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Crossover effects for critical currents within Landau-Ginzburg phenomenology incorporating
Josephson weak links in superconducting thin films of YBaCu2O72d
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Following a number of investigations into the nature of critical currents in superconducting thin films of
YBaCu2O72d ~YBCO!, we provide a theoretical analysis of the possible origins of crossover effects. The
framework within which our analysis is based involves local condensates described by the Landau-Ginzburg
~LG! model and coupled to their neighbors via Josephson weak links. Within the LG phenomenology critical
current behavior depends on the presence and strength of the various expansion coefficients. We show that the
corresponding critical exponent forj c varies between3

2 and 1. We then incorporate the oxygen deficiency
effect, which scales the critical temperature as well as other model parameters. In the last part of the paper we
investigate the effect of weak links on the critical current’s exponent and again show that the latter may vary
between the LG and Ambegaokar-Baratoff regimes of3

2 and 1, respectively. Combining this analysis with an
appropriate choice of model parameters we obtain excellent agreement with the recent experimental data of
Darhmaoui and Jung@Phys. Rev. B53, 14 621~1996!#. @S0163-1829~99!00838-3#
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I. INTRODUCTION

The importance of critical current behavior in elucidati
the various aspects of superconductivity is well recogniz
Superconducting current density is limited by depairing a
magnetic flux depinning processes.1,2 The depairing critical
current is determined by the pair-breaking strength and
sults in a supression of the superconducting order param
The depinning critical current, on the other hand, is de
mined by the interplay of the magnetic flux motion and
pinning forces. The superconducting phase remains st
when the current flows through it in the presence of flux lin
immobilized by pinning forces. Important theoretical wo
concerning critical currents was published by Ambegao
and Baratoff,3 DeGennes,4 and Likharev.5

Recently, measurements of the temperature depend
of the critical currentI c(T) in YBCO thin films revealed
three different types of behavior ofI c on temperature:~a! a
‘‘convex’’ curvature6,7 characteristic of an Ambegaoka
Baratoff-type mechanism,~b! a quasilinear behavior,6–10 and
~c! a ‘‘concave’’ curvature characteristic of the Ginzbur
Landau-like mechanism.6,7,10–14 Mannhart et al.6 showed
that the transition from a quasilinear temperature depende
of I c to a concave temperature dependence is a resu
increasing the strength of applied magnetic fields from 0
1.0 T. The crossover from quasilinear to concave temp
ture dependence was also seen by Joneset al.10 upon reduc-
tion of the oxygen content.

On the one hand, homogeneous superconducting orde
rameter systems have been successfully modeled u
Landau-Ginzburg theories, which lead toj c;(T2Tc)

3/2 be-
havior close toTc .15–18 On the other hand, granular supe
conductors quite often can be described within the Joseph
weak link picture, which typically results in a linear scalin
PRB 600163-1829/99/60~14!/10513~9!/$15.00
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of j c with temperature:j c;(T2Tc) close toTc .19 In many
high-temperature superconductors a crossover can be
served in the scaling dependence ofj c versusT2Tc as the
oxygen deficiencyd is varied, changing from a weak-link
like behavior for small values of the oxygen deficiencyd to
Landau-Ginzburg for higher values. Simultaneously,
critical temperature is lowered in a highly nonlinear fashio
asd is increased.

In our paper we intend to fully explore the range of cri
cal current behavior within the Landau-Ginzburg~LG!
model and its extensions in order to provide insight into
observed experimental results for YBCO thin films.20 Our
first theoretical observation will be concerned with a cro
over effect within the standard LG model with a sixth pow
free-energy expansion in the order parameter. We then
count for a shift in the critical temperature resulting from t
amount of oxygen deficiency.21 Our final contribution to this
analysis incorporates weak links between superconduc
grains that are modeled using a combination of local
mains of LG-like superconductivity and Josephson proxim
effects.19,22,23It will be shown that a mapping exists betwee
this fairly complicated picture of a flux lattice24,23 and the
homogeneous model with redressed model parameters
directly motivates our next section.

