
,

PHYSICAL REVIEW B 1 JULY 1999-IIVOLUME 60, NUMBER 2
Field-induced gap in Cu benzoate and otherS5 1
2 antiferromagnetic chains
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Recent experiments on theS5
1
2 antiferromagnetic chain compound, Cu benzoate, discovered an unexpected

gap scaling as approximately the23 power of an applied magnetic field. A theory of this gap, based on an
effective staggered field, orthogonal to the applied uniform field, resulting from a staggered gyromagnetic
tensor and a Dzyaloshinskii-Moriya interaction, leading to a sine-Gordon quantum field theory, has been
developed. Here we discuss many aspects of this subject in considerable detail, including a review of theS
5

1
2 chain in a uniform field, a spin-wave theory analysis of the uniform plus staggered field problem, exact

amplitudes for the scaling of gap, staggered susceptibility and staggered magnetization with field or tempera-
ture, intensities of soliton and breather peaks in the structure function, and field and temperature dependence of
the total susceptibility.@S0163-1829~99!03226-9#
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I. INTRODUCTION

The effect of a magnetic field on anS5 1
2 antiferromag-

netic chain has been extensively investigated theoretic
over many years. The Hamiltonian is written

Ĥ5(
j

@JSW j•SW j 112gmBHSj
z#. ~1.1!

An important conclusion was that the ground state rema
gapless right up to the saturation field. The low-energy ex
tations can be described by bosonization which predicts g
less excitations at wave vectors 0 andp and also at the
incommensurate wave vectors

k1562pm~H !, k25p62pm~H !, ~1.2!

wherem(H) is the magnetization per site,m[^Si
z&. The first

detailed experimental study of such systems at large fi
with gmBH of O(J) were only performed very recently,1 on
Cu benzoate. This material has a relatively small excha
energy,J'1.57 meV so thatgmBH/J'0.52 for a field of 7
T. While these experiments verified, in detail, the expec
field-dependent shift of the wave-vector at which a gap m
mum occurs, they also discovered an unexpected resu
non-zero gap appeared which seemed to scale as app
matelyH2/3, with strong dependence on the field orientatio
Denderet al.1 suggested that this gap might arise from t
staggeredg ~gyromagnetic! tensor, associated with the low
symmetry of the crystal structure and the presence of
crystallographically inequivalent Cu sites on each cha
Thus the last term in Eq.~1.1! must be replaced by

ĤH52mB (
j ,a,b

Ha@gab
u 1~21! jgab

s #Sj
b . ~1.3!

This results in the presence of an effective staggered fi
gsHW , upon the application of a uniform field. Such a sta
PRB 600163-1829/99/60~2!/1038~19!/$15.00
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gered field, which couples directly to the Ne´el order param-
eter, is expected to produce an ordered antiferromagn
moment and a gap which scale with field.

This idea was developed in detail in Ref. 2 where it w
found that a staggered Dzyaloshinskii-Moriya3,4 ~DM! inter-
action also contributes a roughly equal amount to this eff
tive staggered field. This corresponds to an additional term
the Hamiltonian:

ĤDM5(
j

~21! jDW •~SW j 213SW j !. ~1.4!

It was found that several aspects of the experiments co
be explained in detail by this model. These include the fi
orientation dependence of the gap and its scaling with fi
magnitude. Much of this work used the bosonization te
nique which maps the problem onto the sine-Gordon mo
for which various exact results are available. The excitatio
observed in neutron scattering were identified with the s
ton, antisoliton, and ‘‘breather’’~soliton-antisoliton bound-
state! spectrum of the sine-Gordon model. Additional resu
further supporting this approach, were obtained by Es
and Tsvelik.5 As shown below, the effective staggered fie
is essentially perpendicular to the uniform field. We note t
the case of a staggered field parallel to the uniform fi
maps into a related sine-Gordon model and was analyze
Ref. 6. The purpose of this paper is to provide more det
and some extensions of the results in Ref. 2. While Cu b
zoate is the only example of such a system that we discus
the present paper, it should be possible to apply our theor
other quasi-one dimensional system with similar crysta
graphic structure.

In the absence of a staggered field, the critical behavio
the antiferromagnet is determined by three field depend
quantities: the magnetization,m(H) @which determines the
soft wave vectors via Eq.~1.2!#, the spin-wave velocity,
v(H) and the boson compactification radius~which deter-
1038 ©1999 The American Physical Society
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PRB 60 1039FIELD-INDUCED GAP IN Cu BENZOATE AND OTHER . . .
mines the critical exponents!, R(H). All three of these quan-
tities can be determined very accurately by numerical so
tion of Bethe ansatz equations. Furthermore, we derive
exact relationship between these three functions using
theory arguments. We also derive the logarithmic dep
dence ofR on H, asH→0, from the existence of a margin
ally irrelevant operator, using the renormalization group.

We determine the scaling of gap with staggered field,
der parameter with field, and susceptibility with temperatu
The calculations are done including logarithmic correctio
which arise from a marginally irrelevant operator and ta
into account both uniform and staggered fields. Furtherm
the exact amplitudes of the scaling functions are determi
using a recent result of Lukyanov and Zamalodchikov.7 ~Af-
ter this calculation was finished we received the repo8

which gives the same result for the gap, without a discuss
of logarithmic corrections.! We also give some further dis
cussion of the structure factorsSa(q,v), measured in neu
tron scattering. We discuss a hidden SU~2! symmetry of the
model. We prove that the longitudinal structure factor~for
‘‘ a’’ corresponding to the uniform field direction! gets con-
tributions from only the soliton and antisoliton intermedia
states, in agreement with experiment. On the other hand
transverse structure function gets contributions only from
breathers. Using the approximateSU(2) symmetry, we dis-
cuss the relative intensity of the various single-particle pe
in the neutron-scattering cross section, taking into acco
the polarization dependent factors which arise from Fou
transforming the dipole interaction between neutrons
spins which were omitted in Ref. 5. A comparison is ma
with experimental results. In particular, the problem of d
termining a consistent value for the DM vector,DW is dis-
cussed. The susceptibility of the sine-Gordon model is c
culated, using the integrability of the model, givin
essentially the field and temperature dependence of the
gered susceptibility of the antiferromagnet.

In Sec. II we discuss the DM interaction and the mapp
of the system into a Heisenberg model with orthogonal u
form and staggered fields. In Sec. III we treat this probl
using conventional spin-wave theory. In Sec. IV we disc
bosonization in the presence of a uniform magnetic field
Sec. V we extend the bosonization approach to the case
staggered field and analyze the induced gap. In Sec. VI
discuss structure factors and compare with the observed
tron scattering cross section. In Sec. VII we present estim
of the DM interaction based on several experimental resu
In Sec. VIII we discuss the magnetization and susceptibil

II. EFFECTIVE HAMILTONIAN

The crystal structure of Cu benzoate is shown in Fig
and Fig. 2. The chain direction is thec axis. Note that each
Cu atom is surrounded by six ligands with a local symme
which is almost tetragonal. However the principal axes
this tetragonal symmetry alternate along the chain, with
two inequivalentc axes being rotated by 10° relative to ea
other. These correspondingc axes are labeled I and II in Fig
3. Theb axes are the same for both Cu sites. Neither of th
sets of principal axes correspond to the crystal axes. I
expected that the principal axes for the gyromagnetic ten
-
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will also alternate, corresponding to the local tetragonal a
around each Cu ion. The principal axis for the anisotro
exchange interaction is expected to be thec8 axes, the per-
pendicular bisector of I and II axes. On the other hand,
principal axis for the dipole interaction, which is of rough
the same order of magnitude is essentially thec axis. Com-
bining these two types of contributions to the nearest nei
bor spin-spin interaction, gives a principal axis whic
roughly bisectsc8 and c, and is denotedc9 in Fig. 4. It is
convenient to refer theg tensor to thisa9-b-c9 coordinate

FIG. 1. Crystal structure of Cu benzoate. Filled circles are Cu21

ions, connected atoms are benzoate group, and grey circles r
sent H2O molecules. Unit cell is shown as a frame, and arro
indicate crystal axes part of the figure.

FIG. 2. Enlargement of crystal structure near a Cu~black
spheres! chain with O atoms of H2O ~dark spheres! and those of
benzoate groups~light spheres!. Note that the oxygen octahedr
have two different orientations on staggered Cu atoms.
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1040 PRB 60IAN AFFLECK AND MASAKI OSHIKAWA
system. From electron spin resonance~ESR! measurements,9

it takes the form

g5S 2.115 60.0190 0.0906

60.0190 2.059 60.0495

0.0906 60.0495 2.316
D [gu6gs,

~2.1!

with the6 referring to the two inequivalent Cu sites.gu and
gs are the uniform and staggered parts of theg tensor. This
staggeredg tensor produces an effective staggered fie
6gsHW , while the uniformg tensor produces an effective un
form field guHW . In the special cases where the applied field
along theb axis or in thea9c9 plane the effective staggere
field is perpendicular to the applied field and also to
effective uniform field. For general directions of the appli
field they are almost perpendicular~to within a few %!.

FIG. 3. Local magnetic principal axes of inequivalent Cu sites~I
and II!. The principal axes of the averageg tensors are denoted a
a8, b, andc8.

FIG. 4. Local principal axes of combined magnetic interactio
a9 andc9, shown inac plane.
,

s

e

As discussed by Dzyaloshinskii3 and Moriya,4 in mag-
netic crystals of low symmetry an additional antisymmet
exchange interaction occurs, the DM interaction

ĤDM5(
j

DW j•~SW j3SW j 11!. ~2.2!

