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Distribution of time constants for tunneling through a one-dimensional disordered chain
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The dynamics of electronic tunneling through a disordered one-dimensional chain of finite length is consid-
ered. We calculate distributions of the transmission coefficiektigner delay timer,,, and the transport time
.= T7y. The central bodies of these distributions have a power-law form, which can be understood in terms
of the resonant tunneling through localized staf&6€163-182609)07935-7

During the past decade, transport properties of phasesg A(€,L)=2 475 (0)¢,(L)/[ e—€,%i0], which links 7, to
coherent disordered low-dimensional conductors attracteghe density of states of a system,= ngdx v(€,x). The
much interest. The transmission properties of complex strucyigner delay time in zero-dimensional mesoscopic systems
tures with a large number of internal degrees of freedonmodeled using random matrix theory has been stddied
have been intensively studfedsing random matrix theor¥/,  within the zero-dimensionat-model approach, and has been
and a universal distribution for transmission CoefﬁCientSShown to have a universal distribution. In the present paper,
through metallic systems has been derive@ihe one- e analyze a related dynamical characteristic of a disordered
dimensional(1D) localization problem is exactly solvable, conductor, namely, the transport timedefined as the delay
and a complete description of the distribution of transmissioRtime weighted by the transmission coefficient,
coefficients,T, and localization properties of single-electron
wave functions in disordered 1D and quasi-1D wires is now n=Try. (4)
available?=° In particular, it has been found that the inverse
localization radiusa of single-particle localized states by This quantity characterizes the ability of a resonant state to
disorder in a 1D chain has a normal distribution with width provide a dynamical response to an external ac electric field.

inversely proportional to the chain length Using the Landauer-Buttiker approach, the imaginary part of
) the dimensionless ac conductange G(w)/(2€%/h) of a
(a—ayp) single-channel mesoscopic wire calculated in the single-
P(a)~eX _L2— . (1) . . . []]3’14
ap particle approximation;

Here,a, * is the most probable localization radius, which for 2

’ ’ =T(w)=VEGRr(e+ w/2L)Ga(e—w/2L),
a weakly disordered system is given by =4I, wherel 9=T(w)=ViGr(et w/2L)Cale~wl2L)
<L is the mean free path. This is equivalent to a log-normakan be represented as
distribution of the transmission coefficien;-exp(—al),

1 [IN(L/T)— 2L ap]?
P(T)~?exp{ - 8Lag ]

Img(w)=TIM[1-iwry+ ]=—w,

2 so that the transport timg is a directly measurable quantity,
which can also be interpreted as the dielectric response func-
Recently, random matrix theory was applied to the prob+tion of an almost insulating 1D wire, when Re—0. In the
lem of the dynamical electric response of mesoscopic conpresent paper, we report the results of numerical studies and
ductors and disordered wires in the localized regifié. a qualitative asymptotic analysis of the transport-time distri-
Here the problem involves understanding the distribution obution functionP(r,) in the localized regime of 1D disor-
the Wigner delay timer,,, which carries information about dered wires. To anticipate a little, we find that the distribu-
the lifetime of carriers in the resonant states responsible fotion of this quantity is affected by correlations between the
transmission through a weakly couple quantum dot, okalue of the Wigner delay time and the transmission coeffi-
through a disordered wire in the localized regime. Thecient of resonances via localized states. Using information
Wigner delay time is related to the energy dependence of thebout the distribution of the localization radii in Eq) and
phase shif)(e) of a wave passing through a disordered wireabout the energetic widths of individual resonances, we show

or a quantum resonator, and is given by that the central body of the distribution ef, which corre-
sponds to—2/3<(1/z)In(n/7)<1/3, wherez=Lay>1, is
- :d‘g(f) _ 1d nGR(E'L) 3) given by the power-law asymptotic,
W7 de  2ide Gp(el)’
4/3
This equation also expresses the delay time in terms of re- P(r)~7 e 22 T , (5)
tarded and advanced single-particle Green functions, Tt
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in complete agreement with our numerical simulations. Thenant statex, and two inverse localization radit; and «a».
tail of short timest,, (1/2)In(®/7)<—2/3, decays in the The associated Wigner delay time can be represented as
logarithmically normal way,

. ® TV 1t [(e- ey

To analyze the distribution functioR(r,,), we assume
that the center of the localized state and its energy have a
)H[l,(zz)],n(ﬁ,f) homogeneous distribution, and that the probability to find