II. CROSSOVER PHENOMENA
WITHIN THE LG FORMALISM

The LG theory of critical phenomena has been very s
cessful over the years in providing a physical interpretat
at a phenomenological level, of a host of phase transiti
within solid-state physics15 and elsewhere. In superconduc
ors the order parameterC(r ) is a complex function of the
spatial coordinater and where modulus squareduCu2 repre-
sents the condensate density.16 In the absence of a magnet
10 513 ©1999 The American Physical Society
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field, the free-energy density expansion takes the form

Gs~r !5Gn~r !1A~T!uC~r !u21 1
2 CuC~r !u4

1
\2

2m*
u¹C~r !u2, ~2.1!

where m* is the Cooper pair’s mass~effective mass!, the
subscripts refers to the ordered~superconducting! phase,n
to the disordered~normal! phase,A(T) is assumed propor
tional to (T2Tc), i.e., A(T)5a(T2Tc) with a.0 andC
.0 for stability reasons.

A subsequent minimization ofGs(r ) with respect toC*
gives rise to the nonlinear equation below:

A~T!C1CuCu2C2
\2

2m*
¹2C50. ~2.2!

Since the order parameter in the argument-modulus form17

C5h exp~ if!, ~2.3!

the real part of Eq.~2.2! is

A~T!h1Ch32
\2

2m*
¹2h1

\2

2m*
h~¹f!250, ~2.4!

and the imaginary part is

¹•@h2¹f#50. ~2.5!

The latter equation represents a continuity equation an
can be satisfied assuming thath2¹f5 j s , where j s is the
superconducting current density:

j s[
2 ie* \

2m* ~c* ¹c2c¹c* !5
e* \

m*
h2¹f. ~2.6!

Combining Eqs.~2.6! and ~2.4! gives

A~T!h1Ch32
\2

2m*
¹2h1

m* j s
2

2~e* !2h3 50. ~2.7!

This equation has been solved exactly in one-dimensio
space33 with the spatial coordinatex, where it can be inte-
grated once to yield

S dh

dxD 2

5
m*

\2 F2A~T!h21Ch42
m* j s

2

~e* !2h2G1c05P~h!,

~2.8!

wherec0 is an arbitrary integration constant. We solve th
equation using a geometrical method where we plot, ba
on Eq.~2.8!, (dh/dx)2 versush in a series of diagrams with
different values ofj s and assuming thatT,Tc , i.e., A(T)
,0. On increasing the value of the current density, nons
gular solutions of this equation become less and less st
and eventually, atj 5 j c , they disappear completely. Th
can be seen in Fig. 1, where Eq.~2.8! is represented graphi
cally and each straight line cutting horizontally through t
diagram represents a solution at a given value of the inte
tion constantc0 representing the level with respect to theh
axis. Lines having only one intersection point with the p
tential curve represent singular solutions, while those w
two such points represent nonsingular solutions. From Fi
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-
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1

it is clear that the critical currentj c corresponds to an inflec
tion point of P(h), i.e., the first such situation where n
nonsingular solutions are allowed~complete destruction o
superconductivity or pair breaking!. In simple mathematica
terms the inflection point is characterized by the coincide
of the two equations below:

05
dP

dh
5F2A~T!12Ch21

m* j c
2

~e* !2h4G2h ~2.9!

and

05
d2P

dh2 54A~T!112Ch22
6m* j c

2

~e* !2h4 . ~2.10!

Simple algebra enables one to obtainj c from Eqs.~2.9! and
~2.10! as

j c5
2e* a

3C
A2a/3m* uT2Tcu3/2. ~2.11!

