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Dimensional crossover in a mesoscopic superconducting loop of finite width
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Superconducting structures with a size of the order of the superconducting coherencet(@ndtiave a
critical temperaturd ., oscillating as a function of the applied perpendicular magnetic Feldr flux ®). For
a thin-wire superconducting loop, the oscillationsTinare perfectly periodic withd (this is the well-known
Little-Parks effecy, while for a singly connected superconducting disk the oscillations are pseudoperiodic, i.e.,
the magnetic period decreasestagrows. In the present paper, we study the intermediate case: a loop made
of thick wires. By increasing the size of the opening in the middle, the disklike behavidg(ef) with a
quasilinear backgroundharacteristic of three-dimension@D) behaviot is shown to evolve into a parabolic
T.(H) background(2D), superimposed with perfectly periodic oscillations. The calculations are performed
using the linearized Ginzburg-Landau theory, with the proper normal/vacuum boundary conditions at both the
internal and external interfaces. Above a certain crossover magneticbfluk.(®) of the loops becomes
quasilinear, and the flux period matches with the case of the filled disk. This dimensional transition is similar
to the 2D-3D transition for thin films in a parallel magnetic field, where vortices enter the material as soon as
the film thickness>1.84(T). For the loops studied here, the crossover point appears~dt.8(T) as well,
with w the width of the wires forming the loop. In the 3D regime, a “giant vortex state” is established, where
superconductivity is concentrated near the sample’s outer interface. The vortex is then localized inside the
loop’s opening[S0163-182@9)04238-1]

I. INTRODUCTION

The nucleation of superconductivity in mesoscopic
samples received a renewed interest after the development of _ o
. . . . . L_"'u 2! 110!112-"1 (2)
nanofabrication techniques, like electron-beam lithography. L
A superconductor is called mesoscopic when the sample sizghere we used the Stokes theorgi-dl=®, with ® the
is comparable to the magnetic penetration deptii) and  magnetic flux threading the area inside the contour. In other
the superconducting coherence leng(T). In the frame- WOrds, when a noninteger magnetic fld{®, is applied, a

work of the Ginzburg-LandauGL) theory, £(T) sets the supercurrend has to be generated in order to fulfill E@).

length scale for spatial variations of the modulus of the su- '€ INteger numbet is the phase winding or fluxoid quan-

ducti d | The bi . K tum number, and gives the numteof flux quantad®, pen-
perconducting order paramefe¥ |. The pioneering work on etrating the sample. Since, for a cylindrical geometry, the

mesoscopic superconductors was carried out already in 19Q4¢erent L states are eigenfunctions of the angular or-

by Little and Parké, who measured the shift of the critical b|ta|) momentum Operator as Wé“L— is often called the an-
temperaturel ,(H) of a (multiply connectegithin-walled Sn  gular momentum quantum number. The fluxoid quantization
microcylinder (a thin-wire “loop”) in an axial magnetic constrain{Eq.(2)] is the equivalent of the Bohr-Sommerfeld
field H. The T.(H) phase boundary showed a periodic com-quantum condition for Cooper paits.

ponent, with the magnetic period corresponding to the pen- A few years later, Saint-James calculated T¢H) (or
etration of a superconducting flux quantubp=h/2e. The the nucleation magnetic fieldf a singly connected cylinder
Little-Parks oscillations iff,(H) are a straightforward con- (& mesoscopic “disk}. Taking into account the analogy
sequence of the fluxoid quantization constraint, which wavith the situation of a semi-infinite superconducting slab in

predicted by LondoR.This condition can be easily under- contact with vacuuni the critical field was called c(T) in
stood by integrating the second GL equation this case, since superconductivity nucleates initinthar the
sample interfaceAs we will show further in this paper, a

