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Recent experiments on triia-:% antiferromagnetic chain compound, Cu benzoate, discovered an unexpected
gap scaling as approximately tlﬁepower of an applied magnetic field. A theory of this gap, based on an
effective staggered field, orthogonal to the applied uniform field, resulting from a staggered gyromagnetic
tensor and a Dzyaloshinskii-Moriya interaction, leading to a sine-Gordon quantum field theory, has been
developed. Here we discuss many aspects of this subject in considerable detail, including a revie® of the
=% chain in a uniform field, a spin-wave theory analysis of the uniform plus staggered field problem, exact
amplitudes for the scaling of gap, staggered susceptibility and staggered magnetization with field or tempera-
ture, intensities of soliton and breather peaks in the structure function, and field and temperature dependence of
the total susceptibility{ S0163-182699)03226-9

I. INTRODUCTION gered field, which couples directly to the ®leorder param-
eter, is expected to produce an ordered antiferromagnetic
The effect of a magnetic field on &3 antiferromag- moment and a gap which scale with field.
netic chain has been extensively investigated theoretically This idea was developed in detail in Ref. 2 where it was

over many years. The Hamiltonian is written found that a staggered Dzyaloshinskii-MorygDM) inter-
action also contributes a roughly equal amount to this effec-
~N & & 2 tive staggered field. This corresponds to an additional term in
H_Ej: [JSSj+1~9gueHS]]. (1.3 the Hamiltonian:

An important conclusion was that the ground state remains . L -
gapless right up to the saturation field. The low-energy exci- Hou=> (—1))D-(§_1X$§)). (1.4
tations can be described by bosonization which predicts gap- :
less excitations at wave vectors 0 amdand also at the

: It was found that several aspects of the experiments could
incommensurate wave vectors

be explained in detail by this model. These include the field
. R orientation dependence of the gap and its scaling with field

ki=x2mm(H),  kp=m=2mm(H), (-2 magnitude. Much of this work used the bosonization tech-
wherem(H) is the magnetization per sitm=(S/). The first  nique which maps the problem onto the sine-Gordon model,
detailed experimental study of such systems at large field®r which various exact results are available. The excitations
with gugH of O(J) were only performed very recentyon  observed in neutron scattering were identified with the soli-
Cu benzoate. This material has a relatively small exchangton, antisoliton, and “breather’{soliton-antisoliton bound-
energy,J~1.57 meV so thayugH/J~0.52 for a field of 7  state spectrum of the sine-Gordon model. Additional results,
T. While these experiments verified, in detail, the expectedurther supporting this approach, were obtained by Essler
field-dependent shift of the wave-vector at which a gap mini-and Tsvelik® As shown below, the effective staggered field
mum occurs, they also discovered an unexpected result. % essentially perpendicular to the uniform field. We note that
non-zero gap appeared which seemed to scale as approfite case of a staggered field parallel to the uniform field
matelyH?? with strong dependence on the field orientation.maps into a related sine-Gordon model and was analyzed in
Denderet al! suggested that this gap might arise from theRef. 6. The purpose of this paper is to provide more details
staggeredy (gyromagneti tensor, associated with the low and some extensions of the results in Ref. 2. While Cu ben-
symmetry of the crystal structure and the presence of tw@oate is the only example of such a system that we discuss in
crystallographically inequivalent Cu sites on each chainthe present paper, it should be possible to apply our theory to
Thus the last term in Eq1.1) must be replaced by other quasi-one dimensional system with similar crystallo-
graphic structure.

In the absence of a staggered field, the critical behavior of
the antiferromagnet is determined by three field dependent
guantities: the magnetizatiom(H) [which determines the
This results in the presence of an effective staggered fieldsoft wave vectors via Eq(1.2)], the spin-wave velocity,
g°H, upon the application of a uniform field. Such a stag-v(H) and the boson compactification radi(shich deter-

I

H=—M5j§bHa[g:b+<—1>igzb18?. (1.3
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mines the critical exponentsR(H). All three of these quan- 4
tities can be determined very accurately by numerical solu- ¢
tion of Bethe ansatz equations. Furthermore, we derive an
exact relationship between these three functions using field
theory arguments. We also derive the logarithmic depen-
dence ofR on H, asH—0, from the existence of a margin-
ally irrelevant operator, using the renormalization group.

We determine the scaling of gap with staggered field, or-
der parameter with field, and susceptibility with temperature.
The calculations are done including logarithmic corrections
which arise from a marginally irrelevant operator and take
into account both uniform and staggered fields. Furthermore, ) , N
the exact amplitudes of the scaling functions are determined FIG. 1. Crystal structure of Cu benzoate. Filled mrcles_ aré'Cu
using a recent result of Lukyanov and ZamalodchiK(ﬁN- Ions, connected atoms are ben_zoate group, and grey circles repre-
ter this calculation was finished we received the réport sent HO molecules. Unit cell 'S.Shown as a frame, and arrows
which gives the same result for the gap, without a discussior'1ndlc"j1te crystal axes part of the figure.
of logarithmic correction$.We also give some further dis-
cussion of the structure facto®(q,®), measured in neu- Will also alternate, corresponding to the local tetragonal axes
tron scattering. We discuss a hidden(8lUsymmetry of the around each Cu ion. The principal axis for the anisotropic
model. We prove that the longitudinal structure factfar ~ €xchange interaction is expected to be theaxes, the per-
“a" corresponding to the uniform field directipmets con-  pendicular bisector of | and Il axes. On the other hand, the
tributions from only the soliton and antisoliton intermediate principal axis for the dipole interaction, which is of roughly
states, in agreement with experiment. On the other hand, tHe€ same order of magnitude is essentially thexis. Com-
transverse structure function gets contributions only from thdining these two types of contributions to the nearest neigh-
breathers. Using the approxima8&J(2) symmetry, we dis- bor spin-spin interaction, gives a principal axis which
cuss the relative intensity of the various single-particle peak&oughly bisectsc’ andc, and is denoted” in Fig. 4. It is
in the neutron-scattering cross section, taking into accourgonvenient to refer thg tensor to thisa”-b-c” coordinate
the polarization dependent factors which arise from Fourier
transforming the dipole interaction between neutrons and
spins which were omitted in Ref. 5. A comparison is made
with experimental results. In particular, the problem of de-

termining a consistent value for the DM vectd, is dis-
cussed. The susceptibility of the sine-Gordon model is cal-
culated, using the integrability of the model, giving
essentially the field and temperature dependence of the stag-
gered susceptibility of the antiferromagnet.

