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Dimensional crossover in a mesoscopic superconducting loop of finite width
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Superconducting structures with a size of the order of the superconducting coherence lengthj(T) have a
critical temperatureTc , oscillating as a function of the applied perpendicular magnetic fieldH ~or flux F!. For
a thin-wire superconducting loop, the oscillations inTc are perfectly periodic withH ~this is the well-known
Little-Parks effect!, while for a singly connected superconducting disk the oscillations are pseudoperiodic, i.e.,
the magnetic period decreases asH grows. In the present paper, we study the intermediate case: a loop made
of thick wires. By increasing the size of the opening in the middle, the disklike behavior ofTc(H) with a
quasilinear background@characteristic of three-dimensional~3D! behavior# is shown to evolve into a parabolic
Tc(H) background~2D!, superimposed with perfectly periodic oscillations. The calculations are performed
using the linearized Ginzburg-Landau theory, with the proper normal/vacuum boundary conditions at both the
internal and external interfaces. Above a certain crossover magnetic fluxF, Tc(F) of the loops becomes
quasilinear, and the flux period matches with the case of the filled disk. This dimensional transition is similar
to the 2D-3D transition for thin films in a parallel magnetic field, where vortices enter the material as soon as
the film thicknesst.1.8j(T). For the loops studied here, the crossover point appears forw'1.8j(T) as well,
with w the width of the wires forming the loop. In the 3D regime, a ‘‘giant vortex state’’ is established, where
superconductivity is concentrated near the sample’s outer interface. The vortex is then localized inside the
loop’s opening.@S0163-1829~99!04238-1#
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I. INTRODUCTION

The nucleation of superconductivity in mesoscop
samples received a renewed interest after the developme
nanofabrication techniques, like electron-beam lithograp
A superconductor is called mesoscopic when the sample
is comparable to the magnetic penetration depthl(T) and
the superconducting coherence lengthj(T). In the frame-
work of the Ginzburg-Landau~GL! theory, j(T) sets the
length scale for spatial variations of the modulus of the
perconducting order parameteruCu. The pioneering work on
mesoscopic superconductors was carried out already in 1
by Little and Parks,1 who measured the shift of the critica
temperatureTc(H) of a ~multiply connected! thin-walled Sn
microcylinder ~a thin-wire ‘‘loop’’ ! in an axial magnetic
field H. TheTc(H) phase boundary showed a periodic co
ponent, with the magnetic period corresponding to the p
etration of a superconducting flux quantumF05h/2e. The
Little-Parks oscillations inTc(H) are a straightforward con
sequence of the fluxoid quantization constraint, which w
predicted by London.2 This condition can be easily unde
stood by integrating the second GL equation

JW5uCu2S ¹W d2
2p

F0
AW D5uCu2vW s ~1!

along a closed contour.J5 j /(2e\/m!) is the normalized
current density,vs is the ~normalized! superfluid velocity,
and d is the phase of the complex order parameterC
5uCueıd. This yields
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R JW

uCu2
•dlW12p

F

F0
5 R ¹W d•dlW5L2p,

L5•••,22,21,0,1,2, . . . , ~2!

where we used the Stokes theoremrAW •dlW5F, with F the
magnetic flux threading the area inside the contour. In ot
words, when a noninteger magnetic fluxF/F0 is applied, a
supercurrentJ has to be generated in order to fulfill Eq.~2!.
The integer numberL is the phase winding or fluxoid quan
tum number, and gives the numberL of flux quantaF0 pen-
etrating the sample. Since, for a cylindrical geometry,
different L states are eigenfunctions of the angular~or or-
bital! momentum operator as well,3 L is often called the an-
gular momentum quantum number. The fluxoid quantizat
constraint@Eq. ~2!# is the equivalent of the Bohr-Sommerfe
quantum condition for Cooper pairs.4

A few years later, Saint-James calculated theTc(H) ~or
the nucleation magnetic field! of a singly connected cylinder5

~a mesoscopic ‘‘disk’’!. Taking into account the analog
with the situation of a semi-infinite superconducting slab
contact with vacuum,6 the critical field was calledHc3(T) in
this case, since superconductivity nucleates initiallynear the
sample interface. As we will show further in this paper, a
substantial enhancement of the nucleation field, above
Hc3(T) for a semi-infinite slab, can be obtained in mes
scopic samples, where the surface-to-volume ratio is large
such case, surface effects play the role of the bulk effe
Therefore, we will rather use the notationHc3* (T). For a
disk, the limiting valueHc3* (T)5Hc3(T)51.69Hc2(T) is
found asF→` ~or the radius of the disk→`). The field
Hc2 is the upper critical field of a bulk type-II supercon
ductor, at which the Abrikosov vortex lattice is formed.