substantial enhancement of the nucleation field, above the
H.3(T) for a semi-infinite slab, can be obtained in meso-
. . 2a. . scopic samples, where the surface-to-volume ratio is large. In
J=|W|2(V5—3A) =|¥|?v, (1)  such case, surface effects play the role of the bulk effects.
0 Therefore, we will rather use the notatidti;(T). For a
disk, the limiting valueHX3(T)=Hc3(T)=1.6H,(T) is
found as®— (or the radius of the disk-=). The field
along a closed contoud=j/(2efi/m*) is the normalized H, is the upper critical field of a bulk type-Il supercon-
current densityy; is the (normalized superfluid velocity, ductor, at which the Abrikosov vortex lattice is formed.
and 6 is the phase of the complex order parameder The T,(H) phase boundarjor HZ;(T)] of the disk
=|W¥|e'. This yields shows, just like for the usual Little-Parks effect in a multiply
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connected sampléloop), an oscillatory behavior. In this sion of T.(®) is changed from paraboli@D) to quasilinear
case, the oscillation period of.(H) is not constant, but (3D), which indicates the formation of a giant vortex state,
decreases slightly a$l increases. When moving along where only a surface sheath close to the sample’s outer in-
T.(H), superconductivity concentrates more and more neaerface is in the superconducting state. Moreover, the oscil-
the samE)Ie interface ald grows. A giant vortex state is lation period ofT.(®) becomes identical for the loops as for
formed®® a “normal” core carriesL flux quanta, and the the full disk, as soon as the transition to 3D behavior has
“effective” loop radius increases, resulting in a decrease oftaken place.
the magnetic oscillation period. Here as well, fluxoid quan-
tization [Eq. (2)] is responsible for the oscillations df, [l LINEARIZED GL EQUATION
versusH. An experimental verification of these predictions
was carried out later on by Buissat al.” and by Mosh-
chalkovet al®

Currently, many different sample topologies are studied: 1
superconducting networKs antidot system&~'2 samples ——(—ihV—2eA2¥=|-a|V. (3)
consisting of sharp cornet3!“ etc. With the use of submi- m*
cron Hall probe microscopy for measuring the magnetic Thjs equation is formally identical to the Sékiinger equa-
response of a superconductor, it has become possible iy for a particle with a chargee?in a magnetic field. Here,
probe samples deep in the superconducting g’[@e-’ at  at the onset of superconductivify~T.(H), the nonlinear
tgmperatures far below,). A lot of recel_ﬂt th_eoretlcal activi- term 8| |2 <| — a| ¥ can been omitted, and demagnetiza-
ties have been devoted to the magnetization and vortex cofp, effects along the field direction do not need to be con-
figurations in superconducting disks of different S'_%g _sidered. In this regime, the 2 dependence disappears from the

Loop structures have also been studied extensively in thgqations, and therefore an infinitely long cylinder and a disk
past years. A large portion of the theoretical research hagaye jdenticall(H) boundaries. It is further assumed that

been focused on the transition between two different fluxoid,q penetration depth(T) is much greater than the sample
statesL —L + 1,2 but also experiments were carried out, size, so thaj H=rotA. Itis important to note thatl is the
including susceptibility measurements cIoseTt;q_19 studies appl’ied magr?etic fieldso fields induced by supercurrerts
?r;ngi]seto F%nsr:gyizrr)]nir?geflglllj rgrogzlrr]r?ea:uresmglri-selc()ar?t:aonrtEq' (2)] are not taken into account here. The more type |l
sembles of mesoscopic Al 1005, (the higherk) the superconducting material is, the larger

As already mentioned, the two limiting cases, “thin-wire range of validity our calculations have. The eigenenergies
loop” and “disk,” are well understood as far as the nucle- |~ al can be written as

The linearized first GL equation to be solved in order to
find To(H) is

ation fieldH?; is concerned, but the intermediate case is not. 22 72 T
In the early paper by Saint-James and de Gefng¥,(T) l—al=——s =75 ( - T_) (4)
was also calculated forfdm exposed to a parallel magnetic 2m*EX(T)  2m*£5(0) co

field, where surface superconductivity can grow along twoT , being the critical temperature in zero magnetic field.

superconductor/vacuum interfaces. For low magnetic fieldssrom the energy eigenvalues of @), the lowest Landau

the two surface superconducting sheaths overlap, and, as|i@yel |— L (H)] is directly related to the highest possible

result, T, versusH becomes parabolic, which is characteris-temperaturél ;(H), for which superconductivity can exist.

tic of two-dimensional2D) behavior. When increasing the By varying the topology of the samplénanostructur-

field, a crossover to a linedi,(H) dependence3D) occurs  ing”), the lowest Landau level—a | can be tuned by

att~2¢(T), with t the film thickness. Shortly after, it was confinement of the superconducting condensate. Several ex-

shown that vortices start to nucleate in the film at this dimengmples of this concept can be found in Refs. 9 and 24. In-

sional crossover poirftt=1.85(T)].% deed, the solutiont of Eq. (3) has to fulfill the Neumann
The goal of the present paper is to study the phase boungoundary condition

ary T.(H) of loops made of finite width wiregr disks with . .

