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Crossover effects for critical currents within Landau-Ginzburg phenomenology incorporating
Josephson weak links in superconducting thin films of YBaCsO,_4
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Following a number of investigations into the nature of critical currents in superconducting thin films of
YBaCw0;_s (YBCO), we provide a theoretical analysis of the possible origins of crossover effects. The
framework within which our analysis is based involves local condensates described by the Landau-Ginzburg
(LG) model and coupled to their neighbors via Josephson weak links. Within the LG phenomenology critical
current behavior depends on the presence and strength of the various expansion coefficients. We show that the
corresponding critical exponent fgg varies betweerg and 1. We then incorporate the oxygen deficiency
effect, which scales the critical temperature as well as other model parameters. In the last part of the paper we
investigate the effect of weak links on the critical current’s exponent and again show that the latter may vary
between the LG and Ambegaokar-Baratoff regime§ ahd 1, respectively. Combining this analysis with an
appropriate choice of model parameters we obtain excellent agreement with the recent experimental data of
Darhmaoui and JunfPhys. Rev. B53, 14 621(1996 ]. [S0163-18209)00838-3

. INTRODUCTION of j. with temperaturej .~ (T—T,) close toT. . In many
high-temperature superconductors a crossover can be ob-
The importance of critical current behavior in elucidating served in the scaling dependencejgfversusT—T, as the
the various aspects of superconductivity is well recognizedoxygen deficiencys is varied, changing from a weak-link-
Superconducting current density is limited by depairing andike behavior for small values of the oxygen deficientyo
magnetic flux depinning processedThe depairing critical Landau-Ginzburg for higher values. Simultaneously, the
current is determined by the pair-breaking strength and recritical temperature is lowered in a highly nonlinear fashion,
sults in a supression of the superconducting order parameteS ¢ is increased. -
The depinning critical current, on the other hand, is deter- " Our paper we intend to fully explore the range of criti-
mined by the interplay of the magnetic flux motion and its€& current behavior within the Landau-GinzbulgG)
pinning forces. The superconducting phase remains stab odel and its extensions in order to prowde.ms[gﬁrrc\it into the
when the current flows through it in the presence of flux Iines? serr\]/ed e'xptlarlmental Tesu"ﬁl for YBCO thin flllhsOur
immobilized by pinning forces. Important theoretical work Irst theoretical observation will be concerned with a cross-

concerning critical currents was published by Ambegaoka?ver effect within the standard LG model with a sixth power
. ree-energy expansion in the order parameter. We then ac-
and Baratoff DeGenneé,and LikhareV’ gy expansion | P

count for a shift in the critical temperature resulting from the
Recently, measurements of the temperature dependengg,,nt of oxygen deficiend.Our final contribution to this
of the critical currentl(T) in YBCO thin films revealed 4n)ysis incorporates weak links between superconducting
three different types of behavior 6f on temperature(@) a  grains that are modeled using a combination of local do-
“convex” curvaturé"’ characteristic of an Ambegaokar- mains of LG-like superconductivity and Josephson proximity
Baratoff-type mechanisntb) a quasilinear behavidr,'’and  effects'®2223|t will be shown that a mapping exists between
(c) a “concave” curvature characteristic of the Ginzburg- this fairly complicated picture of a flux lattié&?® and the
Landau-like mechanisf’**~** Mannhart et al® showed homogeneous model with redressed model parameters that
that the transition from a quasilinear temperature dependenctirectly motivates our next section.
of I, to a concave temperature dependence is a result of
increasing the strength of applied magnetic fields from 0 to
1.0 T. The crossover from quasilinear to concave tempera-
ture dependence was also seen by Jates ! upon reduc-
tion of the oxygen content. The LG theory of critical phenomena has been very suc-
On the one hand, homogeneous superconducting order peessful over the years in providing a physical interpretation
rameter systems have been successfully modeled usirag a phenomenological level, of a host of phase transitions
Landau-Ginzburg theories, which leadjto-(T—T,)¥?be-  within solid-state physics and elsewhere. In superconduct-
havior close taT..2>~* On the other hand, granular super- ors the order paramete¥ (r) is a complex function of the
conductors quite often can be described within the Josephs@patial coordinate and where modulus squaréd |2 repre-
weak link picture, which typically results in a linear scaling sents the condensate densftyn the absence of a magnetic