This result is in perfect agreement with the well-known3
2

exponent for standard type-I superconductors18 close enough
to Tc . The above problem, i.e., the minimization of Eq.~2.1!
in the presence of a vector potential, becomes much m
complicated as one must minimize with respect toC* and
the vector potential. Nonetheless, exact solutions have b
obtained analytically in one and two dimensions25 and a nu-
merical analysis of this problem has been implemented
YBCO ceramics.26

We now wish to examine the same property for superc
ductors that may undergo a first-order phase transition
tween the normal and superconducting phases. For con
tional superconductors the LG free energy containing
quartic order parameter expansion and the presence of a
tor potential does allow for the existence of both first- a
second-order phase transitions. This is a result of the c
petition between the coherence lengthj and the magnetic
penetration depthl, representing two separate length scal
For standard superconductors the ratio of the two,K5l/j,
delineates the boundary between type-I and type-II superc
ductors in parameter space, withK,1/& resulting in type-I
andK.1& in type-II superconductivity. Therefore there

FIG. 1. Graphical illustration of the solutions to Eq.~2.8! with
T,Tc and ~a! j 50, ~b! j < j c , and~c! j . j c .
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no need for standard superconductors to introduce hig
order terms in the free energy. However, for ceramic sup
conductors the situation is far from clear. Attempts at dev
oping an LG description for high-Tc superconductors hav
been made in the past~see, for example, Refs. 27–29! and
they indicate a strongly type-II layered behavior calling f
the inclusion of Lawrence-Doniach coupling between sup
conducting islands. This indeed is the line of attack
adopted in the main thrust of our paper~see Sec. IV!. There
is, however, a mathematically much more straightforw
way of accomplishing a crossover in the value of the criti
exponents and indeed in changing the order of the transit
We will later see that a direct mapping may be made
tween this simple to analyze approach and the more ph
cally justified multigrain picture developed in Sec. IV. W
therefore, begin by simply adding a sixth power to the fr
energy expansion so that

Gs~r !5Gn~r !1A~T!uC~r !u21 1
2 CuC~r !u41 1

3 BuC~r !u6

1
\2

2m*
u¹C~r !u2. ~2.12!

Following an identical procedure to the one presented ab
we arrive at an analogue of Eq.~2.8!, namely,

S dh

dxD 2

5
m*

\2 H 2A~T!h21Ch41 2
3 Bh62

m* j s
2

~e* !2h2J 1d0

5R~h!, ~2.13!

whered0 is another integration constant. Before we prese
general result that is slightly more involved, let us conside
simple special case, i.e., the vicinity of the tricritical poi
where a line of first-order phase transitions merges with
for second order and requires thatC50. In this case the
critical current is found via

05
dR

dh
52hF2A12Bh41

m* j c
2

~e* !2h4G ~2.14!

and

05
d2R

dh2 54A120Bh42
6m* j c

2

~e* !2h4 . ~2.15!

Solving these two simultaneous equations forj c yields

j c5
ae* uT2Tcu

A2Bm*
. ~2.16!

Thus, the tricritical point exponent for the superconduct
current density is unity. We infer that a crossover must oc
on going from the critical to the tricritical points.

In the general case when the coefficientsA, B, andC are
not zero, the result forj c is much more complicated bu
nevertheless can be expressed analytically as

j c
25

2e* 2

m* H 6
27C4

512B3 S 12
32

9

AB

C2 D 3/2

1
1

4B S A22
9

8

AC2

B
1

27

128

C4

B2D J . ~2.17!
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Note that sinceA is linearly dependent on (T2Tc), the criti-
cal exponent will smoothly vary between the asymptotic li
its of 1 for B50 and 3