an opening in the middle, increasing in sizén a type-ll (—1hV—-2eA) V|, ,=0 5)

material, superconductivity is expected to be enhanced, witgt the sample interfacas This requirement guarantees that

respect to the bulkHcy(T)>Hcp(T)], both at the external  {he sypercurrent does not have a component perpendicular to
and internal sample surfaces. As for a film in a parallel field,5 superconductor/vacuum interface.

a 2D-3D dimensional crossover can be anticipated, since the rqr the loop geometries, we choose the cylindrical coor-
loops may be simply considered as a film, which is bent sucr(ljinate system( o) and the gaugd=(ueHr/2)e, , where
that its ends are joined together. We calculate the phasg y "P, . gaug Ko e
boundaryT.(H) as the ground-state solution of the linear- & 1S the tangential unit vector. The exact solution of the

ized first GL equation with two superconductor/vacuum in-Hamiltonian [Eq. (3)] in cylindrical coordinates takes the

terfaces. This calculation has been suggested already by sé@llowing form;*23:29:28

eral authorg>?3but to the best of our knowledge it has not P \L2 P

been carried out so far. We will show that thg(®) of the \I'(d),qo):e"“"(a) exp( - E)

loops, for low applied magnetic flutcorresponding to the 0 0

2D regime, can be described within a simple London pic- XK(—n,L+1®/Dg),

ture, where the modulus of the order paramétef is spa- 6)

tially constant. As the flux increases, the background depres- K(a,c,y)=c;M(a,c,y)+coU(a,c,y).
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Here ®=puoH#r? is the applied magnetic flux through a thus leading taH%5(T)>H,(T). A similar calculation was
circle of radiusr. The numbem determines the energy ei- performed for a single circular microhole in a plane film
genvalue. Most generally, the functiéf(a,c,y) can be any (“antidot”),** where ¢;=0 in Egs. (6) and (10), since
linear combination of the two confluent hypergeometricM(a,c,y—=)==. Here as well, the lowest Landau level
functions(or Kummer functionsM (a,c,y) andU(a,c,y),?”  consists of solutions with<0. At each cusp i (P), the
but the sample topology puts a constraint@n c,, andn,  system makes a transititn—L =1, i.e., a vortex enters or is
via the boundary conditiofEq. (5)]. removed from the sample.

The eigenenergies of E(R) (the Landau leve)sare?® The loops we are currently studying have two

superconducting/vacuum interfaces, one at the outer radius
r,, and one at the inner radius. Consequently, the bound-
g () ary condition[Eq. (10)] has to be fulfilled at both,, andr; .

As a result, we have a system of two equations and two
where w=2euoH/m* is the cyclotron frequencyThe pa- variablesn andc, (c;=1 is choseh which we solved for
rameter n depends on L and is not necessarily an integedifferent values ok=r;/r,. In the rest of the paper we will
number as we shall see later. With E¢4) this can be re-  defined = uoH=r2, where r, always means the outer loop

Zeh/.l/oH 1
|—a|=—(2n+l)=ﬁw n+ =
2m* 2

written as radius.
r2 r T(H) 1\ @ )
= — = | —= * N\ IIl. LONDON LIMIT
2T 20( T ) (n+2)¢ Fealgs:
¢(Te) 670 <0 0 0(8) The usual description of the Little-Parks effettis given
in terms of the London limit, wherg¥| is spatially constant.
where® = yyH 7rr§ is arbitrarily defined. This approximation, of course, is valid when the wire, form-
The bulk Landau levels can be found when substitutingng the loop, is very thinX~ 1), or when we define the loop
n=0,1,2 ... in Egs. (7) and (8), meaning that the lowest aspect rati as
level n=0 corresponds to the upper critical fiedghH,(T)
=d,/[27wE3(T)]. Let us note that the lowest Landau level ro—ri 1-—x
(n=0) for a bulk superconductor is degenerate in the phase = ot T 1+x’ (1D

winding numberL, and therefore the eigenfunction can be

expanded a¥ =3c V¥ . Interference patterns between the this condition impliesz<1.

different functions¥, give rise to aperiodic vortex stat&s. The solution of the linearized GL equatidiEq. (3)]
The boundary conditiofiEqg. (5)], in cylindrical coordi- become¥

nates, can be simply written as

2 2
r r T.(H
&|\If(r)| . m — 2m ( _ C( ))
or ! ©) (T £(0) Teo
r=ro
, _ _ m\ 2 5 &, L2 [1+z
with a superconductor/vacuum interface at a radius =|—] (1+z29)—2L—+ —In| ——|, (12
D, dy 2z \1-z

ro. Using dM(a,c,y)/dy=(a/lc)M(a+1lc+1ly) and
dU(a,c,y)/dy=—-aU(a+1c+1y) for the derivatives of
the first and second types of Kummer functions,
respectively?’ and inserting Eq(6) into Eq.(9), gives

with ® = u H#r2, wherer is the mean radius of the
m— M0 m m

loop. Note that this definition of flu, is different from®
in Sec. Il. The lowest eigenvalues are obtained whénthe