1. CROSSOVER PHENOMENA
WITHIN THE LG FORMALISM
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field, the free-energy density expansion takes the form

Fay-3
{-3
21§
~N

G(r)=Gn(r)+A(T)[¥(r)|>+3C|¥(r)|*
72 )
+W|V\P(I’)| s (21) 7

where m* is the Cooper pair's masgffective maspg the i<ie o
subscripts refers to the orderefsuperconductingphase,n (b)
to the disorderednorma) phase,A(T) is assumed propor- (d_n)2 (917)2

tional to (T—T,), i.e., A(T)=a(T—T,) with a>0 andC =
>0 for stability reasons. =
=\ |/
2 i>ie %" I =/
V2w =0. (2.2 (c) (a)

A subsequent minimization d&¢(r) with respect to¥*
gives rise to the nonlinear equation below:

T

A(T)¥ +C| V|2 —

2m*
FIG. 1. Graphical illustration of the solutions to E&.8) with

Since the order parameter in the argument-modulus fotfn is T<T. and(@ j=0, (b) j=j,, and(c) j =],

V=nexuig), @23 N _ _
. it is clear that the critical currerjt, corresponds to an inflec-
the real part of Eq(2.2) is tion point of P(7), i.e., the first such situation where no
’ ) nonsingular solutions are allowgdomplete destruction of
A(T)n+Cnl— V2,4 V$)2=0, (2.4 superconductivity or pair breakingln simple mathematical
(Tm+Cry om* 7T 2m* 7(Vé) 24 terms the inflection point is characterized by the coincidence
y

and the imaginary part is of the two equations below:

V[ 72V $]=0 2 dp e
[n°Ve]=0. (2.9 0=—=|2A(T)+2Cn*+ ——5=[27 (2.9
. . . . dn (e*)°y
The latter equation represents a continuity equation and it
can be satisfied assuming thatV¢=j,, wherej, is the ~and
superconducting current density: 2p 6m* j2
_- 2 e
. —ie*h . . e*# , 0= d7]2 4A(T)+12Cy (e*)27]4. (2.10
Js= om* (‘/’ V‘/"’//Vlﬁ ): m* 7 V¢ (26) . .
Simple algebra enables one to obtainfrom Egs.(2.9) and
Combining Eqgs(2.6) and(2.4) gives (2.10 as
52 m* i2 . 2e*a
AT 7+ Cof— o V2t 2(e*)JSn ~0. @7 je="3g V2a/3m*|T-T *~ (2.1

This equation has been solved exactly in one-dimensionalNis result is in perfect agreement with the well-knon
spacé® with the spatial coordinate, where it can be inte- ©XPonent for standard type-I superconductoctose enough

grated once to yield to T.. The above problem, i.e., the minimization of Eg.1)
in the presence of a vector potential, becomes much more

dp\2 m* , . m* g complicated as one must minimize with respgctk[&é and
&> =57 2A(M)p°+Cxp"— W +co=P(7), the vector potential. Nonetheless, exact solutions have been