The possible values of the DM vectorDW j can be limited by
considering crystal symmetries of Cu benzoate. First,
compound is invariant under a translation along thec axis by
two sites. This means the DM vectors are the same am
the even~or odd! links, but even and odd DM vectors can b
different. Secondly, there is a symmetry under rotation
angle p about an axis parallel to theb axis that passes
through the midpoint of two neighboring sites (j and j 11),
along the chains (c axis!. As noticed by Moriya,4 this im-
plies the DM vector for the interaction betweenj and j 11
must be orthogonal to theb axis. This can be shown a
follows: assume we have the DM interactionDW •(SW j3SW j 11).
Now apply the rotation described above. It acts on the s
operators asSk

a,c→2S2 j 112k
a,c and Sk

b→S2 j 112k
b . Thus, for

theb component ofDW , the DM interaction would be inverted
while it is unchanged for thea,c component ofDW implying
that Db50. Finally, the crystal structure is invariant und
the combined operation of one site translation along
chain ~c! directionand reflection in theac plane. Consider-
ing the fact that the spin vectorSW j is an axial vector, the
operation acts asSk

a,c→2Sk11
a,c and Sk

b→Sk11
b . Since the

DM vector is orthogonal to theb axis ~and thus one factor o
Sb always appears in the outer product!, the DM interaction
term is inverted by the combined operation:DW •(SW j3SW j 11)
→2DW •(SW j 113SW j 12). Thus, the DM vector is alternating a
in Eq. ~1.4!. There are apparently no other restrictions th
can be placed on the DM vector using symmetry alone.
considering a tight-binding model for the exchange inter
tions it was estimated4 that D/J is of O(dg/g) wheredg is
the deviation ofg from twice the identity matrix.

Apart from the antisymmetric DM interaction, the remai
ing exchange anisotropy is believed to be quite negligi
~about 1% ofJ) and we will henceforth ignore it. Taking
DW } ẑ, we may write the Hamiltonian

Ĥ5
1

2 (
j

@JS2 j 21
1 S2 j

2 1J* S2 j
1 S2 j 11

2 1~H.c.!#

1J(
j

@S2 j 21
z S2 j

z 1S2 j
z S2 j 11

z #, ~2.3!

whereJ[J1 iD . Performing a rotation10 of the spins by an
angle6a/2:

S2 j
1→S2 j

1 eia/2, S2 j 11
1 →S2 j 11

1 e2 ia/2, ~2.4!

where

tana5D/J, ~2.5!

the Hamiltonian is transformed to the standardxxz model:

Ĥ5(
j

FJSj
zSj 11

z 1
uJu
2

~Sj
1Sj 11

2 1H.c.!G . ~2.6!s
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With some assumptions this anisotropic exchange may
cel the preexisting one. In any event, it is small and we w
ignore it.

Now consider an external magnetic field, approximat
theg tensor as two times the identity matrix. The spin rede
nition of Eq.~2.4! introduces an effective staggered field. F
example, for a uniform field in thex direction

2H(
j

Sj
x→2H(

j
Fcos

a

2
Sj

x1~21! j sin
a

2
Sj

yG . ~2.7!

Combining the actual form of theg tensor with the DM
interaction, we can obtain effective uniform and stagge
fields corresponding to an arbitrary applied one. Writing
rotation matrices by6a/2 aroundDW as

RDW ~6a/2![R u6R s, ~2.8!

the effective uniform and staggered fields are defined by

HW u[@R ugu1R sgs#HW ,

HW s[@R sgu1R ugs#HW . ~2.9!

In general,HW s is nearly orthogonal toHW u. For smallgs and
D/J, the staggered field can be approximated as

HW s;gsHW 1
1

2J
DW 3guHW , ~2.10!

namely the sum of two contributions.
Henceforth, since we are ignoring the small residual

change anisotropy and assuming thatHW u'HW s, we will take
HW u to be in thez direction andHW s to be in thex direction and
refer to them as simplyH and h, respectively. Also setting
2mB51 we arrive at the simple effective Hamiltonian:

Ĥeff5(
i

@JSW i•SW i 112HSi
z2h~21! iSi

x#, ~2.11!

with h!H. ~Note that we have switched the directions of t
uniform and applied fields relative to our earlier pap2

which, unfortunately, contained some inconsistencies of
tation.!

III. SPIN-WAVE THEORY

In this section we summarize the results of spin-wa
theory~leading order 1/S expansion! for the effective Hamil-
tonian of Eq.~2.11!. ~As far as we know, spin-wave theor
results for this problem were first published in Ref. 11.! Al-

FIG. 5. Classical spin configuration.
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though this misses certain features caused by quantum
tuations in one dimension, it is still quite instructive.

The classical ground state is a canted antiferromagn
structure, shown in Fig. 5. The spins on both sublattices
in thexz plane canted towards thez axis by an angleu from
the 6x axis. The classical energy of this state is

E~u!/L52JS2 cos 2u2hScosu2HSsinu. ~3.1!

This is minimized foru the solution of

4JS2 sinu cosu1hSsinu2HScosu50. ~3.2!

For h50, the solution is

sinu5H/4JS. ~3.3!

In order to do a systematic 1/S expansion, it is convenient to
regardH andh as being ofO(S). We assume thatH is less
than the saturation field, 4JS. The leading order spin-wave
expansion for a spin pointing in thex direction is

SW j
0'FS2aj

†aj ,AS

2
~aj

†1aj !,iAS

2
~aj

†2ai !G . ~3.4!

Hereaj is a boson annihilation operator. To consider sm
fluctuations about the canted structure we simply write

SW 2i'R ySW 2i
0 ,

SW 2i 11'RzR ySW 2i 11
0 , ~3.5!

whereRy is a rotation about they axis by2u:

Ry[S cosu 0 2sinu

0 1 0

sinu 0 cosu
D , ~3.6!

andRz is a rotation byp about thez axis:

Rz[S 21 0 0

0 21 0

0 0 1
D . ~3.7!

Using the facts that

R z
T5Rz ,

~RzRy!3i5~Ry!3i ,

~RzRy!1i52~Ry!1i , ~3.8!

the Hamiltonian may be written in a manifestly translatio
ally invariant way:

Ĥ5(
j

@JSW j
0
•R y

TRzRySW j 11
0 2H~R ySW j

0!z2h~R ySW j
0!x#.

~3.9!

It is the translational invariance of Eq.~3.9! which motivated
the somewhat peculiar looking choice of transformation m
trices in Eq. ~3.5!. Substituting Eq.~3.5! into the Hamil-
tonian of Eq.~3.9!, we find that the term ofO(S2) is a c
number and the term ofO(S3/2) vanishes. The term ofO(S)
is
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Ĥ'(
j

@~2JScos 2u1H sinu1h cosu!aj
†aj

1~JS/2!~cos 2u21!~aj
†aj 111aj 11

† aj !

1~JS/2!~cos 2u11!~aj
†aj 11

† 1ajaj 11!#. ~3.10!

Fourier transforming and performing a Bogoliubov transf
mation that mixesak with a2k

† , we obtain a single band o
spin waves in the paramagnetic Brillouin zone,2p,k,p
with dispersion relation

E~k!5$@2JScos 2u1H sinu1h cosu

2JS~12cos 2u!cosk#2

2@JS~11cos 2u!cosk#2%1/2. ~3.11!

The above transformation has allowed us to obtain a sin
band in the paramagnetic Brillouin zone. We may equi
lently fold the dispersion relation into the antiferromagne
Brillouin zone,2p/2,k,p/2. This gives us two branche
of spin waves with dispersion relations

E6~k!5$@2JScos 2u1H sinu1h cosu

6JS~12cos 2u!cosk#2

2@JS~11cos 2u!cosk#2%1/2. ~3.12!

While this is a fairly simple and explicit formula for th
energies in terms ofu, it must be borne in mind thatu is
determined in terms ofJ, H, andh by Eq.~3.2!. In the special
caseh50, using Eq.~3.3!, we obtain

E6~k!52JSFsin2 k12S H

4JSD 2

~cos2 k6cosk!G1/2

.

~3.13!

Note that atk50, or equivalentlyk5p,

E250,

E15H. ~3.14!

The E2 mode is the Goldstone mode corresponding to
uniform precession about thez axis. A nonzeroh gives this
mode a gap, pinning the spins along thex axis. We may
calculate this gap, to lowest order inh using, from Eq.~3.2!,
u5sin21(H/4JS)1du where

du'2
Hh

16J2S22H2 . ~3.15!

To linear order the gap is given by

D2'
]E2

2

]u
du1

]E2
2

]h
h. ~3.16!

Thus

D'A4JSh@11~H2/8J2S2!#@12~H/4JS!2#1/41O~h3/2!.
~3.17!

Note that D is a singular function of the staggered fiel
exhibiting a mean field exponent of 1/2. On the other hand
depends only weakly on the uniform field, being almost
-

le
-

a

it
-

dependent ofH up to H of O(JS). While this mean field
exponent changes when one-dimensional quantum fluc
tions are taken into account, it is reasonable to expect
weak dependence onH to remain true. The upper mode
E1(0) depends strongly onH but only weakly onh. For h
!H, E1(0)'H.

IV. BOSONIZATION FOR 0 STAGGERED FIELD

In the one-dimensional case, an exact picture of the lo
energy behavior can be obtained using bosonization and
arguments. Here we summarize the results for the case
uniform field, but no staggered field.

We begin with the case where the uniform field also va
ishes. The low energy degrees of freedom of the quan
spin variables can be represented in terms of a free bo
with Lagrangian density:

L5
1

2
@~] tf!22vs

2~]xf!2#. ~4.1!

~Here vs is the spin-wave velocity which we will generall
set equal to 1.! The boson field,f can be separated into le
and right moving terms:

f~ t,x!5fL~ t1x!1fR~ t2x!. ~4.2!

Their difference defines the dual field:

f̃5fL2fR . ~4.3!

For H50 there are low energy degrees of freedom at wa
vectors 0 andp. The spin operators can be approximated

Sj
z'

1

2pR

]f

]x
1const~21! j cos

f

R
,

Sj
2'ei2pRf̃Fconst cos

f

R
1C~21! j G . ~4.4!

~The first constant above is universal. The next three are
but C has been recently determined using the integrability
the model6,12 and will be discussed in the next section.!

For theH50 Heisenberg model,R51/A2p. For thexxz
modelR ~andC) vary with the anisotropy parameter. Wri
ing the Hamiltonian

H5J(
j

@Sj
xSj 11

x 1Sj
ySj 11

y 1dSj
zSj 11

z #, ~4.5!

exact Bethe ansatz results determine

2pR2512
cos21 d

p
. ~4.6!