P > integer number closest te 2(®,,/Pg)z/Inx. We will fur-
n & . . :
cy (L— _) M(—n,L+1®/Pg)—— — ther compare this equation with our more exact results, cal-
Do L+1 @ culated from the scheme presented in Sec. Il.
Since in the original paper by Groff and PaRshin-wire
XM(—n+1L+ 2,q>/<130)} loops (z<1) were investigated, the logarithm was expanded
in a Taylor series, which gives, up to orde,
)
+Cy L—EO>U(—H,L+1,(D/(I)O) rrzn - rrzn ( - TC(H)) _( - %)2+fzz(%)2
@ E(To) €(0) Teo Po/ 31 Po
+2n3U(—n+1,L+2,<D/<I>O)} =0, (10 (13
0 b

The first term on the right-hand side of E3d.3) is the peri-
which has to be solved numerically for each integer value obdic part of theT. reduction(i.e., the Little-Parks effegt
L, resulting in a set of values(L,®), with &= uoHr2. while the second term is a monotonic parabolic background,

For a disk geometry,?®we have to take,=0 in Eqs.  which is identical to tha .(H) expression for a plane film of

(6) and (10) in order to avoid the divergency dfi(a,c,y thicknesst=2zr,, in a parallel magnetic fieldlIn Ref. 30, a
—0)=< at the origin. Selecting the lowest Landau level atsubstitution is performed, which splits the right-hand side of
each value®, one ends up with a cusplik€,(H) phase Eg. (12) into a periodic term and a monotonic background
boundary’ which is composed of values<0 in Eq. (7), T.. The latter becomes
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superconducting loop with differ-
ent ratio of inner to outer radius
x=r;lry: (@ x=0.1, (b) x=0.3,
(c) x=0.5, (d) x=0.7, and(e) x
=0.9. The lowest level for each
magnetic fluxd/® corresponds
to the highest possible tempera-
ture T.(H) for which supercon-
ductivity can exist. A state with
phase winding numbet =0 is
formed atT.(®~0), and at each
cusp inT.(H) the system makes a

x=r,/1,=0.7 - S
transitionL — L + 1, indicating the
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6 8 20 0 2 4 6 20 entrance of an extra vortex. The
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respectively.
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0
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1-z

-1)(a)

S (),
E(Te) 2z
(14)

which is parabolic with®,. This substitution is only valid
for thin-wire loops, and Eq(14) transforms of course into
the last term of Eq(13) for z<1.

IV. RESULTS

Figure 1 shows the Landau-level schefdashed lines
calculated from Eqs(8) and (10), for loops with a different
inner radiusx=r;/r, (@) x=0.1, (b) x=0.3, (c) x=0.5, (d)
x=0.7, and (¢) x=0.9. The applied magnetic fluxb

solutions with a different phase winding numberand is
drawn as a solid cusplike line in Fig. 1. At~0, the state
with L=0 is formed afT.(H) and, one by one, consecutive
flux quantaL enter the loop as the magnetic field increases.
Each stateL approximately has a parabolic dependence
|—a(H)|, close toT.(H). As for the disk!®* where ®
~®y(L+LY), here we havd <P as well, indicating
the overall diamagnetic response of the sample.xAs-
creases, the oscillations ifi,(®) change from cusplike to
very pronounced local extrema for=0.9. In the limit of
vanishing wire width x—1), L is the integer closest to
d,,/®y, and therefore the response of the loop is alternating
between diamagnetic and paramagnetic as the flux varies.
The solid and dotted straight lines in Fig. 1 are the bulk

= uoH7r?2 is defined with respect to the outer sample areaupper critical field He,(T) and the surface critical field

The T,(H) boundary[or |—a, (H)|] is composed of¥

H.3(T) for a semi-infinite slab, respectively. In these units
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the slopes of the curvdsee Eq(8)] aree=2 for H, [sub-
stituten=0 in Eq. (8)] and e=2/1.69 forH ;. The ratioyn
=e€(H¢)/e(He3)=1.69 corresponds then to the enhance-
ment factorH .3(T)/H»(T) at a constant temperature. For
the loops we are studying here,=e(H,)/e(H}3) is no
longer a constant, but varies with the magnetic field.