2.9 obtained analytically in one and two dimensithand a nu-

' merical analysis of this problem has been implemented for
wherec, is an arbitrary integration constant. We solve thisYBCO ceramics?®
equation using a geometrical method where we plot, based We now wish to examine the same property for supercon-
on Eq.(2.9), (d7/dx)? versusz in a series of diagrams with ductors that may undergo a first-order phase transition be-
different values ofj; and assuming that<T., i.e., A(T) tween the normal and superconducting phases. For conven-
<0. On increasing the value of the current density, nonsintional superconductors the LG free energy containing a
gular solutions of this equation become less and less stablguartic order parameter expansion and the presence of a vec-
and eventually, aj=j., they disappear completely. This tor potential does allow for the existence of both first- and
can be seen in Fig. 1, where EQ.9) is represented graphi- second-order phase transitions. This is a result of the com-
cally and each straight line cutting horizontally through thepetition between the coherence lengttand the magnetic
diagram represents a solution at a given value of the integrgeenetration depth, representing two separate length scales.
tion constantc, representing the level with respect to the For standard superconductors the ratio of the tife;\/¢,
axis. Lines having only one intersection point with the po-delineates the boundary between type-l and type-II supercon-
tential curve represent singular solutions, while those withductors in parameter space, wkh< 1#/?2 resulting in type-I
two such points represent nonsingular solutions. From Fig. andK>1v2 in type-ll superconductivity. Therefore there is
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no need for standard superconductors to introduce higher- anl a2

order terms in the free energy. However, for ceramic super- (0 (E) @ (?&)
conductors the situation is far from clear. Attempts at devel- js=0 i=0
oping an LG description for high superconductors have Te<T<T, \ T<T,
been made in the passee, for example, Refs. 27-2and

they indicate a strongly type-Il layered behavior calling for ’ !
the inclusion of Lawrence-Doniach coupling between super-
conducting islands. This indeed is the line of attack we
adopted in the main thrust of our pafdeee Sec. IV. There
is, however, a mathematically much more straightforward
way of accomplishing a crossover in the value of the critical dy? a2
() (8) (e) (&)

exponents and indeed in changing the order of the transition.
We will later see that a direct mapping may be made be- is=0 \ / i<l
T<Tg

cally justified multigrain picture developed in Sec. IV. We,

tween this simple to analyze approach and the more physi- % E T=1;
]

therefore, begin by simply adding a sixth power to the free
energy expansion so that

Gs(r)=Gn(r)+A(T)|[W(r)[>+3C|¥(r)|*+3B|¥(r)[°

K2 2 2
+ o VW ()]2. 212 (o) a ) &
2m* (dx) (=0 (dx) isie
Following an identical procedure to the one presented above Te<T<TE T<Ts
we arrive at an analogue of E.8), namely, \ /
n n
d77 ? m* 2 4, 2 6 m*jg W (
(& —?[ZA(T)’” +Cyq +§B7]—W +d0

=R(7), (2.13 FIG. 2. Graphical illustration of the solutions to H&.13 when
. . ) (@j=0; TE<T<Ts, (0)j=0;T=T;, () j=0; T.<T<TZ:, (d)
wheredy is another integration constant. Before we present@—o: T<T,, (¢) j<j.: T<T., and(f) j=j.; T<T.. Here, T*

general result that is slightly more involved, let us consider a-1_+ 382/16aC; T,=T.+B%4aC.

simple special case, i.e., the vicinity of the tricritical point

where a line of first-order phase transitions merges with one ) o -
for second order and requires that=0. In this case the NOte thatsincéis linearly dependent onT(-Tc), the criti-

critical current is found via cal exponent will smoothly vary between the asymptotic lim-
its of 1 for B=0 and2 for C=0 depending on the relative
dr m*jg strength of the quartic coefficie@. A graphical illustration
0= d—=277 2A+2B 7+ )2 (2.14  of the types of behavior in Eq2.13 for first-order transi-
n g tions (C<0) is shown in Fig. 2, which is analogous to Fig. 1
and for second-order transitions. Figure 3 illustrates the scaling
of j. with temperature for various strengths and signs of the
d’R 4 6m*j§ quartic coefficientC. It is worth commenting in this regard
0= d? =4A+20B7"— (&) Z* (219 o the role of the sixth-order contribution to the free energy.
While such terms incorporated in lattice Hamiltonians are
Solving these two simultaneous equations jfoyields deemed irrelevant by the results of the renormalization-group

technique®® since they only redress lower-order contribu-
. aer|T-T tions, this is not so in mean-field models as was first pointed
Je= J2Bm* (2.16 out by Ginzburg, Levanyuk, and Sobyatlirfor the expo-
nentsg, y, andé. It turns out that adding a sixth-power term
Thus, the tricritical point exponent for the superconductingto a standard Landau free energy allows one to continuously
current density is unity. We infer that a crossover must occushift the values of the critical exponengs v, and s from the
on going from the critical to the tricritical points. critical point, or so-called “classical values,” to the tricriti-

