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Distribution of time constants for tunneling through a one-dimensional disordered chain
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The dynamics of electronic tunneling through a disordered one-dimensional chain of finite length is consid-
ered. We calculate distributions of the transmission coefficientT, Wigner delay timetW , and the transport time
t t5TtW . The central bodies of these distributions have a power-law form, which can be understood in terms
of the resonant tunneling through localized states.@S0163-1829~99!07935-7#
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During the past decade, transport properties of pha
coherent disordered low-dimensional conductors attrac
much interest. The transmission properties of complex st
tures with a large number of internal degrees of freed
have been intensively studied1 using random matrix theory,2

and a universal distribution for transmission coefficie
through metallic systems has been derived.3 The one-
dimensional~1D! localization problem is exactly solvable
and a complete description of the distribution of transmiss
coefficients,T, and localization properties of single-electro
wave functions in disordered 1D and quasi-1D wires is n
available.4–9 In particular, it has been found that the inver
localization radiusa of single-particle localized states b
disorder in a 1D chain has a normal distribution with wid
inversely proportional to the chain lengthL:

P~a!;expH 2L
~a2a0!2

2a0
J . ~1!

Here,a0
21 is the most probable localization radius, which f

a weakly disordered system is given bya0
2154l , where l

!L is the mean free path. This is equivalent to a log-norm
distribution of the transmission coefficients,T;exp(2aL),

P~T!;
1

T
expH 2

@ ln~1/T!22La0#2

8La0
J . ~2!

Recently, random matrix theory was applied to the pro
lem of the dynamical electric response of mesoscopic c
ductors and disordered wires in the localized regime.10,11

Here the problem involves understanding the distribution
the Wigner delay time,tW , which carries information abou
the lifetime of carriers in the resonant states responsible
transmission through a weakly couple quantum dot,
through a disordered wire in the localized regime. T
Wigner delay time is related to the energy dependence of
phase shiftu(e) of a wave passing through a disordered w
or a quantum resonator, and is given by

tW5
du~e!

de
5

1

2i

d

de
ln

GR~e,L !

GA~e,L !
. ~3!

This equation also expresses the delay time in terms of
tarded and advanced single-particle Green functio
PRB 600163-1829/99/60~15!/10569~4!/$15.00
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GR,A(e,L)5(ncn* (0)cn(L)/@e2en6 i0#, which linkstW to
the density of states of a system,tW5p*0

Ldx n(e,x). The
Wigner delay time in zero-dimensional mesoscopic syste
modeled using random matrix theory has been studie12

within the zero-dimensionals-model approach, and has bee
shown to have a universal distribution. In the present pa
we analyze a related dynamical characteristic of a disorde
conductor, namely, the transport timet t defined as the delay
time weighted by the transmission coefficient,

t t5TtW . ~4!

This quantity characterizes the ability of a resonant state
provide a dynamical response to an external ac electric fi
Using the Landauer-Buttiker approach, the imaginary par
the dimensionless ac conductanceg5G(v)/(2e2/h) of a
single-channel mesoscopic wire calculated in the sing
particle approximation,13,14

g5T~v!5vF
2GR~e1v/2,L !GA~e2v/2,L !,

can be represented as

Im g~v!5T Im@12 ivtW1•••#52vt t ,

so that the transport timet t is a directly measurable quantity
which can also be interpreted as the dielectric response f
tion of an almost insulating 1D wire, when ReG→0. In the
present paper, we report the results of numerical studies
a qualitative asymptotic analysis of the transport-time dis
bution functionP(t t) in the localized regime of 1D disor
dered wires. To anticipate a little, we find that the distrib
tion of this quantity is affected by correlations between t
value of the Wigner delay time and the transmission coe
cient of resonances via localized states. Using informat
about the distribution of the localization radii in Eq.~1! and
about the energetic widths of individual resonances, we sh
that the central body of the distribution oft t , which corre-
sponds to22/3,(1/z)ln(tt /t),1/3, wherez5La0@1, is
given by the power-law asymptotic,

P~t t!;t21e2z/2S t

t t
D 4/3

, ~5!
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in complete agreement with our numerical simulations. T
tail of short timest t , (1/z)ln(tt /t),22/3, decays in the
logarithmically normal way,

P~t t!;t21e2z/2S t t

t D 2(3/2)1[1/(8z)] ln( t/t t)

, ~6!

whereas for (1/z)ln(tt /t).1/3,

P~t t!;t21e2z/2S t

t t
D 11[1/(2z)] ln( t t /t)

. ~7!