The energy levels below the,, line (solid straight line in
Fig. 1) could be found by fixing a certain, and solving Eq.
(10) for a small®, until a set @,c,) is found withn<O0.
These values were always put in as starting values for a
slightly higher®. A trivial solution of Eq.(10) is obtained
for n=0,1,2 ... . Both confluent hypergeometric functions
reduce to M(—N,L+1®/Py)=1 and U(—N,L+1,
®/dy)=1, and thusc,= —c;. Inserting this into Eq.(6)
gives ¥V (d,¢)=0 everywhere. With this method, we were
able to find solutions witm<<0 numerically. Note that the
lowest Landau level always has a lower enetgya(®)]
than for a semi-infinite superconducting slab, which implies
HE3(T)>Hea(T).

The dash-dotted curve in Fig. 1 gives the result obtained
with the London limit® [see Eq.(12)]. In Fig. 1(a) (x
=0.1) the deviation from the exact solution of H) ap- FIG. 2. Order parameter distributig® | for x=r;/r,=0.1, ata
pears already fot=1. For low flux, the result from Eq. fiyeqd=9d,. (a) L=2, (b) L=3, (c) L=4, (d) L=5, and(e) L
(12), has clearly higher enerdy- @ than the surface critical 6. The latter [ =6) corresponds to the ground-state level
field Hea(T). At @~7d, this curve even crosses the bulk |-« (9®,)|, where the sample is in the giant vortex state.
He(T) line, which is clearly unphysical. For=0.3 [Fig.
1(b)] the London limit is valid up tab~4®d, for x=0.5 up
to ®~8d [Fig. 1(c)], and forx=0.7[Fig. 1(d)] it is a good
approximation in the whole flux interval of our calculations.

L=3,(c) L=4, (d) L=5, and(e) L=6. The|¥| values
have been normalized to 1 at the sample’s outer intenface

Finally, for x=0.9 [Fig. 1(¢)] the assumption of a spatially ~'o: The dark area is the region outside the sample. The

constant{¥| gives aT.(®), which cannot be distinguished Maximum in|W| for L=2 lies atr=(r;+r,)/2, and gradu-
from the exact solution of Eq3). ally shifts to the outer sample edge las-6, which is the

In Fig. 1(a) (x=0.1) the background depression&f is ground-state solution of Eq3). The spatial modulation of
quasilinear just like for the case of a filled disk, fox  |¥| is considerable £,>1.16) for all [¥| patterns shown
=0.3[Fig. 1(b)] T,(H) has a ratheparabolic background ~here. AtT=T(®) [Fig. 2e]), (L=6, B,=1.59) the sample
for flux ®=<7®,, and becomes quasilinear at higher flux.!S I the “giant vortex state,” with a normal core containing
This becomes more clear for=0.5 [Fig. 1(c)]. Here, the 6 flux quantad®,, and a surface superconducting sheath at
crossover point from parabolic to quasilinear appears a1 outer sample edge. . . _
about d~14d,. In Figs. Xd) and Xe), finally (x=0.7, The | V| profiles for a loop with a larger inner radius (
x=0.9), the background is parabolic in the entire flux regime—0-5) aré shown in Fig. 3. Here as well, we hz_;we chosen
and can be very accurately described by Bd). Simulta- ©=9®o, and the same normalizatioW (r)|=1: (a) L
neously, ax increases, the cusps Ta(H) become more and =2, (0) L=3, (¢) L=4,(d) L=5, and(e) L=6. ForL=2
more pronounced, until the usual Little-Parks effect is recovIFig- 3@], [¥| has a maximum at=r;. For higherL the

ered forx=0.9[see Eq(13)], where sharp local minima and order parameter distribution flattens until it reach@g
clear maxima ifT(H) are seen. =1.06 forL=4. Then, for the ground-state energy=5)

