i klk=0>
N f_w/22W{4Al 1 n 7k}+ 2A177 . . . .
(SP. S ) =(bliby b] by
C2AL(SP+SBH1)—2A,(SA—SB) + 2 SSB o | " 'l|2” a
=|f(R;j)

= —1.904. (14)

. . +2(SB_SA)f(RiJ‘)COSH 0k|k=0' (16C)
This result is much lower than those of the QMRef. 2
and the MSWT® which are —1.437 and—1.454, respec- We note that the transverse correlation length is two times
tively. In fact, this is an artificial result caused by the mean-the longitudinal one. The SWT calculation gives that the
field theory, in which we assume that the constraint and théongitudinal correlation lengtt§=1/(2 In 2)=0.72137 while
bond operator are uniform and static. We have overcountethe numerical methods cannot give the accurate correlation
the degrees of freedom of the Schwinger bosons by a factdength, because the fluctuation decays so rapidly.
of 2, as argued by Arovas and Auerbacfl.To count the
degrees of freedom correctly, we have to divide the part of IV. THERMODYNAMIC PROPERTIES
fluctuation per unit celF s /N+2S*SE by 2, and add back AT FINITE TEMPERATURES
the classic ground energy per cell2SASE. Then we have
the modified result;- 1.455. The IN expansion can give the
above argument a strong basis.

The spin-correlation lengté of the ground state is also of
interest. Because of the appearance of the long-range ord
the transverse and longitudinal fluctuations are anisotrope. |

We investigate the low-temperature asymptotic expansion
of the self-consistent equation€ll) and verify that it
changes continuously into Eq&l2) in T=0 K. Equation
é 13 has a solution fof #0 K. So there is no boson con-
énsation. Equatiofil1a gives the gap of the ferromagnetic

our SBMFT, the longitudinal correlation between the gite ranch as
and the siteB can be calculated as > 5
PR Lo A 2.44367
<S;A\ZSJBZ> - <S{\z><3:3 z> ferro 772 (SB - SA) A 1 . .
= _<(SA_aiTTai,T)(SB_b}ibj,i)>+<(SA_aiTTai,T)> We solved the self-consistent equatiqid) numerically
. T ' ' and find that the values of the variation parameters are con-
X{(S°=bj |bj ) tinuously evolved to the values a@=0 K. On the other
hand, we see that the mean-field theory fails and the bond
=—(al,a; b/ b; )+(al a ;)(b] b; ) operatorD is zero wheriT is higher than a specific tempera-
_ ) ture, say, approximately 1.38 in our case. The failure of the
=—[g(RipI*, (158 mean field indicates that the system has entered a local-
" moment phase in which there is no correlation of the spin
R % i —iKR;; fluctuation, as pointed out by Arovas and AuerbddNith
a(Rjj) sinh 20,e i (15b ; ; ) :
— w22 temperature increasing, we find that the gap of the antiferro-
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The a’p of the antiler‘romagnetic brelanch 3
e gap of the ferromagnetic branch ------- 3B &B _ 2
ol gap of t gnetic branc | <S|'Sj>_§|F2(Rij)| ,
14
Fao(R fﬁlzdk int? @ h'[jE“
e 12F R )= —1 SIN cot
% 2( Ij) 77/2277_ k 2 k
5 1
. B sl
LF o8 +coslit 6, cothi Ef e kR, (179
06 |
el ] Becausé\ (o behaves a$?, the correlation length behaves

asT ™! ie, é=7?A(SP-SN/(4V1— AT L.
The dynamic magnetic susceptibility is calculated by us-
B . : . . : ing linear-response theory,