In the general case when the coefficieAtsB, andC are  cal point values depending on the ratio of the quartic to the
not zero, the result fof, is much more complicated but sixth-power expansion coefficients. What we have demon-
nevertheless can be expressed analytically as strated in this section of our paper is an analogous crossover
effect taking place for the critical current’s exponent, which
is, therefore, of great relevance to the subject matter of this
paper.

5 4 Returning to Eq.(2.17) it is very convenient for both a
" i(Az_ 2 £ n ﬂ C_)] 2.17) theoretical discussion and fitting to experiment to notice that
4B 8 B  128B?/|" ' if we define a parametex by

3/2
P2

2e*2[ 2704( 32 AB
Jc=

[ -+ —_——
m | “518%\ 19 ¢
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FIG. 3. Plots ofj2(T) for dif-
ferent values of and thusu fol-
lowing Egs.(2.19 and(2.18.

10516
T-T
@ (0)
Inj:
10 C0_ 72 /c=o.1
1 ’,;5;/;:///
/4$/////
0.1 ,«:/' ///
r’:// rd
oo™ 7
g T 02 T3 (T
C
(©) @
w=AB/C?=aB(T—T,)/C? (2.19
then this expression fq'rﬁ may be written as
2¢? C* 32\ 372
i2=_—" _— !+ _
Je= s 5125#‘271 9
+128 u? o + 27 219
a4t 128 (- 219

A normalizedj? for example,j(T)/j4(T=10K), can thus
be described with one parameter only, namely Close to
w=0 the term (1 32u/9)*2 may be expanded to third order
in u to give

32 3/2
1__/*)
9

2048

8. 128 ,
g M (2.20

T

and the critical current, in this approximatidteking the
minus sign in Eq(2.19], becomes

8e? ad

je= 5 o2 (T=To)*. (.20

give an important building block of the theoretical model.
We will show in Sec. IV that the equations for a more real-
istic free-energy expansion can still be mapped on the simple
model described here. It should also be added, however, that
the simultaneous presence of several degrees of freedom in
high-T, materials may indeed require an effective free-
energy expansion with a sixth-power term. This, for ex-
ample, has been the case with the coexistence of supercon-
ductivity and magnetisr® In high-T. superconductors one
should indeed develop a phenomenology that includes not
only the superconducting order parameter but also the order
parameters for antiferromagnetic and the structural reorder-
ing due to the nature of the phase diagram. Trying to main-
tain the level of mathematical complexity to a minimum we
turn our attention now to what we view as the key departure
from a standard LG-type of behavior, namely, the presence
of oxygen deficiencies.

IIl. OXYGEN DEFICIENCY EFFECTS

In order to make contact with the experimental results of
Ref. 20, we must account for the existence of samples with
different oxygen deficiencie$. The effect of the oxygen

In this casg ¢, as a function of temperature, has an LG-typedeficiency on the critical current profiles turned out to be

of behavior. On the other hand, whar< — 1 the term inu?
in Eq. (2.19 will dominate to give

o e?aX(T—T,)?

je S B (2.22

The extended LG model so far, therefore, exhibits a cross-

over in the temperature dependencg ofrom (T—T,)%?to

more complex than first anticipated. Three distinct influences
of 6 on the model parameters have been found. First, follow-
ing Ref. 21, we included the shift of the critical temperature
T. as a result of using differenf's. A simple formula was
found that approximates the functional dependencé ain

6 for the low and intermediate values éf It is given by

T.=73-18tanki12(5—0.26 ] (3.1

(T—T,.). While we do not expect the sixth-power expansion
to be a realistic representation for the YBCO thin films we(see Fig. 4 When this is included in the formula for the
study in this paper, the calculations provided in this sectiorcritical current we notice an obvious spreading of the curves
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FIG. 4. Diagrammatic representation of the
variation of T, with ¢ following the results of
Jorgenseret al. (Ref. 2.