The Tc(H) phase boundary@or Hc3* (T)# of the disk
shows, just like for the usual Little-Parks effect in a multip
10 468 ©1999 The American Physical Society
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PRB 60 10 469DIMENSIONAL CROSSOVER IN A MESOSCOPIC . . .
connected sample~loop!, an oscillatory behavior. In this
case, the oscillation period ofTc(H) is not constant, but
decreases slightly asH increases. When moving alon
Tc(H), superconductivity concentrates more and more n
the sample interface asH grows. A giant vortex state is
formed:6~b! a ‘‘normal’’ core carriesL flux quanta, and the
‘‘effective’’ loop radius increases, resulting in a decrease
the magnetic oscillation period. Here as well, fluxoid qua
tization @Eq. ~2!# is responsible for the oscillations ofTc
versusH. An experimental verification of these prediction
was carried out later on by Buissonet al.7 and by Mosh-
chalkovet al.8

Currently, many different sample topologies are studi
superconducting networks,9 antidot systems,10–12 samples
consisting of sharp corners,13,14 etc. With the use of submi
cron Hall probe microscopy15 for measuring the magneti
response of a superconductor, it has become possibl
probe samples deep in the superconducting state16 ~i.e., at
temperatures far belowTc). A lot of recent theoretical activi-
ties have been devoted to the magnetization and vortex
figurations in superconducting disks of different sizes.14,17

Loop structures have also been studied extensively in
past years. A large portion of the theoretical research
been focused on the transition between two different flux
statesL→L11,10,18 but also experiments were carried ou
including susceptibility measurements close toTc ,19 studies
of the energy-gap spectrum using a single-elect
transistor,20 and scanning Hall probe measurements on
sembles of mesoscopic Al loops.21

As already mentioned, the two limiting cases, ‘‘thin-wi
loop’’ and ‘‘disk,’’ are well understood as far as the nucl
ation fieldHc3* is concerned, but the intermediate case is n
In the early paper by Saint-James and de Gennes,6 Hc3* (T)
was also calculated for afilm exposed to a parallel magneti
field, where surface superconductivity can grow along t
superconductor/vacuum interfaces. For low magnetic fie
the two surface superconducting sheaths overlap, and,
result,Tc versusH becomes parabolic, which is character
tic of two-dimensional~2D! behavior. When increasing th
field, a crossover to a linearTc(H) dependence~3D! occurs
at t'2j(T), with t the film thickness. Shortly after, it wa
shown that vortices start to nucleate in the film at this dim
sional crossover point@ t51.8j(T)#.22

The goal of the present paper is to study the phase bo
ary Tc(H) of loops made of finite width wires~or disks with
an opening in the middle, increasing in size!. In a type-II
material, superconductivity is expected to be enhanced,
respect to the bulk@Hc3* (T).Hc2(T)#, both at the externa
and internal sample surfaces. As for a film in a parallel fie
a 2D-3D dimensional crossover can be anticipated, since
loops may be simply considered as a film, which is bent s
that its ends are joined together. We calculate the ph
boundaryTc(H) as the ground-state solution of the linea
ized first GL equation with two superconductor/vacuum
terfaces. This calculation has been suggested already by
eral authors,11,23 but to the best of our knowledge it has n
been carried out so far. We will show that theTc(F) of the
loops, for low applied magnetic flux~corresponding to the
2D regime!, can be described within a simple London pi
ture, where the modulus of the order parameteruCu is spa-
tially constant. As the flux increases, the background dep
ar
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sion ofTc(F) is changed from parabolic~2D! to quasilinear
~3D!, which indicates the formation of a giant vortex sta
where only a surface sheath close to the sample’s oute
terface is in the superconducting state. Moreover, the os
lation period ofTc(F) becomes identical for the loops as fo
the full disk, as soon as the transition to 3D behavior h
taken place.

II. LINEARIZED GL EQUATION

The linearized first GL equation to be solved in order
find Tc(H) is

1

2m!
~2 i\¹W 22eAW !2C5u2auC. ~3!

This equation is formally identical to the Schro¨dinger equa-
tion for a particle with a charge 2e in a magnetic field. Here
at the onset of superconductivityT'Tc(H), the nonlinear
termbuCu2C!u2auC can been omitted, and demagnetiz
tion effects along the field direction do not need to be co
sidered. In this regime, the 2 dependence disappears from
equations, and therefore an infinitely long cylinder and a d
have identicalTc(H) boundaries. It is further assumed th
the penetration depthl(T) is much greater than the samp
size, so thatm0HW 5rot AW . It is important to note thatH is the
applied magnetic field, so fields induced by supercurrentsJ
@Eq. ~2!# are not taken into account here. The more type
~the higherk) the superconducting material is, the larg
range of validity our calculations have. The eigenenerg
u2au can be written as

u2au5
\2

2m!j2~T!
5

\2

2m!j2~0!
S 12

T

Tc0
D , ~4!