[Fig. 3(d)], the maximum in|¥| moves outward, but we
should note that for this stag,=1.01 only, which means
V. DISCUSSION that superconductivity nucleates in a quasiuniform way. In-
deed, the exact.(®) and the London limit result are still
In order to study the spatial variation of the order param-very close to each other dt=9® [see Fig. 1c)]. Although
eter|¥|, we will use Abrikosov's definition of the flathness multiple flux quantal are threading the middle opening of
parameterB = (|W|*)/{|¥|?)2, where the brackets indicate the loop, we cannot, in the strict sense, speak about a giant
the average over the actual sample #réaot including the  vortex state here. First of all, there is no real “normal core”
middle opening Abrikosov introduced this parametgp in  within the sample area, and, second, we are not dealing with
order to find the most favorable order parameter distributiona surface superconducting state in this case. The surface-to-
in a bulk system, near thel., line. In this languageB,  volume ratio is so large that the whole sample area becomes
=1 means a completely flat profile p¥’|, corresponding to  superconducting at once. Conversely, for the disk, strong
the London limit. For comparison, we mention thgh spatial gradients of¥| are responsible for the spontaneous
=1.16 for a triangular Abrikosov vortex lattice. breaking of superconductivity in the giant vortex core, while
In Fig. 2 we plot the modulus of the order parametgt only a surface sheath is superconducting.
for the casex=0.1, at® =9d,, for the statesa) L=2, (b) It is worth noting that for all of the states shown in Fig. 2
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FIG. 3. Order parameter distributigi| for x=0.5, at a fixed 0 2 4 6 8 1012 14 16 18 20
®=9d,; (8 L=2,(b) L=3,(c) L=4, (d) L=5, and(e) L=6. /
The state withL=5 is only slightly modulated, |@ |~ const: 84 P cI>0

=1.01) and corresponds to the ground-state lévet, |, (9P)].
FIG. 4. Inverse enhancement factgr = e(H%)/e(H.,) for
. . loops with different aspect ratio, compared to the case of a disk and
(x=0.1), the width _Of the wire w= ro—riz(l—)_()ro an antidot. The horizontal dashed linesgt=0.59=1/1.69 corre-
>2.7¢(T) [see also Fig. @], while for the loop Withx  gponds to Hes(T)/He(T)=1.69 for a plane superconductor/
=0.5 the differentL states from Fig. 3 correspond @  vacuum boundary. The insets show the supercurignbfiles for
<2.1£(T) [see also Fig. (£)]. At this point we want to re- the ground states ab=9®, for x=r,;/r,=0.1 (left) andx=0.5
mind that in a thin film of thicknessin a parallel fieldH, a  (right). These are obtained from E@.8) and are normalized te-1
dimensional crossover is found &t 1.844(T). For low  atthe outer radius=rg. The corresponding¥| profiles are plotted
fields (high &) T.(H) is parabolic2D), and for higher fields N Figs. 2e) and 3d), respectively.
vortices start penetrating the film and consequefitlyH) TR _ 2 ;
becomes linea3D).? In Figs. 1a), 1(b), and Xc), the small of Eq. (13). With t=221r, and uoHep= Co/[2°(T) ], this

arrow indicates the point on the phase diagigfd®) where becomes
w=1.84£(T). For loops with largek this point lies outside J12&(T) &)
the flux regime of the calculations. For the loops as well, the (M= 7 Hea(T)=2.04——Hcs(T), (15

dimensional transition shows up approximately at this point,
although the vortices are not penetrating the sample area imhich directly impliesHz;(T)>H¢3(T) for very thin films
the 3D regime. Instead, the middle loop opening contains an< 2.04£(T).32 Note thatt=w=~2.04(T) is very close to the
integer number of flux quantad,. In the present case, the 2D-3D crossover point in films and in loops. Of course, the
2D-3D crossover roughly occurs at the vallewhere the  possibility for nucleation fieldsl%;>H s is not very special,
London limit result[Eq. (12)] fails to describe the exact but it still creates a lot of confusion. In thin films, for ex-
T(P). ample, the critical fieldd 35(T) is often denoted ald,, in a

In order to compare the flux periodicity 6f.(®), we  perpendicular magnetic field, artd., in a parallel field,
have replotted, in Fig. 4, the lowest energy levels of Fig. 1 agyhich would mearH ¢, (T)>H5(T) for t<2.04(T) [Eq.
7 t=e(Hg) e(Hep), which is the inverse enhancement (15)]. Van Gelder studied thél*; of a semi-infinite film
factor at a constant temperature. In this representation, thghich is bent over a certain angla “wedge”) and even
dotted horizontal line at,~*=0.59 corresponds to the sur- called it H,,, since it exceed$i.; at small angled® Since
face critical field lineH3(T). The nucleation field of a disk  this is just a finite-size effect and indeed no new nucleation
Hes(T)>1.6H,(T) (i.e., »>1.69), and for a circular mi- mechanism is involved, the existence ofHa,>H.; was
crohole in an infinite film(“antidot”) (Ref. 11 H¥;(T) called a misinterpretation by Firk.For all these reasons, it
<1.6H(T) (7<1.69). As® grows (the radius goes to is safe to use the notatidd?; for the nucleation field. En-
infinity) the HE;(T) of both the disk and the antidot ap- hancing the nucleation field};(T) can be realized by con-
proaches théd 5(T) line. fining the superconducting condensate in a mesoscopic