70}
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for different §'s [see Fig. Ba)]. Comparison of these plots which links the superconductor-insulator-superconductor

with those of the experimeritee Fig. 8)] shows a certain  coupling constand;; with the average energy gap(T):

degree of similarity but is still quantitatively inadequate.

This raises the question of the second effecs,afiamely, a Jij @ A(T)tanH A(T)/2KT]. (3.2

redressing of the remaining model parameters. Since the fot-

mula forj? is expressed in terms of a constant prefactor an%

a variableu, we first focus our attention on the role af
There is a suggestive similarity between our empirical

formula. Eq.(3.1), and the Ambegaokar-Baratoff formula,

he ordering temperature for spin systems is proportional to
ij and if the energy gap, as a first-order approximation, is a
linear function of oxygen deficiency, this may well give an
explanation of its form

(a) theoretical model m= o2 (T—=Te), (3.3
i
and we feel it is both prudent and justified to expand d®th
andC linearly in terms of4, i.e.,

B:Bo+ 581, C:C0+ 5(:1 (34)

Thus, to first order we get

s
+ B—O—ZC—O S|(T—To). (3.5

SinceB is the coefficient of thel'® term in our model, it is
most likely to be purely electroni@oulomb interactionin
origin. We, therefore, postulate that this interaction is re-

(b) experiment duced in magnitude as a result of introducing holes and thus
ok Thin fitm, 41 O = 50K) Bo>0, B;<0. (3.6)
. #z (T5=87K)
@ o #3 (1.=87K) We have incorporated the linear expansionsifior u [see
S 08} v #4 (T =86K) . . . .
= . o p5 (Ti=74K) Eg. (3.5] in the calculation of . and a sampling of graphical
S o6l St #6 (T =52K) results is given in Fig. 5.
<, Having corrected the initial temperature and the fitting
:‘\\ oel parametefu for the presence of oxygen deficiency, we have
tu ' set out to obtain precise fits to the experimental plots of
= ozl j<(T) published in Ref. 20. However, we encountered an-
other obstacle especially for the plots exhibiting an inflection
0.0 point such as sample 1 of Ref. 20 in zero field. What we wish
0 100 to address in the remainder of this paper is the need for

T (K) further improving the model such that the effects of granu-

larity are properly taken into account. Until now we have not
FIG. 5. Theoreticala) and experimentalb) plots of j2* as a  accounted for the presence of superconducting islands in the
function of temperature for a number of values&f thin film structure under consideration and the methods used

2/3
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23 0.6}
Je FIG. 6. Plots ofj2* versusT based on Eq.
0.4 (4.18 using several values of parameter
0.2

20 40 60 8.0

T (K)

are strictly speaking only applicable to a homogeneous disand
tribution of superconducting phase.
_1 2
IV. WEAK LINKS ADDED TO THE LG MODEL G2= 2<Z‘|> Oril =l “-3
In this section we wish to explore the effect of the granu-In the expressions foB; andG,, n andl denote supercon-

lar nature of the new high-temperature superconductorsjucting islands whose size is on the order of the coherence
which has been seen using a number of experimental techength and we denote the order parameter for each island by
niques, including anomalous voltage excursions, as a funcg,,. The notation(n+1) expresses the fact that we only in-
tion of temperature and magnetic fiéftijogarithmic time  clude interactions witmearesteighbor islands. The param-
decays of magnetizatiol,flux trapping?® and tails of sen- eter b, is a distance-dependent interisland coupling con-
sitivity versus temperature due to boundary resistance bestant. As we did earlier, we writ&,=a(T—T,) and assume,
tween grains® What we wish to do is to maintain the sim- as forA,, that it is independent of the particular island.