Tc0 being the critical temperature in zero magnetic fie
From the energy eigenvalues of Eq.~3!, the lowest Landau
level u2aLLL(H)u is directly related to the highest possib
temperatureTc(H), for which superconductivity can exist.

By varying the topology of the sample~‘‘nanostructur-
ing’’ !, the lowest Landau levelu2aLLLu can be tuned by
confinement of the superconducting condensate. Severa
amples of this concept can be found in Refs. 9 and 24.
deed, the solutionC of Eq. ~3! has to fulfill the Neumann
boundary condition

~2ı\¹W 22eAW !Cu',b50 ~5!

at the sample interfacesb. This requirement guarantees th
the supercurrent does not have a component perpendicul
a superconductor/vacuum interface.

For the loop geometries, we choose the cylindrical co
dinate system (r ,w) and the gaugeAW 5(m0Hr /2)eWw , where
eWw is the tangential unit vector. The exact solution of t
Hamiltonian @Eq. ~3!# in cylindrical coordinates takes th
following form:11,23,25,26

C~F,w!5e2ıLwS F

F0
D L/2

expS 2
F

2F0
D

3K~2n,L11,F/F0!,
~6!

K~a,c,y!5c1M ~a,c,y!1c2U~a,c,y!.
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10 470 PRB 60V. BRUYNDONCX et al.
Here F5m0Hpr 2 is the applied magnetic flux through
circle of radiusr. The numbern determines the energy e
genvalue. Most generally, the functionK(a,c,y) can be any
linear combination of the two confluent hypergeomet
functions~or Kummer functions! M (a,c,y) andU(a,c,y),27

but the sample topology puts a constraint onc1 , c2, andn,
via the boundary condition@Eq. ~5!#.

The eigenenergies of Eq.~3! ~the Landau levels! are26

u2au5
2e\m0H

2m!
~2n11!5\vS n1

1

2D , ~7!

where v52em0H/m! is the cyclotron frequency.The pa-
rameter n depends on L and is not necessarily an inte
number, as we shall see later. With Eq.~4! this can be re-
written as

r o
2

j2~Tc!
5

r o
2

j2~0!
S 12

Tc~H !

Tc0
D54S n1

1

2D F

F0
5e~Hc3* !

F

F0
,

~8!

whereF5m0Hpr o
2 is arbitrarily defined.

The bulk Landau levels can be found when substitut
n50,1,2, . . . in Eqs. ~7! and ~8!, meaning that the lowes
level n50 corresponds to the upper critical fieldm0Hc2(T)
5F0 /@2pj2(T)#. Let us note that the lowest Landau lev
(n50) for a bulk superconductor is degenerate in the ph
winding numberL, and therefore the eigenfunction can
expanded asC5(cLCL . Interference patterns between th
different functionsCL give rise to aperiodic vortex states.28

The boundary condition@Eq. ~5!#, in cylindrical coordi-
nates, can be simply written as

]uC~r !u
]r U

r 5r o

, ~9!

with a superconductor/vacuum interface at a rad
r o . Using dM(a,c,y)/dy5(a/c)M (a11,c11,y) and
dU(a,c,y)/dy52a U(a11,c11,y) for the derivatives of
the first and second types of Kummer function
respectively,27 and inserting Eq.~6! into Eq. ~9!, gives

c1F S L2
F

F0
D M ~2n,L11,F/F0!2

2n

L11

F

F0

3M ~2n11,L12,F/F0!G
1c2F S L2

F

F0
DU~2n,L11,F/F0!

12n
F

F0
U~2n11,L12,F/F0!GU

b

50, ~10!

which has to be solved numerically for each integer value
L, resulting in a set of valuesn(L,F), with F5m0Hpr o

2 .
For a disk geometry,5,7,26 we have to takec250 in Eqs.

~6! and ~10! in order to avoid the divergency ofU(a,c,y
→0)5` at the origin. Selecting the lowest Landau level
each valueF, one ends up with a cusplikeTc(H) phase
boundary,5 which is composed of valuesn,0 in Eq. ~7!,
r

g

e

s

,

f

t

thus leading toHc3* (T).Hc2(T). A similar calculation was
performed for a single circular microhole in a plane fil
~‘‘antidot’’ !,11 where c150 in Eqs. ~6! and ~10!, since
M (a,c,y→`)5`. Here as well, the lowest Landau lev
consists of solutions withn,0. At each cusp inTc(F), the
system makes a transitionL→L61, i.e., a vortex enters or is
removed from the sample.