2 for C50 depending on the relative
strength of the quartic coefficientC. A graphical illustration
of the types of behavior in Eq.~2.13! for first-order transi-
tions (C,0) is shown in Fig. 2, which is analogous to Fig.
for second-order transitions. Figure 3 illustrates the sca
of j c with temperature for various strengths and signs of
quartic coefficientC. It is worth commenting in this regard
on the role of the sixth-order contribution to the free ener
While such terms incorporated in lattice Hamiltonians a
deemed irrelevant by the results of the renormalization-gr
technique,30 since they only redress lower-order contrib
tions, this is not so in mean-field models as was first poin
out by Ginzburg, Levanyuk, and Sobyanin31 for the expo-
nentsb, g, andd. It turns out that adding a sixth-power term
to a standard Landau free energy allows one to continuo
shift the values of the critical exponentsb, g, andd from the
critical point, or so-called ‘‘classical values,’’ to the tricriti
cal point values depending on the ratio of the quartic to
sixth-power expansion coefficients. What we have dem
strated in this section of our paper is an analogous cross
effect taking place for the critical current’s exponent, whi
is, therefore, of great relevance to the subject matter of
paper.

Returning to Eq.~2.17! it is very convenient for both a
theoretical discussion and fitting to experiment to notice t
if we define a parameterm by

FIG. 2. Graphical illustration of the solutions to Eq.~2.13! when
~a! j 50; TC* ,T,Ts , ~b! j 50; T5Tc* , ~c! j 50; Tc,T,Tc* , ~d!
j 50; T,Tc , ~e! j , j c ; T,Ts , and ~f! j > j c ; T,Ts . Here,Tc*
5Tc13B2/16aC; Ts5Tc1B2/4aC.
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FIG. 3. Plots ofj c
2(T) for dif-

ferent values ofC and thusm fol-
lowing Eqs.~2.19! and ~2.18!.
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m5AB/C25aB~T2Tc!/C
2, ~2.18!

then this expression forj c
2 may be written as

j c
25

2e2

m*
C4

512B3 H 627S 12
32m

9 D 3/2

1128S m22
9

8
m1

27

128D J . ~2.19!

A normalized j c
2 for example,j c

2(T)/ j c
2(T510 K), can thus

be described with one parameter only, namely,m. Close to
m.0 the term (1232m/9)3/2 may be expanded to third orde
in m to give

S 12
32m

9 D 3/2

.12
48m

9
1

128

27
m22

2048

729
m3, ~2.20!

and the critical current, in this approximation@taking the
minus sign in Eq.~2.19!#, becomes

j c
2.

8e2

27m*
a3

C2 ~T2Tc!
3. ~2.21!

In this casej c , as a function of temperature, has an LG-ty
of behavior. On the other hand, whenm!21 the term inm2

in Eq. ~2.19! will dominate to give

j c
2.

e2a2~T2Tc!
2

2m* B
. ~2.22!

The extended LG model so far, therefore, exhibits a cro
over in the temperature dependence ofj c from (T2Tc)

3/2 to
(T2Tc). While we do not expect the sixth-power expansi
to be a realistic representation for the YBCO thin films w
study in this paper, the calculations provided in this sect
s-

n

give an important building block of the theoretical mode
We will show in Sec. IV that the equations for a more re
istic free-energy expansion can still be mapped on the sim
model described here. It should also be added, however,
the simultaneous presence of several degrees of freedo
high-Tc materials may indeed require an effective fre
energy expansion with a sixth-power term. This, for e
ample, has been the case with the coexistence of super
ductivity and magnetism.32 In high-Tc superconductors one
should indeed develop a phenomenology that includes
only the superconducting order parameter but also the o
parameters for antiferromagnetic and the structural reor
ing due to the nature of the phase diagram. Trying to ma
tain the level of mathematical complexity to a minimum w
turn our attention now to what we view as the key depart
from a standard LG-type of behavior, namely, the prese
of oxygen deficiencies.

III. OXYGEN DEFICIENCY EFFECTS

In order to make contact with the experimental results
Ref. 20, we must account for the existence of samples w
different oxygen deficienciesd. The effect of the oxygen
deficiency on the critical current profiles turned out to
more complex than first anticipated. Three distinct influen
of d on the model parameters have been found. First, follo
ing Ref. 21, we included the shift of the critical temperatu
Tc as a result of using differentd’s. A simple formula was
found that approximates the functional dependence ofTc on
d for the low and intermediate values ofd. It is given by

Tc573218 tanh@12~d20.26!# ~3.1!