plicity of a phenomenological approach but incorporate in  \inimizing the free-energy functional with respect ¢4
the free-energy density a contribution that partially describegye gbtain

the role played by oxygen vacancies in creating supercon-
ducting grains. The depletion or excess of oxygen ions first 52
leads to the creation of additional charge carfieSince the 0= At Agl tho| 2+ Ag| ] * 00— 2—*Vﬁ¢/n
; ; : . m
latter are holes with a high effective mass compared with
electrons, we expect a much greater degree of localization
than in the low-temperature standard superconductors. For +3 > b= ). (4.9
the inclusion of an appropriate free-energy density we follow (1#n)
the ideas of Deutscher and Mar®* and visualize regions Writing each other parameter, in modulus-argument form,
smaller than the mean grain size. These correspond to des,= 5 exp(¢,) and assuming, for each islang,= 7= 7,
mains of superconductivity and may be separated by regionge find for the real part of the above equation
of normal phase. We suppose, at least initially, that these
islands are well separated and interactions between them are #2
rather weak so that they may be modeled using the weak-link ~ 0=Ax7+A;7°+Agn°— S [VZ7—n(V ¢n)?]
approximation, as arrays of Josephson junctidris.the vi-
cinity of the critical temperature we represent the free-energy 1
density as a sum of individual LG contributions for each of + 5’7<|$En> bn{l—cos dn— )} (4.5
the superconducting islands with interactions between them
in the Lawrence-Doniach forif.We also assume that there The corresponding imaginary component yields
is no magnetic field present. Thus following our earlier

work,*! we write the free energy as .
¥ 0=2V Vot 7Vt 5 3 by iy ).
n
Gszf [G,+ G+ G,]dr, (4.1) (4.6
A simple physical approximation now reduces these equa-
where tions to a more manageable form in one dimension if we
42 write ¢,-1=¢,+|V|la, wherea is related to the lattice
G, = A 24 A 44 A 6y v 2 spacing between the islands. The sine terms in the equation
! En: { 2l ™+ Aal ]+ Al 2m*| i for the imaginary parts vanish and by puttitig,=b for

(4.2 every pair of nearest-neighbor islands we find
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2 (a) theoretical model
0=Ax7+ A7+ Asn = 5 [V27— (V)] 1
+7b[1-codalVe|)] 4.7
and
- 0.6
0=29V 7 Vot n?V2p=V-(7?V¢), (49 8
0.4
where we have used the fact tha=(1/a)(¢,— dn_1)
=V ¢n . 0.2 (a)
We can now argue similarly to the case with no weak
links in one dimension to find &( %) where 75 40 T(I(6; 80
d77 2 m* Jg m* (b) experiment
1) = 2 44 2 6__ ">
QUm=|gx| =72 (ZA(T)n +Cx"+3B7y R
ajs o Thin film YBCO #1; ZFC
+4bf 7| 1—co 7 dzyi, (4.9 .01
where we have made the identification = o8y
o
A,=A(T), A,=C, As=B. 410 7°F
=
PuttingdQ/d»=0 andd?Q/d»*=0 as before in order to = %4}
find the conditions for the critical current we obtain analo-
gous equations to those derived earlier, naniske Egs. 0.2 ¢
(2.14 and(2.15 for comparisor, oo N B N
, “0.0 0.2 0.4 0.6 08 1.0
m* j aj
O=27;[2A+28774+2C772+?77—Z+2b 1—cos($)“ T,
(4.1 FIG. 7. The best fit of our theoretical curve for the normalized
critical current] ¢ to the experimental data points of Darhmaoui and
and Jung(Ref. 20.
) 4 m* j§ aje To analyze the dominant scaling behaviorjgfwith respect
0=4A+12Cy7"+20B7 _6??+4b 1-co ra to T— T, we write the amplitude of the order parameter as
n~(T—T.)?; then the dominant exponent from Eg.15
2aj. _(aj will be
_ e gin e | (4.12
T o (T=To)*, (416
except now island-island interaction terms are present in th@iving a value between 1 and since 1<p<1%, for all
square brackets of Eq#.11) and(4.12). superconductors '8 This is still in quantitative agreement