R varies between 1/A2p and 0 along thexxz critical line,
21,d,1.

In order to understand the vicinity of the isotropic antife
romagnetic point,d51, it is convenient to use non-Abelia
bosonization:

SW j'~JWL1JWR!1const~21! j tr~sW g!. ~4.7!
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Hereg is the SU~2! matrix field of the Wess-Zumino-Witten
k51 nonlinears model ~WZW model!. JWL and JWR are the
left and right moving conserved currents associated with
SU~2! symmetry of the spin chain. By comparing Eqs.~4.4!
and ~4.7! we may read off the correspondences between
WZW fields and the free boson fields. These are

JL
z5

1

A8p
]2f, JR

z 52
1

A8p
]1f,

JL
2}eiA8pfL, JR

2}e2 iA8pfR,

g}S eiA2pf e2 iA2pf̃

2eiA2pf̃ e2 iA2pfD . ~4.8!

Here]6[] t6]x .
The bosonized spin-chain Lagrangian contains, in ad

tion to the free boson Lagrangian, interaction terms

Lint5
8p2

A3
@lzJL

zJR
z 1l'~JL

xJR
x 1JL

yJR
y !#. ~4.9!

For the isotropic Heisenberg model,lz5l'5O(1). Includ-
ing small anisotropy,lz2l'}12d. These obey the RG
equations:

dlz /d ln E5~4p/A3!l'
2 1O~l3!,

dl' /d ln E5~4p/A3!lzl'1O~l3!. ~4.10!

The RG trajectories are hyperbolas as shown in Fig. 6.
lz.l' , they end at thelz axis, corresponding to thexxz
critical line. Forlz,l' they lead towards strong coupling
corresponding to the easy axis ordered phase. Revertin
Abelian bosonization, we see that the fixed point Lagrang
contains the extra term

8p2

A3
lz~0!JL

zJR
z 52

p

A3
lz~0!@~] tf!22~]xf!2#.

~4.11!

FIG. 6. The Kosterlitz-Thouless RG flows of Eq.~4.10!.
e

e

i-

or

to
n

Since this is proportional to the free Lagrangian, we c
eliminate it by a rescaling off. This corresponds to a re
scaling of the parameter,R, decreasing it by an amount o
O„lz(0)…5O(12d) in agreement with the Bethe ansatz r
sult of Eq.~4.6!.

We now consider the Heisenberg model with a unifo
external field~but no staggered field!. The extra term in the
Lagrangian becomes, upon bosonization,

LH5
H

A2p

]f

]x
. ~4.12!

This term can be eliminated by a redefinition of the bos
field:

f~ t,x!→f~ t,x!1
H

A2p
x. ~4.13!

This leaves the free Lagrangian unchanged. However, it d
effect the interaction term and the bosonization formul
The interaction term is changed due to the shift of the6
components of the currents:

JL,R
2 →JL,R

2 e6 iHx,

JL,R
1 →JL,R

1 e7 iHx,

JL,R
z →JL,R

z . ~4.14!

~Note that the phases add, rather than cancel in the inte
tion termJL

1JR
2 .! The effect of these phases on the RG eq

tions can be determined from a consideration of the oper
product expansion~OPE!. One of the OPE’s gets shifte
while the other one does not:

JL
1~x!JL

2~x8!→eiH (x82x)
JL

z

x2x8
,

JL
1~x!JL

z~x8!→
JL

1

x2x8
. ~4.15!

The one-loop RG equations can be conveniently derived
ing an ultraviolet cutoff on the distance between any pairs
insertions of the interaction Lagrangian in perturbati
theory. ~See, for example, Ref. 13.! As the position space
ultraviolet cutoff is increased froma to a8, we integrate over
that range of separation of the two points, using the O
The net effect is that, when the cutoff is small compared
1/H the phase factor in the OPE is nearly constant and ca
ignored. However, when the cutoff is large compared to 1H,
the phase factor produces rapid oscillations which tend
cancel out the term from the effective renormalization. R
verting to an energy cutoff, this means that the RG equati
of Eq. ~4.10! are essentially correct forE@H, but for E
!H the right hand side should be replaced by 0 in the fi
equation. That is,lz ceases renormalizing, atE of O(H)
whereasl' continues to renormalize as before. Thus the R
trajectories are essentially two straight lines. ForE@H the
couplings renormalize along the isotropic separatrix,lz(E)
5l'(E), but for E!H, lz is constant andl' renormalizes
to 0. ~See Fig. 7.! Thus, in order to determinelz(0) we
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1044 PRB 60IAN AFFLECK AND MASAKI OSHIKAWA
simply need to calculatel(H) using the isotropic RG equa
tions of Eq.~4.10!. For H!J, these give

l~H !'
A3

4p ln~J/H !
. ~4.16!

This argument may seem rather naive and it certainly d
not give the correct RG trajectory forE of O(H). However,
due to the weak, logarithmic, dependence ofl on E we
expect that this argument gives the correct behavior oflz(0)
with H for H!J. This argument then determines the depe
dence ofR on H for H!J:

2pR2512
2p

A3
lz~0!512

1

2 ln~J/H !
. ~4.17!

Precisely this result was obtained from the Bethe ansatz14 in
the limit H!J. ~See Fig. 8.! For larger values ofH higher
order terms in the RG equations would be needed and a
tional interactions would have to be considered, some

FIG. 7. The RG flows in the presence of a magnetic field. T
turn occurs at an energy scale of O~H!.

FIG. 8. Critical exponent 2pR2 as a function of the applied field
H. Exact solution is compared with the leading terms 2pR2;1
21/@2log(H0 /H)# in the RG analysis. We show a good fit to th
numerical solution of the Bethe ansatz integral equations withH0

5A32p3/e. This choice ofH0 is four times the value in Ref. 14
which gives worse fitting.
s

-

di-
f

which break Lorentz invariance. The net effect is that theH
dependence ofR becomes more complicated at largerH and
also the spin-wave velocity also change withH. We have so
far set it equal to 1. It is known to have the valuepJ/2 from
the Bethe ansatz, for the Heisenberg model atH50. It can
be determined numerically from the Bethe ansatz integ
equations,14 and is given in Fig. 9.

Apart from the functionsv(H) andR(H), we will also be
interested in the behavior of the magnetization,m(H). From
bosonization we obtain

m~H !→
H

2pv
, ~4.18!

asH→0. One way of obtaining this result is from calcula
ing the zero field susceptibility:

x5
1

T K S (
j

Sj
zD 2L

T

5
1

2pT K S E dx
]f

]x D 2L
T

.

~4.19!

Bosonization leads to an exact relation between the th
functionsv(H), R(H), andm(H). This follows from calcu-
lating the susceptibility at arbitrary field,H, using Eq.~4.4!
with the corresponding value ofR(H):

dm

dH
[x~H !5

1

~2p!2R~H !2v~H !
. ~4.20!

In particular, in the limit of smallH this predicts a logarith-
mic correction to the magnetization:15

m→
H

2pv F11
1

2 ln~J/H !G . ~4.21!

Equations ~4.17!, ~4.20!, and ~4.21! are universal. They
should remain true for generic half-integer spin isotropic a
tiferromagnets in the gapless phase. For the particular cas
the nearest neighborS5 1

2 Heisenberg model we can setv
5pJ/2 in Eq. ~4.21!. Equation~4.20! agrees very well with
our numerical solution of the Bethe ansatz equations.~See
Figs. 8, 9, and 10.! As far as we know the first~numerical!
calculation of these quantities for 0,H,2J were Ref. 16
for m(H), Refs. 17 and 18 forR(H), and Ref. 19 forv(H).
~Numerical calculations in Refs. 18 and 19 were based on
Bethe ansatz integral equations of Ref. 14.!

e

FIG. 9. Spin-wave velocityv as a function of the applied field
H, determined from Bethe ansatz integral equations.
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PRB 60 1045FIELD-INDUCED GAP IN Cu BENZOATE AND OTHER . . .
Oncem, v, andR are determined from the Bethe ansa
all low energy properties of the system are determined
bosonization. From Eq.~4.4! the magnetization can be writ
ten

m~H !5
1

2pR~H !
E dx

]f

]x
. ~4.22!

Therefore the exact formula for the field-induced shift inf is

f→f12pR~H !m~H !x. ~4.23!

All low energy Green’s functions are then determined fro
Eq. ~4.4! after shiftingf(x). In particular we see thatGz has
the soft wave vectors 0 andp62pm(H) whereasG6 has
the soft wave vectors62pm(H) andp.

V. BOSONIZATION FOR NONZERO STAGGERED FIELD

Now we consider the effective Hamiltonian of Eq.~2.11!
with both uniform and staggered fields nonzero andh!H.
We begin by using the results of the previous section
obtain theh50 theory with the shifted and rescaled bos
field characterized byR(H), m(H), and v(H). For h50,
upon making these tranformations, the Lagrangian densi
simply the free boson one of Eq.~4.1!. From the bosoniza-
tion formulas of Eq.~4.4! the staggered field adds the inte
action term

Lint5hC cos~2pRf̃ !. ~5.1!

Noting the duality transformation betweenf and f̃

] tf5]xf̃, ]xf52] tf̃, ~5.2!

we may also write the free Lagrangian in terms off̃:

L05
1

2
@~] tf̃ !22~]xf̃ !2#. ~5.3!

Hence we have the standard sine-Gordon field theory.
impressive array of conjectured exact results are availabl
this model, which can be brought to bear on the spin-ch
problem. The interaction term is sometimes written
cosbf̃, so we see that we haveb52pR. In the next section
we will discuss details of the excitation spectrum of th

FIG. 10. Magnetizationm as a function of the applied fieldH,
determined from Bethe ansatz integral equations.
,
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model. In this section we discuss the dependence of the
on the uniform and staggered field.