~see Fig. 4!. When this is included in the formula for th
critical current we notice an obvious spreading of the cur
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FIG. 4. Diagrammatic representation of th
variation of Tc with d following the results of
Jorgensenet al. ~Ref. 21!.
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for different d’s @see Fig. 5~a!#. Comparison of these plot
with those of the experiment@see Fig. 5~b!# shows a certain
degree of similarity but is still quantitatively inadequat
This raises the question of the second effect ofd, namely, a
redressing of the remaining model parameters. Since the
mula for j c

2 is expressed in terms of a constant prefactor a
a variablem, we first focus our attention on the role ofm.

There is a suggestive similarity between our empiri
formula. Eq.~3.1!, and the Ambegaokar-Baratoff formula5

FIG. 5. Theoretical~a! and experimental~b! plots of j c
2/3 as a

function of temperature for a number of values ofd.
.

r-
d

l

which links the superconductor-insulator-superconduc
coupling constantJi j with the average energy gapD(T):

Ji j a D~T!tanh@D~T!/2kT#. ~3.2!

The ordering temperature for spin systems is proportiona
Ji j and if the energy gap, as a first-order approximation, i
linear function of oxygen deficiency,d, this may well give an
explanation of its form

m5
aB

C2 ~T2Tc!, ~3.3!

and we feel it is both prudent and justified to expand bothB
andC linearly in terms ofd, i.e.,

B.B01dB1 , C.C01dC1 . ~3.4!

Thus, to first order we get

m.
aB0

C0
2 F11S B1

B0
22

C1

C0
D dG~T2Tc!. ~3.5!

SinceB is the coefficient of theC6 term in our model, it is
most likely to be purely electronic~Coulomb interaction! in
origin. We, therefore, postulate that this interaction is
duced in magnitude as a result of introducing holes and t

B0.0, B1,0. ~3.6!

We have incorporated the linear expansion ind for m @see
Eq. ~3.5!# in the calculation ofj c and a sampling of graphica
results is given in Fig. 5.

Having corrected the initial temperature and the fitti
parameterm for the presence of oxygen deficiency, we ha
set out to obtain precise fits to the experimental plots
j c(T) published in Ref. 20. However, we encountered a
other obstacle especially for the plots exhibiting an inflect
point such as sample 1 of Ref. 20 in zero field. What we w
to address in the remainder of this paper is the need
further improving the model such that the effects of gran
larity are properly taken into account. Until now we have n
accounted for the presence of superconducting islands in
thin film structure under consideration and the methods u
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FIG. 6. Plots of j c
2/3 versusT based on Eq.

~4.18! using several values of parameterw.
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are strictly speaking only applicable to a homogeneous
tribution of superconducting phase.

IV. WEAK LINKS ADDED TO THE LG MODEL

In this section we wish to explore the effect of the gran
lar nature of the new high-temperature superconduct
which has been seen using a number of experimental t
niques, including anomalous voltage excursions, as a fu
tion of temperature and magnetic field,23 logarithmic time
decays of magnetization,34 flux trapping,35 and tails of sen-
sitivity versus temperature due to boundary resistance
tween grains.36 What we wish to do is to maintain the sim
plicity of a phenomenological approach but incorporate
the free-energy density a contribution that partially descri
the role played by oxygen vacancies in creating superc
ducting grains. The depletion or excess of oxygen ions fi
leads to the creation of additional charge carries.37 Since the
latter are holes with a high effective mass compared w
electrons, we expect a much greater degree of localiza
than in the low-temperature standard superconductors.
the inclusion of an appropriate free-energy density we foll
the ideas of Deutscher and Mu¨ller24 and visualize regions
smaller than the mean grain size. These correspond to
mains of superconductivity and may be separated by reg
of normal phase. We suppose, at least initially, that th
islands are well separated and interactions between them
rather weak so that they may be modeled using the weak-
approximation, as arrays of Josephson junctions.38 In the vi-
cinity of the critical temperature we represent the free-ene
density as a sum of individual LG contributions for each
the superconducting islands with interactions between th
in the Lawrence-Doniach form.40 We also assume that ther
is no magnetic field present. Thus following our earl
work,41 we write the free energy as