Expanding cosine and sine functions in E¢6.11) and  \yith our discussion early in the paper regarding the cross-
(4.12 up to the lowest nonconstant terms clearly gives &yyer effects between LG and Ambegaokar-Baratoff regimes
dressing of the model parameters due to the weak links, angl granular superconductors in spite of the fact that the ear-
we find lier calculations ignored the effects of granularity.

With weak links present not only is the expansion coeffi-
cient A temperature dependent, but some authors have sug-
gested that so also is the island-island interactidn. order

(4.13  to gain an insight into this possible new effect we shall ap-
proximate and suppose it takes the form

jZ [ m*
0=27y 2A+ZB774+2C772+7]—C4 ?eraz

and
b=aexp —T/w), (4.17)

. (4.14 wherea andw are constants and is the absolute tempera-
ture. Furthermore, to relate to our earlier work without weak

. _ o links, we assume the sine and cosine terms in Eg$1) and

Solving the two equations above for gives (4.12 may be expanded and only terms up tey*Lheed be

retained. We find that our equationdth weak links are now

of the same form excep’ﬁ scales according t(see Figs. 6

and

.2 %
] m
c —2+a2b
e

0=4A+12C»*+ 208974—6?

2e
m* a

24 3.2 4 e
—F(A-I—EBW +2C7%%| . (4.195

772

je=
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P a’e? tirely phenomenological, based on the Landau-Ginzburg
je e 1+ (s aexp(—T/w) . (418  model of superconductivity, which has been subsequently
augmented by the presence of Josephson weak links via the
We have tried assessing the importance of scaling in Ed.awrence-Doniach term in the free energy. A major simpli-
(4.18 for a range of values ofv as shown in Fig. 6 for fication in the analysis of the island-island problem was af-
j§/3(T). Note first that increasing the valuewfenhances the forded by a direct mapping between a sixth-power LG ex-
curvature of the plot. When we incorporate this formula inpansion and a corresponding free energy with the presence of
our fitting procedure the values=4.2 anda=30 resulted Lawrence-Doniach terms. We have then demonstrated ana-
in an almost perfect fit to the experimental data(see Fig. lytically and numerically how the critical exponent for the
7). superconducting current scales with the relative strength of
It is worth noting that a simple explanation of the expo-the quartic- and sixth-power terms in the free energy. This is
nential dependence in E¢4.17) may be readily afforded further modified by the oxygen deficiency paramefeto-
from earlier work on the proximity effects in Josephson junc-gether with the critical temperature’s dependencedoas

tions, the Hamiltonian for which 7s-%:24:38 revealed by the experiment. When weak links have been in-
corporated in our description in order to account for the
ranularity of analyzed samples, it was possible to make di-

H=—2 Jj cos ¢ — ¢ —ay), (419 9 Y y P P

rect contact with the experimental data of Darhmaoui and
B i , , Jung® by obtaining excellent fits to their plots gf(T).

where a;;=(2e/fic) [iA-dl, A is the vector potential over gjnce this is a purely phenomenological model it would be
wh|ph a path '|ntegral is taken. A nonzero mteracnon constanfiesirable, in future work, to find an underlying microscopic
Jij is proportional to exp-d; /{(T)], whered;; is the sepa-  Hamiltonian that would also shed light on the mechanism

ration betwegqgigglsands arT) is a coherence length in the hrough which oxygen deficiency affects the superconduct-
normal matrix.>** The coherence length(T) is typically  jng critical current.

proportional to a negative power ®—T.. Henced;; /§(T)
becomes linear in temperature provided we are not too close ACKNOWLEDGMENTS
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