The renormalization group scaling dimension of this o
erator ispR2 from which it follows that the gap scales as

D

J
→AS H

J D S h

JD 1/[22pR(H)2]

, ~5.4!

for some functionA. Since, for small uniform fields,pR2

'1/2, it follows that the exponent is approximately 2/3,
found in the experiment. Note that this formula is valid f
h→0 at fixed H. This is a reasonable order of limits fo
describing the experiments sinceh is only a few percent of
H. The exponent is determined byR(H), given in Fig. 8.

We wish to improve on this result in two ways. First o
all, if we consider the case whereH is strictly 0, then this
formula is modified to

D/J→A0S h

JD 2/3

ln1/6S J

hD . ~5.5!

We will calculate exactly the amplitudeA0. This is not of
direct relevance to the experiments, however, since they
in the opposite limitH@h. More importantly, we can deter
mine the amplitude functionA(H/J) in Eq. ~5.4! for H!J:

AS H

J D→A ln1/6S J

H D . ~5.6!

We will also determine exactly the numerical factor,A,
which is different thanA0 in Eq. ~5.5!. While the logarithmic
factors in Eqs.~5.5! and~5.6! are universal and follow from
an RG treatment of the marginal interaction, the exact
merical coefficients are specific to the ordinary near
neighbor HeisenbergS5 1

2 model and are obtained by usin
a remarkable exact conjecture made recently by Lukya
and Zamalodchikov7 extended to the Heisenberg point fo
lowing the method in Ref. 12.~See also Ref. 20.!

Our calculations follow the notation of Refs. 21 and 1
We consider the renormalization group equation obeyed
the effective coupling constantg(E) multiplying the cos in-
teraction in Eq.~5.1!, with bare valuehC/J for a bare cutoff
J, taking into account, to linear order, the effect of the m
ginal interactions of Eq.~4.9!. This is

dg

d~ ln E!
52@22g~g,lW !#g. ~5.7!

The anomalous dimension is given, to low order, by

g'
1

2
2

p

A3
lz . ~5.8!

lz obeys the RG equation of Eq.~4.10!. By the usual scaling
arguments, we determined the gap,D by reducing the ultra-
violet cutoff down to a scaleD such thatg(D) is O(1).
Taking into account the dependence of the effective coup
constant,g(E) on the bare coupling constant,h/J, then de-
termines the dependence of the gap onh. In the caseH50,
the RG flow oflz(E) is given by Eq.~4.10! for all E. On the
other hand, for finiteH, lz(E) essentially stops renormaliz
ing at a scale of orderH. Integrating Eq.~5.7! gives
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1046 PRB 60IAN AFFLECK AND MASAKI OSHIKAWA
g~E!5S E

J D 23/2

e2p/A3*J
Ed ln E8lz(E8). ~5.9!

This integral can be conveniently evaluated by changing
tegration variables tol'(E8) using the second of Eqs
~4.10!. This gives

g~E!'g~J!~E/J!23/2@l'~E!/l'~J!#1/4. ~5.10!

Determining the gap by the conditiong(D)51 and setting
g(J)}h/J, gives

h/J5B~D/J!3/2@4pl'~D!/A3#1/4, ~5.11!

for some nonuniversal constantB, of O(1).
In the caseH50, the solution of the RG equation, Eq

~4.10!, is

l'~D!'
A3

4p ln~J/D!
. ~5.12!

Thus,

D/J5B22/3~h/J!2/3@ ln~J/h!#1/6@11O„1/ln~J/h!…#.
~5.13!

For nonzeroH, the first of Eq.~4.10! is only valid for E
@H. At lower energies,lz stops renormalizing. Its fixed
value at lowE determinesR(H):

2plz~0!/A35122pR~H !2'
1

2 ln~J/H !
. ~5.14!

We can extend somewhat the accuracy of our results
larger H, by expressing the subsequent results in terms
R(H), determined numerically from the Bethe ansatz, rat
than by using the above asymptotic smallH result forR(H).
For D!H, we use the second of Eq.~4.10! with lz fixed at
lz(0) as given by Eq.~5.14! and the initial condition

l'~H !'lz~H !'lz~0!, ~5.15!

to obtain

l'~E!'
A3

2p
@122pR~H !2#S E

H D 2[122pR(H)2]

.

~5.16!

SettingE5D and substituting into Eq.~5.11! gives

h

J
5BS D

J D 22pR2S J

H D (122pR2)/2

@2~122pR2!#1/4.

~5.17!

Thus we obtain Eq.~5.4! with

A~H/J!'H BS J

H D (122pR2)/2

@2~122pR2!#1/4J 21/(22pR2)

.

~5.18!

Note that in Eq.~5.4! and~5.18!, R is a function ofH, shown
in Fig. 8 and given approximately by Eq.~5.14!. As H→0,
we may evaluateA(H) explicitly, from Eq. ~5.14!. Using
-

to
of
r

S J

H D 1/4 ln(J/H)

5e1/4, ~5.19!

this gives

A~H !→B22/3e21/6@ ln~J/H !#1/6. ~5.20!

Note that the same numerical constant,B, occurs in theH
50 case, Eq.~5.13! and theH@D case, Eqs.~5.4! and
~5.20!. However, in the latter case it gets multiplied by a
extra factor ofe21/6.

Finally we wish to determine the dimensionless amp
tude,B, appearing in Eq.~5.11! and below. This can be don
using two remarkable results. One of them is the exact p
portionality constant in the bosonization formula for th
staggered part ofSj

x , that is the constantC in Eq. ~4.4!. This
fixes the coupling constant in the sine-Gordon model,Ch, in
Eq. ~5.1!. The other recent result is the exact relationsh
between the sine-Gordon coupling constant and the mas
the lightest particle in the spectrum of the sine-Gord
model, which is the gap,D. This determines the exact rela
tionship betweenD andh. This calculation was done in zer
uniform field for thexxz S5 1

2 antiferromagnet of Eq.~4.5!.
The calculation was performed for alld along the critical
line, 21,d,1. Due to the logarithmic corrections at th
isotropic point,d51, an additional calculation is needed
that point. This can be done using the RG. We essenti
just need to apply Eq.~5.11! to the case ofH50 but d
slightly less than 1. Comparing to the exact result for ald
,1 then determines the coefficient,B.

For d,1 and H50 we use the RG equations of Eq
~4.10! at low energies. The RG flows are hyperbolas term
nating on the positivelz axis. These flows are convenient
labeled by

e[4plz~0!/A352@122pR2#52
cos21 d

p
. ~5.21!

The solution of Eq.~4.10! with this initial condition is

4pl'~D!

A3
5

e

sinh@e ln~J/D!#
. ~5.22!

Substituting into Eq.~5.11! gives

h

J
→BS D

J D 3/2H e

sinh@e ln~J/D!#J
1/4

. ~5.23!

Note that in the isotropic limit,e→0, we recover our previ-
ous logarithmic result of Eq.~5.5!. On the other hand, taking
D/J→0 with e held fixed it gives

h

J
→~2e!1/4BS D

J D 3/21e/4

. ~5.24!

By comparing this to the exact result for arbitraryd ~and
hencee) we may extract the value of the amplitude,B.

In Ref. 6 the spin correlation function in thexxz antifer-
romagnet is shown to have the asymptotic behavior

^S0
xSr

x&→~21!r
C~R!2

2
r 22pR2

, ~5.25!
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PRB 60 1047FIELD-INDUCED GAP IN Cu BENZOATE AND OTHER . . .
with an exact expression determined for the amplitu
C(R)2. In the isotropic limit,R→1/A2p:

C~R!2

2
→

1

4e1/2p3/2
. ~5.26!

In Ref. 7 the operator cos 2pRf̃ is normalized so

^cos@2pRf̃~0!#cos@2pRf̃~r !#&→
1

2
ur u22pR2

~5.27!

~after accounting for a difference in normalization of the fr
boson Lagrangian by a factor of 8p). This determines the
exact proportionality constant in the bosonization formula
Eq. ~4.4!:

Sj
x'~21! jC~R!cos@2pRf̃#. ~5.28!

Hence the coupling constant in the sine-Gordon Lagrang
is preciselyC(R)h. The exact relationship between this co
pling constant and the mass,D, of the soliton of the sine-
Gordon model is

C~R!h

2
5

D22pR2

v12pR2

G~pR2/2!

pG~12pR2/2!

3F ApGS 1

2~12pR2/2! D
2GS pR2

422pR2D G 22pR2

. ~5.29!

Here we have inserted, by dimensional analysis, the s
wave velocityv. Taking the isotropic limit on both sides o
this equation, usingv5pJ/2, gives

h

2A2p3/4e1/4J
→S D

J D 3/21e/4 G~1/4!

2p3/4G~3/4!
FG~2/3!

G~1/6!G
3/2

.

~5.30!

We see that this is equivalent to the RG result of Eq.~5.24!
with the amplitude determined to be

B521/4
G~1/4!

G~3/4! FG~2/3!

G~1/6!G
3/2

. ~5.31!

From Eq.~5.13!, for H50, the gap behaves as

D/J→A0~h/J!2/3@ ln~J/h!#1/6, ~5.32!

with

A05B22/35221/6FG~3/4!

G~1/4!G
2/3G~1/6!

G~2/3!
'1.77695.

~5.33!

Since we were not aware of the result of Ref. 7 at the time
Ref. 2 the behavior of the gap with staggered field~for H
50) was estimated numerically by extrapolating Lancz
results for lengths up to 22 sites. A very good fit to E
~5.32! was obtained with

A0'1.85. ~5.34!
e

f

n

n-

in

s
.

Considering the numerical difficulties related to logarithm
corrections this is remarkably good agreement with the ex
result of Eq.~5.33!. In the experimentally relevant case,D
!H, the gap behaves as in Eq.~5.4! and, for smallH/J, the
amplitude is given by Eq.~5.6! with, from Eq. ~5.20!,

A5B22/3e21/6'1.50416. ~5.35!

Thus our expression for the gap becomes

D/J→1.50416@ ln~J/H !#1/6~h/J!1/[22pR(H)2] . ~5.36!