0 0.2 04 0.6 0.8 1 1.2 14

. 02F

Temperature

AS(q,w) _ <<SZAS/;>>qw <<S?SZB>>Qw
FIG. 1. The gaps of the ferromagnetic and antiferromagnetic ASNa,0)] 9 (2N g0 (S g
branches.
ha(g, )
magnetic branch ;= A,+ A;y1— 72 varies. In the tem- X he(q, )]’ (18

perature region where the SBMFT is valid, this gap first
decreases and then increases. It reaches its minimum, whigvhere ((S;'S,)), etc., is the retarded Green function, and
is about 1.30 wherm~0.7. The gaps of the ferromagnetic h,,hg are the small external magnetic field, agds the
and antiferromagnetic branches are plotted in Fig. 1. And théaude factor. In the Matsubra representation, the dynamic
free energy versu¥ is calculated and plotted in Fig. 2 with magnetic susceptibilities are given by
the argument of dividing the part of fluctuation by"®

The spin correlations a&—0 K are calculated: Xaa(dion) = —0%(SSSN g0

g’ |nB<E£>—nB<E§;q>

o 3
<Sﬁ'S]B>:_§|G(Rij)|21 =——

2N | o+ ER, o~ EF
1 (=2 dk
G(Rjj)= —f =—sinh 26, coth’§ EZ+ coth'[E Ef X COSH fic.q COSIT
2)_ 2w 2 2 o) 6
Ne(E+q) —Ne(Ey) .
e ikRy; + — sint? 6, o sink? 0
e (173 iwy—Ef, o+ Ef r “
3
A Ay = = 12 1+ng(EP)+ng(EY, )
(S"-§) 2|F1(R'J)|’ + 2 ka ° ;H‘ cosif Oy ¢Sint? 6,
Iwn+Ek+q+Ek
Fi(R) Jm dk( o thEE“ 1+ng(EY) +ng(EL, )
1(Rij) = ~—1 coslt 6, co +ng(Eg)+n .
W) a2 2 K ~—B kﬁ 8 Z“‘ costt O, sint? Oy, g1,
P ton—Ely g~ Ek
+sint? 6, cothi Ef} e TkRij (17b (193

Xas(iion) = = g% (S;S)))gu

2
g . .
=N ; sinh @ sinh 6y, 4 coshdy coshdy .

1+ng(Ef, o) +na(EY)

lon— EE—%—q_ EQ

. Me(Eig) —Ne(EQ) | ne(ER) —ng(EL, o)

The free energy per unit site

fw,+Ef, o~ Ef fw,+EF—EF,
 L1+ng(Efig)+ ng(EF) (19
4 Py oa o8 o8 1 12 1.4 iw,+ Eg+q+ EE

Temperature
X&e(Qsiwy) and xyga(g,iw,) can be obtained by the ex-
FIG. 2. The free energ§ versusT. change @« B) in Egs.(199 and(19b), respectively.



1062 WU, CHEN, DAI, YU, AND SU PRB 60
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T

0.6

T times the uniform susceptibility per unit site
N
T

T times the staggered susceptibility per unit site

04 b < e

0.2

L ' i ' s L L s L L L L
0 02 0.4 06 08 1 12 1.4 0 0.2 0.4 0.6 0.8 1 12 1.4

Temperature Temperature

FIG. 3. TheTxyni/Ng? versusT. FIG. 4. TheT xstag/Ng” versusT.

The mean-field static uniform and staggered magnetid?'oned in Fig. 5. We also find the low-temperature behavior
susceptibilities per unit cell are of CxT¥2, which agrees with the QMC and DMRG

calculatior?® well when T<0.4. Again the SBMFT result
XEAnFi , (2 dk 6B increases rapidly, failing to see the Schottky-like Jeak
-~ 9 ﬁj_ /2ﬁ{nk(nk+l)+nk(nk+l)}’ (208 intermediate temperatures.

i In short, the SBMFT result describes the thermodynamic

MF w2 dk properties well at low temperature$ <0.4-0.5). The dis-
Xstag_ 2 J' _[ [n&(n&+1)+nf(nf+1)]cosk 26, agreement in intermediate and high temperatures is also ow-
N 2m ing to the static and uniform constraint.
1+ng+nf
+28iNR 26, ——7 5! . (20b) V. CONCLUSIONS
B(Ex+EL)