At this point, we would like to come back to the explana- sample. The smaller the sample size, the lower the Landau
tion of why the notatiorH?;(T) was used for the nucleation level |—a, (H)| becomes, when Neumann boundary con-
field. For a thin film(thicknesst), with the fieldH applied  ditions [Eq. (5)] are imposed. The idea of having?,
parallel to the surface3,;(H) is found from the second term >H_;=1.6%H., was used to explain anomalously high val-
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ues ofHy; and attribute this to the existence of small surface 1.9 L I I LI I L L

irregularities(of the order of¢), impurities, grain boundaries 18F f v Voy —&—Disk 1

or concentration gradients near the interfite. 1.7 | ' - A -x=01 ]
For all the loops we study here, the presence of the outer sl It DAL

sample interface automatically implies that;(T) 1sb 1 -0-x=09 ]

>H.3(T) is enhanced §>1.69), with respect to the case of ' \ & -

a flat superconductor-vacuum interface. For loops with a o 14 L-0Ng ~00-0-8-0-0"C 56" g

smallx, the T.(®) boundary very rapidly collapses with the g 131 ‘ ]

T.(P) of the dot (for ®>4d,) (n becomes the same 4 121 :

Since both the flux periodicity and the background depres- 1.1 o~~—0“-0-~-o-~-0-~~o--—0--"g_O»--o---o---O--—g:;.i,'__';o

sion of T, become identical to the disk, a giant vortex state 1.0l "

can be anticipated for the loop as well. The presence of the o9l v v ]

opening in the sample is not relevant for the giant vortex ' v Y

formation in the high flux regime. Indeed, for the ground- 081 v i

state I_evell of Fig. 2)_(=O.1,L=6), which is marked with a 0.7(') 1 2 3 "1 5 é 7 é é 1'0 1'1 1'2 1'3

circle in Fig. 4, the giant vortex state has clearly been formed

already. Conversely, fax=0.5, L=5, at®=9d,, marked L

with a square in Fig. 4, superconductivity nucleates in a uni- g5 5 The period\ @ of the phase boundaf,(®) in units of

form way (8,=1.01) (see Fig. & _ the flux quantunib, as a function of the phase winding numter
The formation of the giant vortex state at highcan be  The data for several of the loops are shown as a symbol, and is
understood when writing the GL free enetgy compared to the period in a filled digklled squarg. The intercon-
necting lines are only a guide to the eye.

1) 1) L—-1/2
s

d .
><exp( — 3)[K(—N,L+1,cb/q>o)]2e¢.
0

72 . 27
F=F,+Sa|V[)+S—( || -IV-—A|W¥
2m* 00

2
>+"" J(L,®)=| W]y
(16)

with the sum of the last two terms vanishing at the phase
boundaryT.(H), where¥ —0. F, is the free energy of the (18
system in the normal state. The notatiohdenotes the av-

erage over the sample ar€aand |a|=%%/2m* £2(T). This ét a radiusr, correfsponolling to integer flux quanth
yields[see Eq(1)] =L®, the current orientation changes sign. It can happen,

however, that the switching radius<r;, lies inside the
middle opening. For the stale=0 there are only diamag-

1 (W23 +((V|¥])?) netic currents. In contrast to this, for example, for a loop
Py 5 ) (17)  with x=0.5, the statek =2 [Fig. 3@] andL=3 [Fig. 3(b)]
&4(T) (I¥[%) do not carry paramagnetic currents @=9d,. At the

ground-state levell(=5) [Fig. 3(d)], which is very close to
The solutions from Eq(6) which fulfill the boundary condi- the London limit solutionJecvgx(L—®/®)/r [Eq. (2)].
tions[Eq. (5)] atr=r; andr=r, need to be inserted in this This is shown in the right inset of Fig. 4, where the super-
equation, and/s is determined from Eq(2). A fast calcula- ~ current has been normalized tol at the outer radius, .
tion shows that the relative contribution from spatial gradi-For the loop withx=0.1[see Fig. 2e)], in the ground state
ents[the second term in the numerator of E§7)] is 47% L=6, the dominating diamagnetic supercurrents are flowing
for the lowest level of Fig. @) (x=0.1,L=6), while it is  in the vicinity of r=r,, the currents are paramagnetic for
less than 4% for the ground state of FigdB(x=0.5,L  slightly lowerr, andJ is vanishing in the core of the sample
=5). The energetically most favorable balance betweeri;<r <r,/3 (left inset of Fig. 4.
these two contributions is strongly affected by the boundary As a last point, we discuss now the periodiciyp of
conditions[Eq. (5)]. In thin-wire loops, for example, bending T.(®), for the differentL states in the loops. These results
of |[¥| on a scale smaller than the coherence lergthill ~ are shown in Fig. 5. For the disk, the first cuspTig(®),