Gs5E @Gn1G11G2#dr , ~4.1!

where

G15(
n

H A2ucnu21A4ucnu41A6ucnu61
\2

2m*
u¹ncnu2J

~4.2!
s-

-
s,
h-
c-

e-
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st

h
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m

r

and

G25 1
2 (

^nÞ l &
bnlucn2c l u2. ~4.3!

In the expressions forG1 andG2 , n and l denote supercon
ducting islands whose size is on the order of the cohere
length and we denote the order parameter for each islan
cn . The notation̂ nÞ l & expresses the fact that we only in
clude interactions withnearest-neighbor islands. The param
eter bnl is a distance-dependent interisland coupling co
stant. As we did earlier, we writeA25ā(T2Tc) and assume,
as forA4 , that it is independent of the particular island.

Minimizing the free-energy functional with respect tocn*
we obtain

05A2cn1A4ucnu2cn1A6ucnu4cn2
\2

2m*
¹n

2cn

1 1
2 (

^ lÞn&
bnl~cn2c l !. ~4.4!

Writing each other parametercn in modulus-argument form
cn5h exp(ifn) and assuming, for each island,hn5h l5h,
we find for the real part of the above equation

05A2h1A4h31A6h52
\2

2m* @¹2h2h~¹fn!2#

1 1
2 h (

^ lÞn&
bnl$12cos~fn2f l !%. ~4.5!

The corresponding imaginary component yields

052¹h•¹fn1h¹2fn1 1
2 h (

^ lÞn&
bnl sin~fn2f l !.

~4.6!

A simple physical approximation now reduces these eq
tions to a more manageable form in one dimension if
write fn71>fn7u¹fua, where a is related to the lattice
spacing between the islands. The sine terms in the equa
for the imaginary parts vanish and by puttingbnl5b for
every pair of nearest-neighbor islands we find
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05A2h1A4h31A6h52
\2

2m* @¹2h2h~¹f!2#

1hb@12cos~au¹fu!# ~4.7!

and

052h¹h•¹f1h2¹2f5¹•~h2¹f!, ~4.8!

where we have used the fact that¹f.(1/a)(fn2fn21)
.¹fn .

We can now argue similarly to the case with no we
links in one dimension to find aQ(h) where

Q~h!5S dh

dxD 2

5
m*

\2 H 2A~T!h21Ch41 2
3 Bh62

j s
2

h2

m*

e2

14bE hF12cosS a js
h2 D GdhJ , ~4.9!

where we have made the identification

A2[A~T!, A4[C, A6[B. ~4.10!

Putting dQ/dh50 and d2Q/dh250 as before in order to
find the conditions for the critical current we obtain ana
gous equations to those derived earlier, namely@see Eqs.
~2.14! and ~2.15! for comparison#,

052hH 2A12Bh412Ch21
m*

e2

j c
2

h4 12bF12cosS a jc
h2 D G J

~4.11!

and

054A112Ch2120Bh426
m*

e2

j c
2

h4 14bF12cosS a jc
h2 D

2
2a jc
h2 sinS a jc

h2 D G , ~4.12!

except now island-island interaction terms are present in
square brackets of Eqs.~4.11! and ~4.12!.

Expanding cosine and sine functions in Eqs.~4.11! and
~4.12! up to the lowest nonconstant terms clearly gives
dressing of the model parameters due to the weak links,
we find

0.2hH 2A12Bh412Ch21
j c
2

h4 S m*

e2 1ba2D J
~4.13!

and

0.4A112Ch2120Bh426
j c
2

h4 S m*

e2 1a2bD . ~4.14!