For largerH/J, greater accuracy might be obtained by usi
Eq. ~5.18! with B given in Eq.~5.31!. That is

D/J→$0.422169~J/H ! [122pR(H)2]/2

3@2„122pR~H !2
…#1/4%21/[22pR(H)2]~h/J!1/[22pR(H)2] ,

~5.37!

whereR(H) is given, from the Bethe ansatz, in Fig. 8. In
serting its asymptotic value at lowH,

2pR~H !2'12
1

2 ln~J/H !
, ~5.38!

gives back Eq.~5.36!. We note that, to actually fit the ex
perimental data, we takeh5cH for some constant of pro
portionality which depends on field direction but is genera
of order a few %. Thus the actual scaling of gap with field
not a pure power law.

VI. STRUCTURE FUNCTIONS

For H50 it is convenient to use non-Abelian bosoniz
tion, Eq. ~4.7!, so that the interaction term is written

Lint}tr~gsx!. ~6.1!

In this case the model has an SU~2! symmetry. Note that
when both uniform and staggered fields vanish and ign
ing the marginal operator, the symmetry is actua
SU~2!3SU~2!:

g→UgV†. ~6.2!

These two independent SU~2!’s act on left and right-movers
separately. The ordinary SU~2! symmetry of the spin chain is
the diagonal subgroup withU5V. This symmetry is broken
by the staggered field. However, a different SU~2! subgroup
of the original SU(2)3SU(2) survives for which

V5sxUsx. ~6.3!

We may redefine the fieldg by

g→gsx ~6.4!

in which case the interaction becomes trg, which has the
diagonal SU~2! symmetry. In fact, this continuum limit in-
teraction arises from a staggered Heisenberg exchange i
action, as occurs in the spin-Peierls problem. The equ
lence of the continuum limit of these two apparently ve
different problems, is a nontrivial consequence of the ch
symmetry which maps (21) jSW j into (21) jSW j•SW j 11.
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1048 PRB 60IAN AFFLECK AND MASAKI OSHIKAWA
If we assume that the only effect of the uniform field is
add a term to the Hamiltonian:

dH52
H

A2p

]f

]x
52H~JL

z1JR
z !, ~6.5!

then the uniform field can be removed by the gauge trans
mation:

f~x!→f~x!1
H

A2p
x, ~6.6!

or equivalently

JL,R
z →JL,R

z 2
H

2
. ~6.7!

~Here we have setv51.! This transforms the matrix fieldg
as

g~x!→eiHxsz/2g~x!eiHxsz/2. ~6.8!

This gauge transformation leaves invariant the stagge
field term trgsx. Thus the exact SU~2! symmetry remains in
this approximation. However, additional irrelevant terms
the Hamiltonian in the presence of a uniform field break
exact SU~2! symmetry, as evidenced by the change in
parameterR with field. The SU~2! symmetry is only presen
for R51/A2p.

The non-Abelian bosonization formula for the stagge
part of the spin operators~for H50) is

SW j'~21! jC tr gsW . ~6.9!

The magnetic field leads to the gauge transformation of
~6.8!. The parts of the spin operators with wave-vectors n
p thus become

Sj
a'C cos~p j !tr gsa ~a5x,y!,

Sj
z'C$ei (p1H) j tr g~11sz!/22ei (p2H) j tr g~12sz!/2%.

~6.10!

Now making the transformationg→gsx, this becomes

Sj
x'C cos~p j !tr g,

Sj
y' iC cos~p j !tr gsz,

Sj
z'C$ei (p1H) j tr gs2/22ei (p2H) j tr gs1/2%. ~6.11!

In general the spectrum of the sine-Gordon theory consist
the soliton, antisoliton, and breathers~soliton-antisoliton
bound states!.22 In the SU~2! symmetric case, the excitatio
spectrum of the sine-Gordon model withb252p consists of
a triplet composed of soliton, antisoliton, and lowest breat
and a second breather, heavier by a factor ofA3. The degen-
eracy of the triplet is a result of the SU~2! symmetry. Due to
the SU~2! symmetry, the three elements of the triplet a
produced by the 3 operators trgsW with equal intensity,
whereas the singlet is produced by the operator trg. Thus
settingH50 ~but noth) the structure functionsGyy andGzz

would be equal. Note that, forH50, Sj
z}tr gsy, creates the

y-polarized member of the triplet. This can be regarded a
r-

d

e
e

d

q.
r

of

r

a

linear combination of the soliton~created by trgs2) and the
antisoliton ~created by trgs1). Gzz(p,v) consists of two
identical contributions from thes2 and s1 terms in Eq.
~6.11!. Each contributes exactly (1/2)Gyy(p,v). The effect
of H is to split the soliton and antisoliton contributions toGzz

into two separate contributions at different wave vectorsp
6H. Thus, ignoring the small SU~2! symmetry breaking

Gzz~p6H,v!5~1/2!Gyy~p,v!. ~6.12!

It is also interesting to note that the staggered part of
energy density is given by

SW j•SW j 11}~21! j tr g. ~6.13!

This operator couples to lattice displacements~phonons! and
is used to describe Raman scattering experiments. U
making the gauge transformation of Eq.~6.8! and the redefi-
nition of Eq. ~6.4! this becomes

SW j•SW j 11}ei (p1H) j tr
gs2

2
1ei (p2H) j tr

gs1

2
. ~6.14!

Thus this operator also creates the soliton and antisoli
Hence this theory predicts a single particle excitation obse
able in Raman scattering at the same field-dependent w
vector and frequency as the incommensurate mode obse
in neutron scattering.

Upon allowing for SU~2! symmetry breaking the radiu
changes. After making the gauge transformation, a U~1!
symmetry still survives, corresponding to shiftingf by a
constant. The triplet is now split, with the lowest breath
having a different mass than the degenerate soliton antis
ton pair. Since the operatorse6 if/R have charge61 with
respect to this U~1! symmetry, we see that the soliton an
antisoliton are created by theq5p62pm Fourier modes of
Sj

z , respectively. The breathers can be classified as eve

odd with respect to the discrete symmetryf̃→2f̃. The odd
breathers are created by theq5p component ofSy and the
even breathers by theq5p component ofSx. It can be
shown that even and odd breather alternate in the spec
of the sine-Gordon model. Furthermore, the number
breathers increases with decreasingR. A third breather drops
below the soliton antisoliton (ss̄) continuum immediately as
soon asR decreases below the isotropic value, 1/A2p with
another one dropping below thess̄ continuum each time
2/pR2 passes through an integer. The mass of thenth
breather, expressed in terms of the soliton mass,M, is

Mn52M sin~npj/2!, ~6.15!

where

1

j
[

2

pR2 21. ~6.16!

Thus the odd-numbered breathers contribute single-par
poles toGyy and the even-numbered ones toGxx while the
soliton and antisoliton contribute single-particle poles toGzz.
In addition, various multiparticle continua contribute to th
three spectral functions.
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For a field of 7 T we estimatepR250.41. There are 3
breathers at this point, with masses 0.79M , 1.45M , and
1.87M . A resolution limited peak was observed atq
51.22p, at energy 0.22 meV. We identify this with the so
ton ~or antisoliton! contribution to Gzz; hence M
50.22 meV. A resolution limited peak is clearly observab
in the neutron scattering data atq5p and an energy of
0.17 meV50.77M . This agrees very well with the predic
tion for the first breather mass.

We may also test the SU~2! prediction of Eq.~6.12!. The
SU~2! symmetry is broken by various small effects as exe
plified by the fact thatpR2Þ1/2. In particular, this implies
that Gyy(p,v) has a second peak, of very low intensit
corresponding to the third breather. Ignoring these effects
expect the intensity of the lowest breather peak inGyy to be
approximately twice the intensity of the soliton peak inGzz.

However, before a comparison can be made with exp
ment it must be taken into account that the unpolarized n
tron scattering cross section contains an important direc
dependence arising from the Fourier transform of the dipo
dipole interaction between the neutron and the spins.
cross section can be written

s~kW ,v!5(
a

~12 k̂a
2!Gaa~kW ,v! f ~kW !, ~6.17!

wherek̂ is a unit vector in the direction ofkW and the function
f (kW ) is slowly varying. Thus the soliton, even breathers a
odd breathers are weighted by different factors 12 k̂z

2 , 1

2 k̂x
2, and 12 k̂y

2 , respectively. We also have to consider t

variation of f (kW ) in examining the relative intensity of soli
tons to breathers since they occur at different values ofkz . It
must be recalled thatx̂ here refers to the direction of th
effective staggered magnetic field~and ẑ the direction of the
uniform field!. In the neutron scattering experiments the fie
was along theb axis. We note that thea9 axis is rotated by
about217° from the crystal axis,a. @We define the rotation
angle in theac (a9c9) plane so thatc axis is190° rotated
from a axis.#

Strictly speaking, we must take into account the effect
the redefinition of the spin operators, discussed in Sec
that was used to eliminate the DM interaction. LettingS̃j

a to
be the rotated spin operators, defined in Eq.~2.4!, and invert-
ing the transformation, we may write the structure functi
for the original spin operators in terms of the structure fu
tion for the rotated operators, which we write asG̃ab(k). In
this way we obtain

Gxx~k!5cos2~a/2!G̃xx~k!1sin2~a/2!G̃yy~k2p!,

Gyy~k!5cos2~a/2!G̃yy~k!1sin2~a/2!G̃xx~k2p!.
~6.18!

Gxy remains 0 due to translation invariance and theGaz are
unaffected by the transformation. Herex andy refer to two
axes orthogonal toDW ~not orthogonal toHW as in most of this
paper.! We expect the second terms in Eqs.~6.18! to be
negligible sincea is small. Furthermore, theG̃aa(k) are
small for k'0 also making the second terms in Eq.~6.18!
-

e

i-
u-
n
-
e

d

f
II,

-

smaller than the first fork nearp. Henceforth we ignore this
small correction and simply useG̃aa(k)'Gaa(k).