1 1
e —(312)+[1/(82)]In( /7y) Tw
P(r)~7 e ? —)

whereas for (&) In(#/7)>1/3,

(7)  some value of the inverse localization radigsin a segment

P(1)~ TleZ/z(— \ _ _
of a wire with the lengthx; (x;=x andx,=L—X) is equal

Tt

Below, we show how Eq<8) and (7) can be obtained,
and we describe the numerical procedure used to determine Xi Xi
the distribution ofr, and 7,. We begin with an analysis of Plai)= V3 exp[ o (@i~ ao)z]_ (10
the Wigner delay time and introduce the numerically studied T %o
model. In agreement with the result of Ref. 15, we show|t is convenient to use random variableg=(aX;

both analytically and numerically, that the body of the dis-+ ayx5)/z and q= (a1X;— ayX,)/z, instead ofa; and as,
tribution functionP(7y,) is dominated by the inverse-square- wherez=L ay=L/41>1, which can be described using the

law asymptotic, joint distribution function
P(TW)~T/T\2N at Tw>r, (8) 1 z z ) (q—yp)?
P(p.a)=— expy — 5| (P~ D)= ———| ¢,
where 7 is the mean free path time. These results provide a 2m V1-y? 2 (1-y?)
check of both the analytical method and the numerics and are (12)

followed by an analysis of the transport-time distribution,
which is the central goal of this paper.

To obtain the distribution of,, we note that in the ab-
sence of disorder in a 1D wird,=1 andry=7=L/Vg, Vg
being the electron Fermi velocity which determines the bal- - exp(zp)
listic time of flight of an electron through the chain. For a W=
weakly disordered chain characterized by a mean free path 1+ (el y)? costiza)
| =v7 or scattering timer<1/e, the transmissiof, 7w, and  gnq the corresponding probability density as the conditional
7, are random variables. In a long wike>1, where localiza- probability integral
tion is strong, transmission can be viewed as being the result

wherey= (x/L)—2 is uniformly distributed within the inter-
val [ —1,1]. In the same parametrization, one can represent
the Wigner delay time as

of tunneling through resonant levels, each characterized by N
its energye, and decay widthy= vy, + v, determined by the P(rw)=7 f_ldYJ dpdqRp,q)
electron escape rateg , into the left and right contacts. In
the exponential localization reginie>1, the tunneling rates de 1 expizp)  Tw
associated with a resonant state peaker<ak (calculated J K& 5 f( -—1. (12
from the left end of the chajrare of order 1+ (ely)? coshiza) 7

yi=7le 20X and y,=r le 202X, 9) To analyze Eq(12), we evaluate the integral over statis-

tical variablesp,q using the saddle-point method. The use of
where a; and a, are two independently fluctuating inverse the saddle-point method is justified wher 1, that is, when
localization radii of the wave-function tail on the left- and the exponential factor in the joint distribution function in Eq.
right-hand sides of the resonance. Note that since the res6tl) is large, and forr,< 7e* we find that
nance width falls exponentially with the wire length, whereas
the mean level spacing =1/vL is only inversely propor-
tional to L, the assumptiorL>1 allows us to distinguish
between resonances and to consider each resonant state as a
slightly broadened discrete level. Note that the length of the chain does not appear in this
Therefore, at each value of the energy, the ac transmissioi¢sult, which indicates that this intermediate asymptotic of
through the disordered 1D chain can be described using tH&e delay-time distribution, which is related to the distribu-

P(1w)~ — (13)
Tw

Breit-Wigner formula, tion of the spectral width of the resonant states, is dominated
by the electron escape rate from the resonant state into the
41y, nearest reservoir and fdr— o is exact for any delay time.
T(e)= However, the finite length. determines a cutoffy,,~ re?,

_ 2 2’
(e=€0) ™+ for this universal behavior, and faf,> 7 exp@) we find

parametrized by four independently fluctuating parameters:
the energetic positiog, of the resonance which is closest to P(1w)~
the energye, the location of the center of mass of the reso-

exg—2/2) [ = )l+[l/(22)]|n(7-w/7)