The loops we are currently studying have tw
superconducting/vacuum interfaces, one at the outer ra
r o , and one at the inner radiusr i . Consequently, the bound
ary condition@Eq. ~10!# has to be fulfilled at bothr o , andr i .
As a result, we have a system of two equations and
variablesn and c2 (c151 is chosen!, which we solved for
different values ofx5r i /r o . In the rest of the paper we wil
defineF5m0Hpr o

2 , where ro always means the outer loo
radius.

III. LONDON LIMIT

The usual description of the Little-Parks effect4,29 is given
in terms of the London limit, whereuCu is spatially constant.
This approximation, of course, is valid when the wire, form
ing the loop, is very thin (x'1), or when we define the loop
aspect ratioz as

z5
r o2r i

r o1r i
5

12x

11x
, ~11!

this condition impliesz!1.
The solution of the linearized GL equation@Eq. ~3!#

becomes30

r m
2

j2~Tc!
5

r m
2

j2~0!
S 12

Tc~H !

Tc0
D

5S Fm

F0
D 2

~11z2!22L
Fm

F0
1

L2

2z
lnS 11z

12zD , ~12!

with Fm5m0Hpr m
2 , where r m is the mean radius of the

loop. Note that this definition of fluxFm is different fromF
in Sec. II. The lowest eigenvalues are obtained whenL is the
integer number closest to22(Fm /F0)z/ ln x. We will fur-
ther compare this equation with our more exact results,
culated from the scheme presented in Sec. II.

Since in the original paper by Groff and Parks,30 thin-wire
loops (z!1) were investigated, the logarithm was expand
in a Taylor series, which gives, up to orderz2,

r m
2

j2~Tc!
5

r m
2

j2~0!
S 12

Tc~H !

Tc0
D5S L2

Fm

F0
D 2

1
4

3
z2S Fm

F0
D 2

.

~13!

The first term on the right-hand side of Eq.~13! is the peri-
odic part of theTc reduction~i.e., the Little-Parks effect!,
while the second term is a monotonic parabolic backgrou
which is identical to theTc(H) expression for a plane film o
thicknesst52zrm in a parallel magnetic field.4 In Ref. 30, a
substitution is performed, which splits the right-hand side
Eq. ~12! into a periodic term and a monotonic backgrou
Tc . The latter becomes
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FIG. 1. Calculated energy
level scheme~dashed lines! for a
superconducting loop with differ-
ent ratio of inner to outer radius
x5r i /r o : ~a! x50.1, ~b! x50.3,
~c! x50.5, ~d! x50.7, and~e! x
50.9. The lowest level for each
magnetic fluxF/F0 corresponds
to the highest possible tempera
ture Tc(H) for which supercon-
ductivity can exist. A state with
phase winding numberL50 is
formed atTc(F'0), and at each
cusp inTc(H) the system makes a
transitionL→L11, indicating the
entrance of an extra vortex. Th
solid and dotted straight lines cor
respond toHc2(T) and Hc3(T),
respectively.
ea

e
es.
ce

ing
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lk

its
r m
2

j2~Tc!
5~11z2!H S 11z2

2z D lnS 11z

12zD21J S Fm

F0
D 2

,

~14!

which is parabolic withFm . This substitution is only valid
for thin-wire loops, and Eq.~14! transforms of course into
the last term of Eq.~13! for z!1.

IV. RESULTS

Figure 1 shows the Landau-level scheme~dashed lines!,
calculated from Eqs.~8! and ~10!, for loops with a different
inner radiusx5r i /r o ~a! x50.1, ~b! x50.3, ~c! x50.5, ~d!
x50.7, and ~e! x50.9. The applied magnetic fluxF
5m0Hpr o

2 is defined with respect to the outer sample ar
The Tc(H) boundary@or u2aLLL(H)u# is composed ofC
.

solutions with a different phase winding numberL and is
drawn as a solid cusplike line in Fig. 1. AtF'0, the state
with L50 is formed atTc(H) and, one by one, consecutiv
flux quantaL enter the loop as the magnetic field increas
Each stateL approximately has a parabolic dependen
u2a(H)u, close toTc(H). As for the disk,16,23 where F
'F0(L1L1/2), here we haveLF0<F as well, indicating
the overall diamagnetic response of the sample. Asx in-
creases, the oscillations inTc(F) change from cusplike to
very pronounced local extrema forx50.9. In the limit of
vanishing wire width (x→1), L is the integer closest to
Fm /F0, and therefore the response of the loop is alternat
between diamagnetic and paramagnetic as the flux varie