Below, we show how Eqs.~8! and ~7! can be obtained
and we describe the numerical procedure used to determ
the distribution oftW andt t . We begin with an analysis o
the Wigner delay time and introduce the numerically stud
model. In agreement with the result of Ref. 15, we sho
both analytically and numerically, that the body of the d
tribution functionP(tW) is dominated by the inverse-squar
law asymptotic,

P~tW!;t/tW
2 at tW.t, ~8!

wheret is the mean free path time. These results provid
check of both the analytical method and the numerics and
followed by an analysis of the transport-time distributio
which is the central goal of this paper.

To obtain the distribution oftW , we note that in the ab
sence of disorder in a 1D wire,T51 andtW5t t5L/vF , vF
being the electron Fermi velocity which determines the b
listic time of flight of an electron through the chain. For
weakly disordered chain characterized by a mean free
l 5vt or scattering timet!1/e, the transmissionT, tW , and
t t are random variables. In a long wireL@ l , where localiza-
tion is strong, transmission can be viewed as being the re
of tunneling through resonant levels, each characterized
its energye0 and decay widthg5g11g2 determined by the
electron escape ratesg1,2 into the left and right contacts. In
the exponential localization regimeL@ l , the tunneling rates
associated with a resonant state peaked atx,L ~calculated
from the left end of the chain! are of order

g15t21e22a1x and g25t21e22a2(L2x), ~9!

wherea1 and a2 are two independently fluctuating invers
localization radii of the wave-function tail on the left- an
right-hand sides of the resonance. Note that since the r
nance width falls exponentially with the wire length, where
the mean level spacingD51/nL is only inversely propor-
tional to L, the assumptionL@ l allows us to distinguish
between resonances and to consider each resonant stat
slightly broadened discrete level.

Therefore, at each value of the energy, the ac transmis
through the disordered 1D chain can be described using
Breit-Wigner formula,

T~e!5
4g1g2

~e2e0!21g2
,

parametrized by four independently fluctuating paramet
the energetic positione0 of the resonance which is closest
the energye, the location of the center of mass of the res
e
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nant statex, and two inverse localization radiia1 and a2.
The associated Wigner delay time can be represented a

tW5
1

g

1

11@~e2e0!/g#2
.

To analyze the distribution functionP(tW), we assume
that the center of the localized state and its energy hav
homogeneous distribution, and that the probability to fi
some value of the inverse localization radiusa i in a segment
of a wire with the lengthxi (x15x andx25L2x) is equal
to

P~a i !5A xi

2pa0
expH 2

xi

2a0
~a i2a0!2J . ~10!

It is convenient to use random variablesp5(a1x1
1a2x2)/z and q5(a1x12a2x2)/z, instead ofa1 and a2,
wherez5La05L/4l @1, which can be described using th
joint distribution function

P~p,q!5
1

2p

z

A12y2
expH 2

z

2 F ~p21!22
~q2yp!2

~12y2!
G J ,

~11!

wherey5(x/L)22 is uniformly distributed within the inter-
val @21,1#. In the same parametrization, one can repres
the Wigner delay time as

tW5
t

11~e/g!2

exp~zp!

cosh~zq!

and the corresponding probability density as the conditio
probability integral

P~tW!5t21E
21

1

dyE dp dq P~p,q!

3E de

D
dS 1

11~e/g!2

exp~zp!

cosh~zq!
2

tW

t D . ~12!

To analyze Eq.~12!, we evaluate the integral over stati
tical variablesp,q using the saddle-point method. The use
the saddle-point method is justified whenz@1, that is, when
the exponential factor in the joint distribution function in E
~11! is large, and fortW,tez we find that

P~tW!;
t

tW
2

. ~13!

Note that the length of the chain does not appear in
result, which indicates that this intermediate asymptotic
the delay-time distribution, which is related to the distrib
tion of the spectral width of the resonant states, is domina
by the electron escape rate from the resonant state into
nearest reservoir and forL→` is exact for any delay time
However, the finite lengthL determines a cutoff,tW;tez,
for this universal behavior, and fortW.t exp(z) we find

P~tW!;
exp~2z/2!

t S t

tW
D 11[1/(2z)] ln( tW /t)

.
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in agreement with Melnikov.16

To illustrate the validity of the above estimates, we co
pute the scattering matrix of a series of equal strength,
domly spacedd-function scatterers. The spacings betwe
scatterers possesses a Poisson distribution, and the syst
described by the Hamiltonian

2
\2

2m

d2

dx2
1U0(

i 51

L

d~x2xi !. ~14!