A B . » Using the Schwinger-boson mean-field theory, we have
If S=S, the above equations are reduced to the familiafnyestigated both the ground state and the thermodynamic

forms of the antiferromagnetic caSevhich are properties of the Heisenberg ferrimagnetic spin chain. The
F -2 dk long-range ferrimggnetic order of the ground state is (_:aused
uni _ 2 f — (N +1), (209 by the condensation of the Schwinger bosons. The spin fluc-
2N — w22 tuations to the ground state are anisotropic and decays very
W rapidly. The excitation spectrum has both the low-energy
Xstagger o [™? dk @ ferromagnetic branch that is gapless Tat0 K and the
N Y 'Bj_w/zﬂ Ni(Ni+1)cosit 26, high-energy antiferromagnetic branch with a gap is 1.778 at
T=0 K. With the temperature increasing, the branch of the
n{f+ 1/2 ferromagnetic become gapful(e,, behaves asT? and
+IB—EKBS'”|"F291< : (200 A, varies. At low temperatures, the ferrimagnetic spin

chain exhibits the feature of the ferromagnetism. The static
For low temperatures, boyl'; and M are proportional to  magnetic susceptibility, the spin-correlation length, and the
T2 eg., Xl“f'npiznglnz(sB—SA)S/(zj(l— 7))T 2, and  specific heat behave & 2, T~1, and T2 respectively. At
so on. We plot Ty,ni/Ng? versus T in Fig. 3 and
T)(Stag/Ng2 versusT in Fig. 4. There we have multiply the
mean-field susceptibilities with the factérdue to the same
argument as Arovas and Auerbatt.Ty,,i/Ng? reaches a
minimum of 0.4 at the intermediate-temperature region
aroundT=0.5. This is due to the contribution from the gap-
ful antiferromagnetic branch. The low-temperature behavior
of Txuni/Ng? whenT<0.4— 0.5, the location, and the value
of the minimum are found in good agreement with the QMC
and DMRG calculations, even better than the MSWT calcu-
lation with improved dispersion relatiofisfter the point of
minimum, the SBMFT result increases too rapidly, showing
a discrepancy with numerical calculation'E)(Stag/Ng2 is
dropped rapidly and monotonously with the temperature in- 0
creasing.

The specific hea€/N versusT is calculated by the nu-
merical differentiation of the internal energy with and is FIG. 5. The specific heat verss

The specific heat per unit site

L L L ' L L
0 0.2 0.4 0.8 0.8 1 12 14

Temperature



PRB 60 SCHWINGER-BOSON MEAN-FIELD THEORY OF TH.. .. 1063

intermediate temperatures, the antiferromagnetic branch be- The SBMFT is not successful at intermediate and high
gins to play an important rof@The Ty, has a minimum at temperatures. The behavior gf,; has quantitative discrep-
T~0.5. ancy with numerical results, and that Gf does not agree
Compared with other approaches, the SBMFT is a simpléyith numerical calculations qualitatively whdh>0.4. Both
mean-field theory but can give many good results at botlpf them increase too rapidly with temperatures increasing.
zero and finite temperatures. The spin reduction and gap &fyhen T>1.38, the order parameter drops to zero and the
the antiferromagnetic branch,,; at T=0 K differ from  gpMFT theory fails. It cannot describe the system in the

the numerical calculations less than 1%. The thermodynamig,oje temperature range as the numerical methods and the
properties, such as the static uniform magnetic susceptibilityys\wT do.

Xuni @nd the specific he& calculated by the SBMFT, agree
with numerical results well wheff<0.4. The spin correla-
tion that is anisotropic at the ground state and isotropic at
finite temperatures can be calculated easily. These results
improve those of the SWTRef. 2 largely and are consistent
with those of the more complicated MSWT and numerical We thank Professor Tian Guangshan for his stimulating
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