result in a large contribution V| ¥|)2). Therefore, ther, ~ WhereL goes from 01, occurs atb=1.92D,, so Ad(L
reduction is only determined by the averaged supercurrerit 0)=3.85Po. The periodA® goes down for increasing,

kinetic energy(|¥|?v2) in this case, which is equivalent to until it reaches the asymptotic linfit

the London _Ilmlf[. _ AD=Dy[1+ (27D Dg) Y2, (19
An examination of the supercurrent flow profiles shows

that, as in the case of a filled disk, there is a paramagnetiSince » is decreasing withb, A® is a weakly decreasing

contribution close to the sample center for-0, while near  function ofL, at highd®. The symbols in Fig. 5 correspond to

the outer sample interface diamagnetic currents are flowinghe periodA® in units of ®, for the differentlL states. Since

The supercurrent densitycan be obtained by inserting the at the highestb, T,(®) is calculated in steps of0.07D,

general solutionEq. (6)] in the second GL equatiofEq. the error onA® is of this order. The filled squares are the

@7 periods for the filled disk. The periodicity 6f.(®) in the
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case of loops behaves differently: for=0.1 (filled up- and on the applied magnetic fluX,.,(®) shows different
triangles in Fig. 5A®(L=1)=1.82D is larger than for the behaviors: in thin-wire loops, the backgroundTqf is para-
filled disk, thenAd(L=2) jumps below the corresponding bolic (characteristic of 2D behaviprand the Little-Parks
value for the disk, and for highet=3, the periodA® T (&) oscillations are perfectly periodic. This regime can be
matches with the disk behavior. Consequently, the giant vordescribed in the London limit. For loops with only a very
tex state builds up foc =3, i.e.,®=5®,. A similar analysis  small opening, the period of th€.(®) oscillations is de-
can be carried out for a loop with=0.5 (filled down-  creasing with® and the background,, reduction is quasi-
triangles in Fig. 3. For low L, A®~1.8D, then,A®(L)  |inear(3D regime, e.g., as for a diskntermediate loopgfor
decreases substantially below the value for the filled d'Skinstanceri/rozo.S) show a 2D-3D crossover between the

before increasing again, u'nti'l the same peridd(L) is two regimes at a certain applied fluk [corresponding to
reached fol. >12. The loop is in the giant vortex state when , _ . Cr=(1—X)r,~2&(T)], similar to the dimensional
o I (o] ’

©=17®,. For loops ma}de (.)f even thinner wwee;(O..? and transition in thin films subjected to a parallel field. As soon

xi0.9) (open symbols 'n.F'g')STC((D) stays perlodliupto the 3D regime is reached, a giant vortex state is created,

Izr:()llgjoAth? jigtaggﬁfgﬁgﬁ dct?ér?rfgr?gdfoaad&;)qmli_rrgiilfor where only a sheath close to the sample’s outer interface is
0 superconducting. The opening in the middle of the loop does

In summary, we have solved the linearized GL equatiorggcgn?g %(ra(;gcaarrymore.c( ) forthe loop and for the dis

for loops of different wire width, with Neumann boundary
conditions at both the outer and the inner loop radius. The
critical fields HX;(T) are always above Hq(T)
=1.6H.,(T), the surface critical field for a semi-infinite
superconducting slab in contact with vacuum. The ratio The authors wish to thank H. J. Fink, T. Puig, J. G. Rod-
H%5(T)/H,(T) increases when the size of the middle open-rigo, J. T. Devreese, V. M. Fomin, K. Temst, and J. O. In-
ing grows, i.e., in a sample topology with a large surface-to-dekeu for stimulating discussions. This work was supported
volume ratio the nucleation field is strongly enhanced. Deby the Belgian IUAP, the Flemish GOA and FWO pro-
pending on the ratio inner to outer radiygr, of the loops, grammes, and by the ESF programme VORTEX.
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