The direction~and magnitude! of the effective staggered
field depends on both the staggered part of theg-tensor and
DM interaction. Since the DM interaction in Cu benzoate
unknown, the directionx̂ is not known at present.~The DM
interaction in Cu benzoate may be estimated from vari
experimental results based on the present theory. We
discuss this issue in the next section.! However, the direction
x̂ can be deduced from the polarization analysis23 of the
neutron scattering experiment. Denderet al.analyzed the po-
larization of the neutron scattering at constant energy\v
50.21 meV and various momentum transfers. For magn
field H57Tib and momentum transfer along the chainp,
this should probe the lowest (n51) breather. As discusse
above, this odd breather is polarized orthogonal to the t
effective staggered field. In Ref. 1 it was claimed that t
observed scattering is polarized in thea9 direction. Also note
that a misstatement of the crystal orientation occurred in R
23 so that the wrong sign appeared there forkW•aW .22 Correct-
ing this error, the polarization is118° from a axis, or
equivalently135° from a9 axis. This implies that, for an
applied field inb direction, the total effective staggered fie
272° (1108°) from a axis, or equivalently 255°
255° (1125°) froma9 axis.~There is actually another fea
ture of the polarization analysis in Ref. 23 which appe
inconsistent with the theory presented here, namely the
larization analysis in zero field. The strong dependence
the intensity on thea component of the momentum is take
to indicate thatGbb'0. Our work ignores any anisotropy i
the zero field limit and therefore predictsGbb5Gaa5Gcc in
that limit. We do not understand the source of this discr
ancy at present.!

The constant-Q ~momentum transfer! scan experiments
sensitive to the breather modes, were carried out at the fi
momentum transfer:

~kW•aW ,kW•bW ,kW•cW !/2p5~20.3,0,1!, ~6.19!

where the lattice constants area56.91A, b534.12A, and
c589.3A. Here we have again corrected the misstateme24

of the crystal orientation in Ref. 1 mentioned above. No
that the antiferromagnetic wave vector, in the chain dir
tion, is actually 2p/c rather than the normalp/c, because
there are two Cu atoms per unit cell along thec axis. The
crystal axesa, b, andc are essentially orthogonal. Thus,
the a-b-c system

k̂5~20.26,0,0.97!, ~6.20!

k̂ is rotated1105° from thea axis, or1122° from thea9

axis. We note that, thisk̂ is almost parallel to the direction o
the total effective staggered field estimated from the po
ization analysis above.

The constant-Q scan for the soliton modes was done for
slightly different momentum transfer

~kW•aW ,kW•bW ,kW•cW !/2p5~20.3,0,1.12!. ~6.21!
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1050 PRB 60IAN AFFLECK AND MASAKI OSHIKAWA
However, the direction of this momentum transferk̂ is al-
most the same as the above and we will ignore the dif
ence.

The fact that, an intense first breather peak is obser

experimentally, supports the deduction thatk̂ is nearly par-
allel to the total effective staggered field. In fact, assum

that k̂ is completely parallel to the staggered field, the a
proximate SU~2! prediction is that the lowest peak atk5p
~from the first breather inGyy) should have twice the inten
sity of the lowest peak atk5p6H ~from the soliton/
antisoliton inGzz). This prediction is only a very approxi
mate one due to the breaking of SU~2!. There could also be

corrections from the functionf (kW ) in Eq. ~6.17!. Experimen-
tally this ratio appears to be about 2.8. This is perhaps s

factory agreement. This agreement is only worsened ifk̂ de-
viates from the direction of the staggered field.

Thus, analyses of polarization and of the scattering int
sity of the lowest breather mode are consistent, and ap
ently lead to the conclusion that the total staggered field

Hib is almost parallel to thek̂ direction of Eq.~6.20! used in
the constant-Q scan.

On the other hand, in Ref. 2 we discussed a feature in
experimental data atk5p, andv50.34 meV51.55M . This
is very close to the predicted mass of the second brea
which contributes toGxx. A recent calculation, based on in
tegrability of the sine-Gordon model, indicates that the re
tive intensity of the second breather in peak inGxx should be
roughly 1/2 of the intensity of the first breather inGyy. How-
ever, we expect this to have essentially zero intensity in
neutron scattering cross section due to the factor of 12 k̂x

2 in
Eq. ~6.17!. @In Ref. 5 an apparently good agreement betwe
theory and experiment was obtained because the facto
(12 k̂a

2) were not included. In Ref. 2 intensities were n
considered.# A possible resolution of this disagreement
that this ‘‘feature’’ at v50.34 meV, discussed by tw
groups of theorists, is just noise. As stated in Ref.
‘‘Given the quality of the data, this double-gap conjecture
highly speculative.’’ Clearly more data is needed to det
mine whether or not there is really another sharp peak at
frequency. An even more statistically insignificant feature
the data, atk5p andv50.44 meV, was discussed in Ref.
where it was interpreted as the third breather peak inGyy.
Both the energy ('2M ) and the intensity~very approxi-
mately 1/6 the intensity of the first breather! agree with the
predictions of the sine-Gordon model. Note that in this c
the factor of 12 k̂y

2 is common to first and third breathers s
it does not affect the intensity ratio. However, once aga
considerably more data is needed to determine if ther
really a peak at this frequency.

Another striking feature of the neutron scattering data
second resolution limited peak atk5p and v50.8 meV
'H. This also has a possible interpretation in our fie
theory approach. It is natural to assume that this peak a
ally comes fromGzz. At this wave vector, from Eq.~6.11!,
this is proportional tô tr gs2 tr gs1& at wave vectork5H.
We expect the continuum limit to hold for some range
wave vectors close to the gap minimum at wave vectop
1H. Thus, at least for weak enough fields, we would exp
r-
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the soliton to persist as a single-particle excitation inGzz up
to wave vectorp. Its energy should obey the Lorentz invar
ant formula:

v5AM21k25AM21H2. ~6.22!

~Here k is measured from the incommensurate wave vec
k1H and v is set equal to 1.! SinceH@M this gives ap-
proximatelyv5H, as seen in the experiment. The intens
of this feature inGzz can be easily calculated. The resu
follows from the fact that thek near p parts of the spin
operators are all Lorentz scalars. The matrix element
tween ground state and a single particle excited state
Lorentz scalar operator is independent of the momentum
the particle, by Lorentz invariance~assuming a Lorentz-
invariant normalization of the state!. It then follows that the
soliton and antisoliton peaks inGzz have an intensity that is
proportional to 1/v. The energy is approximately four time
higher atk5p. We must also take into account that bo
soliton and antisoliton are contributing atk5p which in-
creases the intensity by a factor of 2. Thus, we expect
single-particle peak atv'H, k5p to have an intensity ap
proximately 1/2 that of the peak atk5p1H. Experimentally
this ratio looks somewhat larger than 1/2 but it must be
membered that the peak atv'H, k5p is sitting on top of a
background fromGyy. Taking this into account, the agree
ment looks fair.

There is actually a possible objection to this argume
The same reasoning would seem to imply sharp peaks
v5H at k5p1H coming fromGyy and Gxx. These were
not observed experimentally; at most a small shoulder w
observed beginning atv5H for k5p1H. This may simply
mean that the breathers have merged into the continuum
this wave vector~due to nonrelativistic effects not containe
in the continuum limit field theory!, whereas the soliton ha
not.

We note that spin-wave theory fails to capture the o
dimensional quantum fluctuation dominated physics in va
ous ways. It predicts a single low energy mode withD
}h1/2, instead ofh2/3 with soft wave vectorsp and 0, miss-
ing the incommensurate shift. It also predicts another sin
particle mode at energy approximatelyH, at the same wave
vectors.

VII. ESTIMATE OF DM VECTOR

In the present framework, the only unknown paramet
of Cu benzoate are the DM vector, which has not been
termined directly in previous studies. Based on the pres
theory, we can in principle determine the DM vector fro
several experimental results. Actually, there seem to be
solution that can perfectly fit all the available experimen
data, as explained below. Presumably, a precise error
mate on an experiment gives a permissible region for
DM vector, and such constraints from several experime
would give a region of possible values of the true DM ve
tor. However, it should be noted that we have been ignor
the interchain effects, irrelevant operators, etc., which mi
be necessary in such a precise discussion.

Firstly, as argued in Sec. II,DW must lie in thea9-c9 plane,
leaving two free parameters. The total staggered field is
termined by Eq.~2.9!.
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PRB 60 1051FIELD-INDUCED GAP IN Cu BENZOATE AND OTHER . . .
Here we list the constraints on the DM vector from va
ous experiments.

A. Angular dependence of the gap

As observed in Ref. 1, the induced gap is strongly dep
dent on the direction of the applied uniform field. In th
present theory, this is accounted by the field direction dep
dent constants of proportionality between the uniform a
staggered magnetic fields. As discussed in Sec. II, the
portionality constant should be given by theg tensors and the
DM vectorDW . Since theg tensors were obtained previously9

the measured gap can be used to determineDW .
The gap is proportional to essentially the 2/3 power of t

effective staggered field. The specific heat measuremen
Ref. 1 were fit by the authors to the specific heat of a coll
tion of free massive relativistic bosons. The masses w
found to scale approximately asH2/3 with a direction depen-
dent amplitude in thea9:b:c950.55:1.0:2.0. In Ref. 2, this
ratio was used to estimate the DM vector.

Very recently8 the specific heat of the sine-Gordon mod
was calculated from the thermal Bethe ansatz and fit to
Cu benzoate data. Again a good fit of the gap toH2/3 was
obtained for fields in theb or c9 directions with a somewha
different amplitude ratiob:c951.0:2.2.@The velocityv(H)
is another parameter in the fit. This may also be determi
from Bethe ansatz for theS5 1

2 chain in a uniform field. A
slightly better fit to the specific heat data was obtained
Ref. 8 by lettingv(H) be a free parameter.#

A reasonable fit was not obtained for the field in thea9
direction where the specific heat data is nearly linear. T
suggests that, forHia9 the apparent gap structure was eith
due to some sort of experimental error or due to ot
mechanisms8 than the effective staggered field. In any ca
it seems that the effective staggered field forHia9 is rather
close to zero. This implies the cancellation of the effect
staggered field coming from the staggeredg tensor and the
DM interaction. It is not quite unnatural, because for t
applied field inac plane, both the staggered field genera
by the staggeredg tensor and the DM interaction point tob
direction. Thus there is a direction in theac plane where the
cancellation occurs, for a wide range of parameters. Ac
ally, the cancellation of the staggered field is also consis
with the electron spin resonance~ESR! result, which will be
explained later.