In the regionxj 21,x,xj , an eigenstate of energye is of
the form

FIG. 1. DistributionP(a) versusa for a chain length of 200.

FIG. 2. Plots of lnP(tW)tW
2 versus lntW , for various lengths

ranging fromL550 ~upper curve! to L5200 ~lower curve!. The
size of the ensemble is 108.
-
n-
n

is

ce~x!5Aje
ikx1Bje

2 ikx, xj 21,x,xj ,

wherek5A2me/\2 and the wave amplitudes on either sid
of the scattererj satisfy

S Aj 11

Bj 11
D 5Tj S Aj

Bj
D . ~15!

In this expression,Tj is the transfer matrix,

Tj5S 12 ib 2 ibe22ikxj

ibe2ikxj 11 ib D , ~16!

whereb5mm/\2k.
The transfer matrix for a series ofN scatterers has the

form

T̃5S T̃11 T̃12

T̃21 T̃22
D ~17!

and is given by the product of the transfer matrices of e
individual scatterer,

T̃5TNTN21•••T1 ,

from which one obtains the scattering matrix

FIG. 3. Plots of lnP(tt)tt
4/3 versus lntt , for various lengths,

ranging fromL550 ~upper curve! to L5200 ~lower curve!. The
inset shows the central portions of the distributions. The size of
ensemble is 108.
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S5S r t 8

t r 8
D ~18!

via the relation

S5S 2T21T22
21 T22

21

T11*
21 T12T22

21D . ~19!

For a chain of lengthL, the conductance and the inver
localization radius are determined by

g5utu2 and a~L !;
lnutu2

L
.

As an example of Eq.~1!, and to emphasize that we a
simulating a chain of weak scatterers for whicha0

21 is
greater than the mean spacing, Fig. 1 showsP(a) for a chain
of scatterers of concentration unity, strengthU053, and en-
ergy e54.1p2. These same parameter values were use
all numerical simulations described below.

Figure 2 shows the corresponding plot of lnP(tW)tW
2 for

the chain lengthsL550,70,100,200. These results were o
tained by evaluating a finite differencetW5@u(e1d)
2u(e)#/d, and were found to be stable with respect to a
choice ofd within the range 1029,d,1026. For lnt.0,
all curves exhibit a plateau with a slope that tends to z
with increasing length, in good agreement with the anal
cally estimated asymptotic behavior in Eq.~8!.

Having obtained agreement with known results forP(a)
andP(tW), we now present an analysis of the transport ti
distribution,P(t t), which represents the central new result
this paper. Using the resonant tunneling description of S
II, the transport time for a particle with a given energye is
given by

t t5TtW5
4g1g2g23

$11@~e2e0!/g#2%2
. ~20!

This allows us to parametrize the transport time using
positionx of the resonant state center and two~left and right!
inverse localization radii,a1,2 as in Sec. II,
-
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t t5
4t

@11~e/g!2#2

exp~zp!

cosh3~zq!
.

The probability to find a given value oft t can again be
expressed as a conditional probability,

P~t t!5t21E
21

1

dyE dp dq P~p,q!

3E de

D
dS 4

@11~e/g!2#2

exp~zp!

cosh3~zq!
2

t t

t D ,

~21!

and evaluation of the integral in Eq.~21! using the saddle-
point method yields the result of Eqs.~5!–~7!. Note that the
power-law asymptoticP(t t);t21e2z/2(t/t t)

4/3, valid for
the finite length wires within the parametric interval22/3
,(1/z)ln(tt /t),1/3, formally transforms into the universa
central body of the distribution in the thermodynamic lim
L→`.

To illustrate the validity of this result, Fig. 3 shows plo
of the function lnP(tt)tt

4/3 versus lntt for various lengths.
These numerical simulations show that at larget t , all curves
exhibit a plateau with a slope that tends to zero with incre
ing length, demonstrating that the tail in the distribution
t t , varies ast t

24/3.
In summary, we have shown how earlier results for t

Wigner-delay timetW , based on a picture of resonant tran
port through localized states, can be extended to yield
distribution of the transport timet t5TtW . In contrast with
the distribution oftW , which exhibits a universal 1/tW

2 tail,
the corresponding intermediate asymptotic of the distribut
of t t exhibits a universal 1/t t

4/3 behavior.
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