The solid and dotted straight lines in Fig. 1 are the bu
upper critical field Hc2(T) and the surface critical field
Hc3(T) for a semi-infinite slab, respectively. In these un
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the slopes of the curves@see Eq.~8!# aree52 for Hc2 @sub-
stituten50 in Eq. ~8!# and e52/1.69 forHc3. The ratioh
5e(Hc2)/e(Hc3)51.69 corresponds then to the enhanc
ment factorHc3(T)/Hc2(T) at a constant temperature. F
the loops we are studying here,h5e(Hc2)/e(Hc3* ) is no
longer a constant, but varies with the magnetic field.

The energy levels below theHc2 line ~solid straight line in
Fig. 1! could be found by fixing a certainL, and solving Eq.
~10! for a smallF, until a set (n,c2) is found with n,0.
These values were always put in as starting values fo
slightly higherF. A trivial solution of Eq.~10! is obtained
for n50,1,2, . . . . Both confluent hypergeometric function
reduce to M (2N,L11,F/F0)51 and U(2N,L11,
F/F0)51, and thusc252c1. Inserting this into Eq.~6!
gives C(F,w)50 everywhere. With this method, we we
able to find solutions withn,0 numerically. Note that the
lowest Landau level always has a lower energyu2a(F)u
than for a semi-infinite superconducting slab, which impl
Hc3* (T).Hc3(T).

The dash-dotted curve in Fig. 1 gives the result obtain
with the London limit30 @see Eq.~12!#. In Fig. 1~a! (x
50.1) the deviation from the exact solution of Eq.~3! ap-
pears already forL>1. For low flux, the result from Eq
~12!, has clearly higher energyu2au than the surface critica
field Hc3(T). At F'7F0, this curve even crosses the bu
Hc2(T) line, which is clearly unphysical. Forx50.3 @Fig.
1~b!# the London limit is valid up toF'4F0, for x50.5 up
to F'8F0 @Fig. 1~c!#, and forx50.7 @Fig. 1~d!# it is a good
approximation in the whole flux interval of our calculation
Finally, for x50.9 @Fig. 1~e!# the assumption of a spatiall
constantuCu gives aTc(F), which cannot be distinguishe
from the exact solution of Eq.~3!.

In Fig. 1~a! (x50.1) the background depression ofTc is
quasilinear, just like for the case of a filled disk, forx
50.3 @Fig. 1~b!# Tc(H) has a ratherparabolic background
for flux F&7F0, and becomes quasilinear at higher flu
This becomes more clear forx50.5 @Fig. 1~c!#. Here, the
crossover point from parabolic to quasilinear appears
about F'14F0. In Figs. 1~d! and 1~e!, finally (x50.7,
x50.9), the background is parabolic in the entire flux regi
and can be very accurately described by Eq.~14!. Simulta-
neously, asx increases, the cusps inTc(H) become more and
more pronounced, until the usual Little-Parks effect is rec
ered forx50.9 @see Eq.~13!#, where sharp local minima an
clear maxima inTc(H) are seen.

V. DISCUSSION

In order to study the spatial variation of the order para
eter uCu, we will use Abrikosov’s definition of the flatnes
parameterbA5^uCu4&/^uCu2&2, where the brackets indicat
the average over the actual sample area31 ~not including the
middle opening!. Abrikosov introduced this parameterbA in
order to find the most favorable order parameter distributi
in a bulk system, near theHc2 line. In this language,bA
51 means a completely flat profile ofuCu, corresponding to
the London limit. For comparison, we mention thatbA
51.16 for a triangular Abrikosov vortex lattice.

In Fig. 2 we plot the modulus of the order parameteruCu
for the casex50.1, atF59F0, for the states~a! L52, ~b!
-

a

s

d

.

at

e

-

-

,

L53, ~c! L54, ~d! L55, and ~e! L56. The uCu values
have been normalized to 1 at the sample’s outer interfacr
5r o . The dark area is the region outside the sample. T
maximum inuCu for L52 lies atr'(r i1r o)/2, and gradu-
ally shifts to the outer sample edge asL→6, which is the
ground-state solution of Eq.~3!. The spatial modulation of
uCu is considerable (bA.1.16) for all uCu patterns shown
here. AtT5Tc(F) @Fig. 2~e#!, (L56, bA51.59) the sample
is in the ‘‘giant vortex state,’’ with a normal core containin
6 flux quantaF0, and a surface superconducting sheath
the outer sample edge.