Assuming the cancellation of the staggered field forHia9,
and that observed gap forHib andHic9 are entirely due to
the staggered field, the ratio of the proportionality consta
between staggered and uniform fields forHia9, Hib, and
Hic9 are 0:1:(2.2)3/253.26. The ratio gives a constraint o
the DM vector through Eq.~2.9!.

B. Magnitude of the gap

Based on several exact results on the sine-Gordon
theory and on theS5 1

2 Heisenberg antiferromagnetic chai
we have determined the magnitude of the gap for a gi
staggered fieldh. Thus, comparing this with the gap es
mated from the specific heat measurement, we can fix
proportionality constantc between the staggered fieldh and
the applied fieldH (h5cH).
-
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Here we use only the result forHic9, which is presum-
ably most reliable. ForHic9, the gap is very well fit by the
power law D5kH2/3, without introducing the logarithmic
correction. The proportionality constant is given byk51.316
if D andH are measured in units of kelvin and tesla, resp
tively. By comparing this with Eq.~5.32! and ~5.33!, where
we assume the logarithmic factor to be close to unity for
present case, we obtainc50.111. This also gives a constrain
on the DM vector through Eq.~2.9!.

C. ESR linewidth

An anomalous broadening of ESR, which is strongly d
pendent on the field direction, at low temperatures w
observed25 in Cu benzoate. The mechanism of this broade
ing was left unexplained. However, we have recently dev
oped a field-theory approach to ESR on quantum spin ch
at low temperature.26 According to the theory, the contribu
tion of the staggered field to the ESR linewidth is given b

G}
h2

T2
. ~7.1!

This diverges at lower temperature, in agreement with
experiment. The direction dependence can also be expla
by the direction-dependent proportionality constant betw
the effective staggered field and applied uniform field. Ac
ally, this is consistent with the previous discussion on
field-induced gap, at least qualitatively. In particular, f
Hia9, the low-temperature anomalous part of the ESR lin
width vanishes. This implies the cancellation of the sta
gered field forHia9. While this appears to contradict th
apparent gap found in Ref. 1, it is rather consistent with m
refined analysis discussed in the last subsection. In addi
Hic9 gives the largest linewidth, which is consistent with t
larger field-induced gap forHic9.

On the other hand, the ratio of the staggered field is
quantitatively consistent with the specific heat measurem
The estimate of the staggered field is somewhat subtle
cause there are also contributions to the ESR linewidth fr
other sources~most importantly exchange anisotropy/dipol
interaction!. The low-temperature anomalous part, which
related to staggered field, appears to be approximately 1
for Hib andHic9. This gives the ratio of the staggered fie
1:2.1 forHib andHic9. This is smaller than expected from
the specific heat analysis.

D. Neutron scattering

As we have discussed in Sec. VI, the analyses on
polarization and intensity of the first breather suggests
the total effective staggered points to272° (1108°) from
a axis, or equivalently255° (1125°) froma9 axis, if the
external field is applied inb direction. This gives anothe
constraint on the DM vector.

E. Summary of the estimate of the DM vector

There are several experimental data which give some c
straints on the DM vector, and they are not perfectly cons
tent. The estimate of DM vector is also sensitive to the
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1052 PRB 60IAN AFFLECK AND MASAKI OSHIKAWA
sumed form of the g tensor, extracted from ESR
measurements.9 The experimental data are presumably su
ject to several errors which has not been identified precis
We hope that more experimental data will be available in
future to make more precise comparison with the theory

The ESR linewidth was measured for various directio
of the applied field. Thus it is perhaps quite reliable that
staggered field precisely cancels atHia9. As we have dis-
cussed, this is rather consistent with the refined specific
result. This gives a single constraint on the DM vector. In
linearized approximation, it reads

ha9 50.019010.0453
Da9
J

21.058
Dc9
J

50. ~7.2!

The estimated ratio of the staggered field forHib and
Hic9 was inconsistent between the specific heat and E
However, it should be recalled that each analysis has its
problem. In the specific heat analysis, an apparent gap s
ture, which is unrelated to the staggered field, was obse
for Hia9. Whatever the origin of this gap structure, it
natural to expect similar contributions also for other fie
directions. Unfortunately, we do not know how to estima
these effects at present. On the other hand, there are
contributions to the ESR linewidth from other sources th
the staggered field, and the subtraction causes some u
tainty, in addition to the estimate of the linewidth itself.

The constraints on the DM vector from various expe
mental results are summarized in Fig. 11. For the case
neutron scattering polarization we have included an e
mated error bar from the polarization analysis of Ref. 23.
have not attempted to estimate error bars in the other ca
We see that a candidate DM vector (Da9 ,Dc9)
;(0.13,0.02)J, which satisfies the most reliable requireme
of the cancellation forHia9, is roughly consistent with al
the constraints except for the ratio of the gap betweenHib
andHic9.

FIG. 11. Estimate of the DM vector from various experimen
Each constraint gives a set of allowed DM vectors as a curve
Da92Dc9 plane. The constraint from neutron scattering polarizat
is drawn with an assumed error of65°.
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This suggests that the observed ratio of the gap w
wrong, or was affected by factors other than the stagge
field. More experimental data are needed to draw a relia
conclusion.

VIII. SUSCEPTIBILITY

In the first subsection we consider the staggered susc
bility, resulting from the application of a staggered magne
field, using the mapping onto the sine-Gordon model. In
next subsection we combine this with the standard unifo
magnetization of theS5 1

2 Heisenberg model to obtain th
total physical susceptibility.

A. Staggered susceptibility

We first discuss the susceptibility of the sine-Gord
model. Writing the sine-Gordon Lagrangian in the form

L5
1

2
]nf]nf12m cos~A2pf!, ~8.1!

and adopting units where the velocity is set to 1, we defi
the sine-Gordon susceptibility as

x[2
]2F

]m2
, ~8.2!

whereF is the free energy. The ground state energy~i.e., the
T50 free energy! is expressed in terms of the gap as27,28

E052
D2

4A3
. ~8.3!

This determines theT50 susceptibility using the exact rela
tionship between the coupling constant,m, and the massD:

D5m2/3Ã, ~8.4!

where27,28

Ã[A02~2p!1/652p1/6FG~3/4!

G~1/4!G
2/3FG~1/6!

G~2/3!G'4.82764.

~8.5!

This gives theT50 susceptibility:

x~0!5
Ã3

9A3D
. ~8.6!

The high-temperature susceptibility is given by

x→4E
0

b

dtE
2`

`

dx^cosA2pf~t,x!cosA2pf~0,0!&.

~8.7!

This Green’s function is normalized to 1/2r ~at T5t50). At
finite t andT we have

1

Ar 21t2
→

1

b

p Fsin
p

b
~t1 ix !sin

p

b
~t2 ix !G1/2. ~8.8!

Hereb[1/T. Thus, the susceptibility becomes

.
in
n
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x~T!→2pTE
2`

`

dxE
0

b

dtA 2

cosh~2px/b!2cos~2pt/b!

5
1

T FG~1/4!

G~3/4!G
2

5
8.75376

T
. ~8.9!

~This result for the integral can be obtained, by analytic c
tinuation, from the general result of Schulz.29! An integral
equation determining the sine-Gordon free energy at finitT
was given in Ref. 30. We may determine the susceptibi
by differentiating twice with respect tom. Note however that
this integral equation actually determinesF(T)2E0 so we
must add the zero-temperature part of the susceptibi
given above. The resulting susceptibility,xD is plotted ver-
susT/D in Fig. 12. As expected, it agrees quite well wi
high temperature result;8.73576/T down toT;D. It has a
maximum at aboutT;0.5D. The T50 value is given by
Eqs.~8.6! and ~8.5!.

Up to a multiplicative factor and logarithmic correction
the sine-Gordon susceptibility essentially gives the stagge
susceptibility of theS5 1

2 chain, i.e., its response to a sta
gered field

xs~T,h,H ![2
]2F

]h2
. ~8.10!

In order to determine this factor and estimate the logarith
corrections we first consider theT50 staggered magnetiza
tion of theS5 1

2 chain.
We refer to the staggered magnetization asms :

^Sj
x&5~21! jms . ~8.11!

In the continuum limit,

ms}^tr gsx&}^cos~2pRf̃ !&. ~8.12!

Since this operator has scaling dimensionpR2, a standard
RG scaling argument gives the scaling of the staggered m
netization with staggered field

FIG. 12. Susceptibility of the sine-Gordon model, as defined
Eqs.~8.1! and~8.2!, divided by a factor of 2(2p)3/2. This is essen-
tially the staggered susceptibility of the spin chain, multiplied byD,
up to a slowly varying logarithmic factor. The exact curve is o
tained by a numerical solution of the integral equation, and
high-temperature asymptotics is from the perturbation theo
0.278D/T. The T50 value is given by 0.229, in agreement wi
Eqs.~8.6! and ~8.5!.
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ms→DS H

J D S h

JD pR2/(22pR2)

~8.13!

for some functionD. For weak fields the exponent is ap
proximately 1/3. In a similar way to our analysis of the g
in the previous section, by combining the exact results
the xxz model with an RG analysis of the marginal opera
we may determine the scaling of magnetization with st
gered field in the case of zero uniform field

ms→D0~h/J!1/3F ln
J

hG1/3

~8.14!

and determine the behavior ofD(H/J) in Eq. ~8.13! for
small field

D~H/J!→D@ ln~J/H !#1/3. ~8.15!

ms obeys a standard RG equation relating a change in
cutoff energy scale,E, to a change in the coupling constan
l:

F ]

] ln E
2bW ~lW !•

]

]lW
2g~lW !Gm50. ~8.16!