Tw
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FIG. 1. DistributionP(«a) versusa for a chain length of 200. -
. . s o— |ength=50
in agreement with Melnikov¢
To illustrate the validity of the above estimates, we com- 00 === length=70 |
pute the scattering matrix of a series of equal strength, ran PR |ength=100
domly spaceds-function scatterers. The spacings between s Jonth=200
scatterers possesses a Poisson distribution, and the system Qih=
described by the Hamiltonian
52 (2 L 50 . | . ! . | .
~om g Yo, Sxx). (14 00 40 A0 00 20

In Tt

In the regionx; _; <x<X;, an eigenstate of energyis of

the form FIG. 3. Plots of InP(m)7"® versus I, for various lengths,
ranging fromL =50 (upper curve to L=200 (lower curve. The
20.0 : : : : : : : inset shows the central portions of the distributions. The size of the
ensemble is 10
l//e(X):Ajeikx+ Bjeiikx, Xj*l<X<Xj ,
wherek=\2me/#? and the wave amplitudes on either side
of the scatterey satisfy
Aiq A
K ( " >=Tj ‘). (15
P Bj+1 B;
’%10,0 - In this expressionT; is the transfer matrix,
o _
N 1-ig  —ipe 2
n— j = ( . 2ikX: . y (16)
C 18e“"% 1+iB
- length=50 where 8= mu/#%k.
===-= length=70 The transfer matrix for a series ®f scatterers has the
+---= length=100 form
&---4 |ength=200 L
~ (T T
T= (~ ~ 17
0.0 L ' : ' . . Tor T
50 00 30 100 150 and is given by the product of the transfer matrices of each
INT, individual scatterer,
FIG. 2. Plots of ||'P(TW)7'\2N versus Inry,, for various lengths ’:I‘—:TNTNfl' STy,

ranging fromL =50 (upper curvg to L=200 (lower curve. The
size of the ensemble is 40 from which one obtains the scattering matrix
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rot’ T
S:( ) 19 e 4 exp(zp) |
[1+ (el y)?]? cost(zq)

via the relation . . . .
The probability to find a given value of; can again be

- —ToTp b Tyt expressed as a conditional probability,

- ( ! Tl l) .

1
For a chain of length_, the conductance and the inverse P(Tt):T_ljfldYJ dpdqgRp,q)
localization radius are determined by

19

4 exp(zp) T
[1+(ely)?]2 cosi(zq) 7

de
In|t|? =
g=t? and a(L)~ |L| . Xf N

As an example of Eq(l), and to emphasize that we are 2Y)
simulating a chain of weak scatterers for whiely* is  and evaluation of the integral in E€1) using the saddle-
greater than the mean spacing, Fig. 1 sh&\s) for a chain  point method yields the result of Eq&)—(7). Note that the
of scatterers of concentration unity, strength=3, and en-  power-law asymptoticP ()~ 7 ‘e~ ??(7/7)*?, valid for
ergy e=4.17>. These same parameter values were used ifhe finite length wires within the parametric interval2/3
all numerical simulations described below. <(1/2)In(r/7)<1/3, formally transforms into the universal

Figure 2 shows the corresponding plot offifry) 7, for  central body of the distribution in the thermodynamic limit
the chain length& =50,70,100,200. These results were ob-|. — oo,
tained by evaluating a finite differencey=[6(e+ o) To illustrate the validity of this result, Fig. 3 shows plots
—60(€)]/ 6, and were found to be stable with respect to anyof the function InP(7)7"® versus Im; for various lengths.
choice of 5 within the range 10°<5<10"°. For In7>0,  These numerical simulations show that at largeall curves
all curves exhibit a plateau with a slope that tends to zer@xhibit a plateau with a slope that tends to zero with increas-
with increasing length, in good agreement with the analytiing length, demonstrating that the tail in the distribution of
cally estimated asymptotic behavior in H§). 7, varies asr; 3.

Having obtained agreement with known results Rfi) In summary, we have shown how earlier results for the
andP(ry), we now present an analysis of the transport timeigner-delay timery,, based on a picture of resonant trans-
distribution,P(7), which represents the central new result of port through localized states, can be extended to yield the
this paper. Using the resonant tunneling description of Sedistribution of the transport time;=Tr,,. In contrast with
Il, the transport time for a particle with a given energys  the distribution ofr,,, which exhibits a universal 4, tail,
given by the corresponding intermediate asymptotic of the distribution

-3 of 7, exhibits a universal %" behavior.
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