The uCu profiles for a loop with a larger inner radius (x
50.5) are shown in Fig. 3. Here as well, we have chos
F59F0, and the same normalizationuC(r o)u51: ~a! L
52, ~b! L53, ~c! L54, ~d! L55, and~e! L56. For L52
@Fig. 3~a!#, uCu has a maximum atr 5r i . For higherL the
order parameter distribution flattens until it reachesbA
51.06 for L54. Then, for the ground-state energy (L55)
@Fig. 3~d!#, the maximum inuCu moves outward, but we
should note that for this statebA51.01 only, which means
that superconductivity nucleates in a quasiuniform way.
deed, the exactTc(F) and the London limit result are stil
very close to each other atF59F0 @see Fig. 1~c!#. Although
multiple flux quantaL are threading the middle opening o
the loop, we cannot, in the strict sense, speak about a g
vortex state here. First of all, there is no real ‘‘normal cor
within the sample area, and, second, we are not dealing
a surface superconducting state in this case. The surfac
volume ratio is so large that the whole sample area beco
superconducting at once. Conversely, for the disk, stro
spatial gradients ofuCu are responsible for the spontaneo
breaking of superconductivity in the giant vortex core, wh
only a surface sheath is superconducting.

It is worth noting that for all of the states shown in Fig.

FIG. 2. Order parameter distributionuCu for x5r i /r o50.1, at a
fixed F59F0. ~a! L52, ~b! L53, ~c! L54, ~d! L55, and~e! L
56. The latter (L56) corresponds to the ground-state lev
u2aLLL(9F0)u, where the sample is in the giant vortex state.
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(x50.1), the width of the wire w5r o2r i5(12x)r o

.2.7j(T) @see also Fig. 1~a!#, while for the loop withx
50.5 the differentL states from Fig. 3 correspond tow
,2.1j(T) @see also Fig. 1~c!#. At this point we want to re-
mind that in a thin film of thicknesst in a parallel fieldH, a
dimensional crossover is found att51.84j(T). For low
fields~high j) Tc(H) is parabolic~2D!, and for higher fields
vortices start penetrating the film and consequentlyTc(H)
becomes linear~3D!.22 In Figs. 1~a!, 1~b!, and 1~c!, the small
arrow indicates the point on the phase diagramTc(F) where
w51.84j(T). For loops with largerx this point lies outside
the flux regime of the calculations. For the loops as well,
dimensional transition shows up approximately at this po
although the vortices are not penetrating the sample are
the 3D regime. Instead, the middle loop opening contains
integer number of flux quantaLF0. In the present case, th
2D-3D crossover roughly occurs at the valueF where the
London limit result @Eq. ~12!# fails to describe the exac
Tc(F).

In order to compare the flux periodicity ofTc(F), we
have replotted, in Fig. 4, the lowest energy levels of Fig. 1
h215e(Hc3* )/e(Hc2), which is the inverse enhanceme
factor at a constant temperature. In this representation,
dotted horizontal line ath2150.59 corresponds to the su
face critical field lineHc3(T). The nucleation field of a disk
Hc3* (T).1.69Hc2(T) ~i.e., h.1.69), and for a circular mi-
crohole in an infinite film~‘‘antidot’’ ! ~Ref. 11! Hc3* (T)
,1.69Hc2(T) (h,1.69). AsF grows ~the radius goes to
infinity! the Hc3* (T) of both the disk and the antidot ap
proaches theHc3(T) line.

At this point, we would like to come back to the explan
tion of why the notationHc3* (T) was used for the nucleatio
field. For a thin film~thicknesst), with the fieldH applied
parallel to the surfaces,Tc(H) is found from the second term

FIG. 3. Order parameter distributionuCu for x50.5, at a fixed
F59F0; ~a! L52, ~b! L53, ~c! L54, ~d! L55, and~e! L56.
The state withL55 is only slightly modulated, (uCu'const:bA

51.01) and corresponds to the ground-state levelu2aLLL(9F0)u.
e
t,
in
n

s

he

of Eq. ~13!. With t52zrm andm0Hc25F0 /@2pj2(T)#, this
becomes

Hc3* ~T!5
A12j~T!

t
Hc2~T!52.04

j~T!

t
Hc3~T!, ~15!