Solving the two equations above forj c gives

j c5S 2e

m* aDh2F2
24

b
~A1 3

2 Bh212Ch4!G1/4

. ~4.15!
-

e

a
nd

To analyze the dominant scaling behavior ofj c with respect
to T2Tc we write the amplitude of the order parameter
h;(T2Tc)

b; then the dominant exponent from Eq.~4.15!
will be

j c;~T2Tc!
3b, ~4.16!

giving a value between 1 and32, since 1
3 <b< 1

2 , for all
superconductors.17,18 This is still in quantitative agreemen
with our discussion early in the paper regarding the cro
over effects between LG and Ambegaokar-Baratoff regim
in granular superconductors in spite of the fact that the e
lier calculations ignored the effects of granularity.

With weak links present not only is the expansion coe
cient A temperature dependent, but some authors have
gested that so also is the island-island interaction.39 In order
to gain an insight into this possible new effect we shall a
proximate and suppose it takes the form

b5a exp~2T/w!, ~4.17!

wherea andw are constants andT is the absolute tempera
ture. Furthermore, to relate to our earlier work without we
links, we assume the sine and cosine terms in Eqs.~4.11! and
~4.12! may be expanded and only terms up to 1/h4 need be
retained. We find that our equationswith weak links are now
of the same form exceptj c

2 scales according to~see Figs. 6
and 7!

FIG. 7. The best fit of our theoretical curve for the normaliz

critical currentj̃ c to the experimental data points of Darhmaoui a
Jung~Ref. 20!.
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j c
2→ j c

2F11
a2e2

m*
a exp~2T/w!G . ~4.18!

We have tried assessing the importance of scaling in
~4.18! for a range of values ofw as shown in Fig. 6 fo
j c
2/3(T). Note first that increasing the value ofw enhances the

curvature of the plot. When we incorporate this formula
our fitting procedure the valuesw54.2 anda530 resulted
in an almost perfect fit to the experimental data set~see Fig.
7!.

It is worth noting that a simple explanation of the exp
nential dependence in Eq.~4.17! may be readily afforded
from earlier work on the proximity effects in Josephson ju
tions, the Hamiltonian for which is5,19,24,38

H52(
i j

Ji j cos~f i2f j2ai j !, ~4.19!

where ai j 5(2e/\c)* i
jA•dl, A is the vector potential ove

which a path integral is taken. A nonzero interaction cons
Ji j is proportional to exp@2dij /j(T)#, wheredi j is the sepa-
ration between islands andj(T) is a coherence length in th
normal matrix.19,38 The coherence lengthj(T) is typically
proportional to a negative power ofT2Tc . Hencedi j /j(T)
becomes linear in temperature provided we are not too c
to T5Tc . The constant can be considered to be abso
into a in Eq. ~4.17!.

V. CONCLUSIONS

This paper has been concerned with the diverse origin
crossover effects in the temperature dependence of supe
ducting critical currents. The analysis presented here is
n
a,

ty

R

T

h
i,
q.

-

nt

se
d

of
on-
n-

tirely phenomenological, based on the Landau-Ginzb
model of superconductivity, which has been subseque
augmented by the presence of Josephson weak links via
Lawrence-Doniach term in the free energy. A major simp
fication in the analysis of the island-island problem was
forded by a direct mapping between a sixth-power LG e
pansion and a corresponding free energy with the presenc
Lawrence-Doniach terms. We have then demonstrated
lytically and numerically how the critical exponent for th
superconducting current scales with the relative strength
the quartic- and sixth-power terms in the free energy. Thi
further modified by the oxygen deficiency parameterd, to-
gether with the critical temperature’s dependence ond as
revealed by the experiment. When weak links have been
corporated in our description in order to account for t
granularity of analyzed samples, it was possible to make
rect contact with the experimental data of Darhmaoui a
Jung20 by obtaining excellent fits to their plots ofj c(T).
Since this is a purely phenomenological model it would
desirable, in future work, to find an underlying microscop
Hamiltonian that would also shed light on the mechani
through which oxygen deficiency affects the supercondu
ing critical current.
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