Working to linear order in the marginal couplings, as befo
we setb'0 and use Eq.~5.8!. Using Eq.~4.10!, and lower-
ing the cutoff scale to the gap,D, this gives

ms→FS D

J D 1/2F4p

A3
l'~D!G21/4

, ~8.17!

for some constant,F. Using Eq.~5.11!, and Eq.~5.33! this
can be written as

ms→FA0
1/2S h

JD 1/3F4p

A3
l'~D!G21/3

, ~8.18!

where A0 is defined in Eq.~5.5! and determined in Eq
~5.33!. As in the previous sections we obtain the vario
formulas from the different asymptotic scaling ofl'(D) in
the three cases:H50, H@D, andH50 with exchange an-
isotropye, defined in Eq.~5.21!. Using Eq.~5.12! we obtain
Eq. ~8.14! with

D05FA0
1/2. ~8.19!

Using Eq.~5.16! we obtain Eq.~8.13! with

DS H

J D5D0@2~122pR2!#21/3S H

J D 22(122pR2)/3

.

~8.20!

Using Eq.~5.14! we obtain Eq.~8.15! with

D5D0e21/3. ~8.21!

Using Eq.~5.22!, in the limit D/J→0, in Eq. ~8.17! we
obtain an expression forms in terms of D with exchange
anisotropy:

ms→F~2e!21/4~D/J!1/22e/4. ~8.22!
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We may determine the constantF, by comparing to the exac
result of Ref. 7. From Eq.~5.28!

ms→C~R!^exp@2p iRf̃#&, ~8.23!

with the exact formula forC(R) given in Eq.~5.26!. This
expectation value is given in terms of the soliton mass,D in
Ref. 7, Eq.~15!, with

b5Ap

2
R'

1

2
2

e

8
. ~8.24!

Inserting a power of the spin-wave velocity,v by dimen-
sional analysis, and taking the limit of smalle, we obtain

^e2p iRf̃&→
~4/3!pG~3/4!

16 sin~p/3!G~1/4!S G~2/3!G~5/6!

4Ap
D 23/2

3S D

v D 1/22e/4

. ~8.25!

This gives a result consistent with Eq.~8.23! and determines
the constant,F, to be

F529/4
Ap

3A3

G~3/4!

G~1/4!
@G~2/3!G~5/6!#23/252A0

3/2/~3A3p!,

~8.26!

where the constantA0 is defined in Eq.~5.5! and its value is
given in Eq. ~5.33!. Here we have used the exact ident
G(1/6)G(5/6)52p. Hence the amplitude of Eq.~8.14! is
given by

D05FA0
1/252A0

2/~3A3p!. ~8.27!

We thus obtain theT50 staggered susceptibility of theS
5 1

2 chain by differentiatingms with respect toh

xs~T50,h!5
2A0

3

9pA3

ln1/2~J/D!

D
, ~8.28!

for H50. Comparing to Eqs.~8.5! and ~8.6!, we see that

xs~T50,D!5
ln1/2~J/D!

2~2p!3/2
xSG~T50,D!. ~8.29!

The susceptibility forT@D ~and H50) follows from
Eqs. ~8.8! and ~8.9!. Here we use the exact result for theT
50 correlation function of theS5 1

2 chain12

^Sx~r !Sx~0!&→
~ ln r !1/2

~2p!3/2r
. ~8.30!

This differs from the correlation function of the sine-Gord
model by a factor of (lnr)1/2/2(2p)3/2. @Note the factor of 4
difference in the susceptibilities due to the factor of 2 in t
interaction term of the sine-Gordon Lagrangian of Eq.~8.1!.#
Upon going to finiteT and Fourier transforming at zero fre
quency and wave vector, we expect the logarithmic facto
become ln1/2(J/T). Thus

xs~T@D!5
0.277904 ln1/2~J/T!

T
5

ln1/2~J/T!

2~2p!3/2
xSG~T@D!.

~8.31!
e

o

Comparing to Eq.~8.29! suggests the heuristic formula

xs~T,D!5
ln1/2@J/max~T,D!#

2~2p!3/2
xSG~T,D!. ~8.32!

xSG/@2(2p)3/2#'xs is plotted in Fig. 12.
Including a small uniform field,H, only makes unimpor-

tant changes in these formulas. AtT50, the power ofD in
Eq. ~8.28! changes by a small amount; the argument of
logarithm changes toJ/H and the amplitude by a factor o
e21/3. ForT@D we must distinguish two regimes, dependin
on the relative magnitude ofH and T. For D!T!H, the
power of T changes. On the other hand, forD!H!T we
expect to obtain Eq.~8.31!.

B. Physical susceptibility

Above we considered the staggered susceptibility res
ing from ~independent! staggered and uniform fields. T
make any comparison with experiments we must take i
account that the effective staggered field is proportiona
the uniform field,

h5cH, ~8.33!

where the constant of proportionality,c is strongly dependen
on field direction. The physical susceptibility is convenien
obtained from its thermodynamic definition

x52
d2F

dH2
, ~8.34!

whereF is the free energy. WritingF as a function of uni-
form and staggered fields, we must seth5cH before taking
the H derivative. We may calculate the free energy in t
rotated spin basis of Eq.~2.4!, used throughout this pape
Noting that the first derivative ofF with respect toH or h
gives the uniform magnetization,mu and staggered magnet
zationms respectively~in the rotated basis!, we obtain

xphys5
]mu

]H
1c2

]ms

]h
12c

]ms

]H
, ~8.35!

where we have used

]mu

]h
5

]ms

]H
5E

0

b

dt^ms~t!mu~t!&. ~8.36!

We may ignore the dependence onh of the first term and use
the standard result for the uniform susceptibility of theS
5 1

2 chain,xu
0 . For low fields and temperatures this gives

]mu

]H
'xu

0→
1

2pvs
5

1

p2J
, ~8.37!

independent of field and temperature. The second term in
~8.35! is larger than the third so we approximate

xphys'xu
01c2xs~h,T!, ~8.38!

wherexs is the staggered susceptibility discussed in the p
vious subsection. Thus, when measuring the physical sus
tibility of the present system, one actually probes also
staggered susceptibility.31

While the first term, the standard result for the susce
bility of the S5 1

2 chain, goes to a finite constant, atT and
H→0, the second term, resulting from the effective sta
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gered field, is highly singular. At zero field it blows up
T→0 as 0.278 ln1/2(J/T)/T. Thus, although it is multiplied
by the small constant,c2, it eventually dominates for low
enoughT. For any finite field, the divergence of the seco
term is cut off, at essentially the gap energy,D(h), at a value
of approximately 0.229 ln1/2(J/D)/D, as shown in Fig. 12. At
low fields the behavior looks quite similar to a paramagne
impurity contribution. It can be distinguished from tha
however, by its very strong field-direction dependence. T
effect is largest for the field in thec direction when the
parameterc2'0.01.

The experimental susceptibility32 of Cu benzoate show
very peculiar behavior at low fields and temperatures. As
temperature is lowered, in low fields, the susceptibil
grows. This effect is highly direction dependent with t
biggest effect occurring for fields in thec direction. This
effect is cut off by the application of a field. Qualitativel
the experimental results look similar to our prediction
However, at a more quantitative level there are many diff
ences. The anomalous low field lowT part of x is much
larger in the experiments than in the theory. For instance
zero field, a temperature of 1 K'J/18, andc250.01, the
value that we find forHic, the second term in Eq.~8.35! is
still smaller than the first by a factor of about 1/2. Th
anomalous contribution could be somewhat larger due to
third term in Eq.~8.35! and the logarithmic correction. How
ever, the anomalous term inxc observed in Cu benzoate a
this zero field and lowT is about six timeslarger than the
xu

0 . This is perhaps too large to be explained by our the
which is purely one-dimensional.

Furthermore, the detailed experimental dependence oT
andH is quite complex. The maximum susceptibility occu
at a field of about 30 G andT51.5 K. At lower fields or
temperatures the susceptibility decreases somewhat. At
fields, two extra low temperature peaks are observed in
susceptibility as a function ofT ~in addition to the normal
one for anS5 1

2 chain atT'0.6J). While it is tempting to
try to identify the higher-T peak with the peak inxs shown
in Fig. 12, and the lower-T peak with the onset of Ne´el order,
both susceptibility peaks are broad, unlike what would
expected from a phase transition.~Indeed, no evidence fo
magnetic order was found from neutron scattering,23 down to
T50.8 K.! A strong frequency dependence of the lowT and
H susceptibility was also observed.

We expect that a proper theoretical description of the l
field and temperature susceptibility of Cu benzoate will
quire the inclusion of interchain coupling effects. The inte
chain superexchange paths look complicated and it is
even clear what is the sign of the interchain coupling. W
remark that a perfectly one-dimensionalS5 1

2 antiferromag-
net with SU~2! symmetry broken only by the DM interactio
has a disordered ground state. This follows from our s
G
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redefinition in Sec. II which maps the system into aneasy
plane xxzmodel which is well known to have a disordere
ground state with power-law correlations. We may think
the spins as fluctuating primarily in the plane perpendicu
to DW with a tendency for the cross product of neighbori
spins to be parallel toDW . This system has a U~1! symmetry.
Interchain coupling would normally be expected to produ
long-range order with both an antiferromagnetic compon
and a possible perpendicular ferromagnetic component.
example, forDW } ẑ,

^SW j&52ms~21! j x̂1muŷ. ~8.39!

~See Fig. 13.!
The standard mean field treatment of the interch

interactions33 would suggest a critical temperature of ord
the interchain coupling~assuming that it is antiferromag
netic!. On the other hand, when a magnetic field is appl
~not parallel toDW ), the U~1! symmetry is broken and the
phase transition should disappear.ms andmu now becomes
nonzero even in the purely one-dimensional system and
no longer order parameters for spontaneous symmetry br
ing. Thus the application of a magnetic field smoothes
the phase transition in this system. Surprisingly, neut
scattering experiments in zero field have failed to detec
Néel transition.
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FIG. 13. Spin order for antiferromagnet with DM interaction.
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