which directly impliesHc3* (T).Hc3(T) for very thin films
t,2.04j(T).32 Note thatt5w'2.04j(T) is very close to the
2D-3D crossover point in films and in loops. Of course, t
possibility for nucleation fieldsHc3* .Hc3 is not very special,
but it still creates a lot of confusion. In thin films, for ex
ample, the critical fieldHc3* (T) is often denoted asHc2,' in a
perpendicular magnetic field, andHc2,i in a parallel field,
which would meanHc2,i(T).Hc3(T) for t,2.04j(T) @Eq.
~15!#. Van Gelder studied theHc3* of a semi-infinite film
which is bent over a certain angle~a ‘‘wedge’’! and even
called it Hc4, since it exceedsHc3 at small angles.33 Since
this is just a finite-size effect and indeed no new nucleat
mechanism is involved, the existence of aHc4.Hc3 was
called a misinterpretation by Fink.32 For all these reasons, i
is safe to use the notationHc3* for the nucleation field. En-
hancing the nucleation fieldHc3* (T) can be realized by con
fining the superconducting condensate in a mesosc
sample. The smaller the sample size, the lower the Lan
level u2aLLL(H)u becomes, when Neumann boundary co
ditions @Eq. ~5!# are imposed. The idea of havingHc3*
.Hc351.69Hc2 was used to explain anomalously high va

FIG. 4. Inverse enhancement factorh215e(Hc3* )/e(Hc2) for
loops with different aspect ratio, compared to the case of a disk
an antidot. The horizontal dashed line ath2150.5951/1.69 corre-
sponds to Hc3(T)/Hc2(T)51.69 for a plane superconducto
vacuum boundary. The insets show the supercurrentJ profiles for
the ground states atF59F0 for x5r i /r o50.1 ~left! and x50.5
~right!. These are obtained from Eq.~18! and are normalized to21
at the outer radiusr 5r 0. The correspondinguCu profiles are plotted
in Figs. 2~e! and 3~d!, respectively.
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ues ofHc3* and attribute this to the existence of small surfa
irregularities~of the order ofj), impurities, grain boundarie
or concentration gradients near the interface.34

For all the loops we study here, the presence of the o
sample interface automatically implies thatHc3* (T)
.Hc3(T) is enhanced (h.1.69), with respect to the case o
a flat superconductor-vacuum interface. For loops with
small x, theTc(F) boundary very rapidly collapses with th
Tc(F) of the dot ~for F.4F0) (h becomes the same!.
Since both the flux periodicity and the background depr
sion of Tc become identical to the disk, a giant vortex sta
can be anticipated for the loop as well. The presence of
opening in the sample is not relevant for the giant vor
formation in the high flux regime. Indeed, for the groun
state level of Fig. 2 (x50.1, L56), which is marked with a
circle in Fig. 4, the giant vortex state has clearly been form
already. Conversely, forx50.5, L55, at F59F0, marked
with a square in Fig. 4, superconductivity nucleates in a u
form way (bA51.01) ~see Fig. 3!.

The formation of the giant vortex state at highF can be
understood when writing the GL free energy4,29

F5Fn1S^auCu2&1S
\2

2m! K US 2ı¹W 2
2p

F0
AW DCU2L 1•••,

~16!

with the sum of the last two terms vanishing at the ph
boundaryTc(H), whereC→0. Fn is the free energy of the
system in the normal state. The notation^ & denotes the av-
erage over the sample areaS, and uau5\2/2m!j2(T). This
yields @see Eq.~1!#

1

j2~T!
5

^uCu2vW s
2&1^~¹W uCu!2&

^uCu2&
. ~17!

The solutions from Eq.~6! which fulfill the boundary condi-
tions @Eq. ~5!# at r 5r i and r 5r o need to be inserted in thi
equation, andvs is determined from Eq.~2!. A fast calcula-
tion shows that the relative contribution from spatial gra
ents@the second term in the numerator of Eq.~17!# is 47%
for the lowest level of Fig. 2~e! (x50.1, L56), while it is
less than 4% for the ground state of Fig. 3~d! (x50.5, L
55). The energetically most favorable balance betwe
these two contributions is strongly affected by the bound
conditions@Eq. ~5!#. In thin-wire loops, for example, bendin
of uCu on a scale smaller than the coherence lengthj will
result in a large contribution of̂(¹W uCu)2&. Therefore, theTc
reduction is only determined by the averaged supercur
kinetic energŷ uCu2vW s

2& in this case, which is equivalent t
the London limit.

An examination of the supercurrent flow profiles sho
that, as in the case of a filled disk, there is a paramagn
contribution close to the sample center forLÞ0, while near
the outer sample interface diamagnetic currents are flow
The supercurrent densityJ can be obtained by inserting th
general solution@Eq. ~6!# in the second GL equation@Eq.
~2!#:
e

er

a

-

e
x

d

i-

e

-

n
y

nt

tic

g.

JW~L,F!5uCu2vW s}S L2
F

F0
D S F

F0
D L21/2

3expS 2
F

F0
D @K~2N,L11,F/F0!#2eWw .

~18!

At a radius r, corresponding to integer flux quantaF
5LF0 the current orientation changes sign. It can happ
however, that the switching radiusr ,r i , lies inside the
middle opening. For the stateL50 there are only diamag
netic currents. In contrast to this, for example, for a lo
with x50.5, the statesL52 @Fig. 3~a!# andL53 @Fig. 3~b!#
do not carry paramagnetic currents atF59F0. At the
ground-state level (L55) @Fig. 3~d!#, which is very close to
the London limit solutionJ}vs}(L2F/F0)/r @Eq. ~2!#.
This is shown in the right inset of Fig. 4, where the sup
current has been normalized to21 at the outer radiusr o .
For the loop withx50.1 @see Fig. 2~e!#, in the ground state
L56, the dominating diamagnetic supercurrents are flow
in the vicinity of r 5r o , the currents are paramagnetic f
slightly lower r, andJ is vanishing in the core of the samp
r i,r ,r o/3 ~left inset of Fig. 4!.

As a last point, we discuss now the periodicityDF of
Tc(F), for the differentL states in the loops. These resu
are shown in Fig. 5. For the disk, the first cusp inTc(F),
whereL goes from 0→1, occurs atF51.92F0, so DF(L
50)53.85F0. The periodDF goes down for increasingL,
until it reaches the asymptotic limit7

DF5F0@11~2hF/F0!21/2#. ~19!

Sinceh is decreasing withF, DF is a weakly decreasing
function ofL, at highF. The symbols in Fig. 5 correspond t
the periodDF in units ofF0 for the differentL states. Since
at the highestF, Tc(F) is calculated in steps of'0.07F0,
the error onDF is of this order. The filled squares are th
periods for the filled disk. The periodicity ofTc(F) in the

FIG. 5. The periodDF of the phase boundaryTc(F) in units of
the flux quantumF0 as a function of the phase winding numberL.
The data for several of the loops are shown as a symbol, an
compared to the period in a filled disk~filled square!. The intercon-
necting lines are only a guide to the eye.
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case of loops behaves differently: forx50.1 ~filled up-
triangles in Fig. 5! DF(L51)51.82F0 is larger than for the
filled disk, thenDF(L52) jumps below the correspondin
value for the disk, and for higherL>3, the periodDF
matches with the disk behavior. Consequently, the giant v
tex state builds up forL>3, i.e.,F*5F0. A similar analysis
can be carried out for a loop withx50.5 ~filled down-
triangles in Fig. 5!. For low L, DF'1.8F0, then,DF(L)
decreases substantially below the value for the filled d
before increasing again, until the same periodDF(L) is
reached forL>12. The loop is in the giant vortex state whe
F*17F0. For loops made of even thinner wires (x50.7 and
x50.9) ~open symbols in Fig. 5!, Tc(F) stays periodic up to
L513. The constant periodDF corresponds toDFm5@(1
1x)/2#2DF51F0, as it should be in the London limit fo
x→1, according to Eq.~13!.

In summary, we have solved the linearized GL equat
for loops of different wire width, with Neumann bounda
conditions at both the outer and the inner loop radius. T
critical fields Hc3* (T) are always above Hc3(T)
51.69Hc2(T), the surface critical field for a semi-infinit
superconducting slab in contact with vacuum. The ra
Hc3* (T)/Hc2(T) increases when the size of the middle ope
ing grows, i.e., in a sample topology with a large surface-
volume ratio the nucleation field is strongly enhanced. D
pending on the ratio inner to outer radiusr i /r o of the loops,
tie

iu

tt.

J.
hy

ys
r-

k,

n

e

o
-
-
-

and on the applied magnetic flux,Tc(F) shows different
behaviors: in thin-wire loops, the background ofTc is para-
bolic ~characteristic of 2D behavior! and the Little-Parks
Tc(F) oscillations are perfectly periodic. This regime can
described in the London limit. For loops with only a ve
small opening, the period of theTc(F) oscillations is de-
creasing withF and the backgroundTc reduction is quasi-
linear~3D regime, e.g., as for a disk!. Intermediate loops~for
instancer i /r o50.5) show a 2D-3D crossover between t
two regimes at a certain applied fluxF @corresponding to
w5r o2r i5(12x)r o'2j(T)#, similar to the dimensiona
transition in thin films subjected to a parallel field. As so
the 3D regime is reached, a giant vortex state is crea
where only a sheath close to the sample’s outer interfac
superconducting. The opening in the middle of the loop d
not play a role anymore:Tc(F) for the loop and for the disk
become identical.
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