In Sec. Il we discuss the DM interaction and the mapping
of the system into a Heisenberg model with orthogonal uni-
form and staggered fields. In Sec. Ill we treat this problem
using conventional spin-wave theory. In Sec. IV we discuss
bosonization in the presence of a uniform magnetic field. In
Sec. V we extend the bosonization approach to the case with
staggered field and analyze the induced gap. In Sec. VI we
discuss structure factors and compare with the observed neu-
tron scattering cross section. In Sec. VIl we present estimates
of the DM interaction based on several experimental results.
In Sec. VIl we discuss the magnetization and susceptibility.

II. EFFECTIVE HAMILTONIAN

The crystal structure of Cu benzoate is shown in Fig. 1
and Fig. 2. The chain direction is tleeaxis. Note that each
Cu atom is surrounded by six ligands with a local symmetry
which is almost tetragonal. However the principal axes for
this tetragonal symmetry alternate along the chain, with the
two inequivalentt axes being rotated by 10° relative to each
other. These correspondigaxes are labeled | and Ilin Fig.  FIG. 2. Enlargement of crystal structure near a (@iack
3. Theb axes are the same for both Cu sites. Neither of thesgpheres chain with O atoms of KO (dark spheresand those of
sets of principal axes correspond to the crystal axes. It iBenzoate groupslight spheres Note that the oxygen octahedra
expected that the principal axes for the gyromagnetic tensdfave two different orientations on staggered Cu atoms.
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te As discussed by Dzyaloshinskiand Moriya? in mag-
netic crystals of low symmetry an additional antisymmetric
exchange interaction occurs, the DM interaction

HDMzg 5J(§JX§]+1) (22)

The possible values of the DM vecttﬁrj can be limited by
considering crystal symmetries of Cu benzoate. First, the
compound is invariant under a translation alongdfais by
two sites. This means the DM vectors are the same among
the even(or odd links, but even and odd DM vectors can be
different. Secondly, there is a symmetry under rotation by
b angle = about an axis parallel to thb axis that passes
through the midpoint of two neighboring sitesdndj+1),
along the chainsq axis). As noticed by Moriyd, this im-
a plies the DM vector for the interaction betwegandj+1
FIG. 3. Local magnetic principal axes of inequivalent Cu sites  Must be orthogonal to the axis. This can bE' shﬁown as
and I)). The principal axes of the averagetensors are denoted as follows: assume we have the DM interactibn (S;X S; ; 1).
a’, b, andc’. Now apply the rotation described above. It acts on the spin
operators asy®——S3%; _, and S{—S, ., . Thus, for
system. From electron spin resonafESR measurements, theb component oD, the DM interaction would be inverted

it takes the form while it is unchanged for tha,c component oD implying
that DP=0. Finally, the crystal structure is invariant under
the combined operation of one site translation along the
chain(c) directionand reflection in theac plane. Consider-
g=| *£0.0190  2.059 =*+0.0495| =g"+g°, ing the fact that the spin vectd, is an axial vector, the
0.0906 =*=0.0495 2.316 operation acts a§f°*——S*%, and S$—SP,,. Since the
(2.1 DM vector is orthogonal to thb axis (and thus one factor of
SP always appears in the outer prodythe DM interaction

with the * referring to the two inequivalent Cu siteg! and ~ t€rm is inverted by the combined operatidd: (S;X S 1)
g® are the uniform and staggered parts of theensor. This  — —D-(S;+1X ;). Thus, the DM vector is alternating as
staggeredg tensor produces an effective staggered fieldjn Eq. (1.4). There are apparently no other restrictions that

+g°H, while the uniformg tensor produces an effective uni- €an be placed on the DM vector using symmetry alone. By

form field g"H. In the special cases where the applied field isconsidering a tight-binding model for the exchange interac-

‘ : ”en . tions it was estimatédthat D/J is of O(8g/g) where dg is
along theb axis or in thea”c” plane the effective staggered the deviation ofy from twice the identity matrix.

field is perpendicular to the applied field and also to the . . . X .
effective uniform field. For general directions of the applied. Apart from the antisymmetric DM interaction, the remain-

. . o o ing exchange anisotropy is believed to be quite negligible
field they are almost perpendiculéto within a few %. (about 1% ofJ) and we will henceforth ignore it. Taking

Dz, we may write the Hamiltonian

2.115 =*=0.0190 0.0906

) .1 _ -
¢ =3 2 [T55 1S+ T S5Syp0t (Hee)]
+J; [S5i-1S5+ S5 S5 4115 2.9
where 7=J+iD. Performing a rotatiol? of the spins by an
angle = a/2:
a S;jﬂsgjeialz, S;j+1*>8;j+1e_ia/2! (24)
where
all
tana=D/J, (2.9
the Hamiltonian is transformed to the standarsdz model:
al
FIG. 4. Local principal axes of combined magnetic interactions A= 2,: quszHJr%(ij 5f+1+ H.c)l. (2.6)

a” andc”, shown inac plane.
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z though this misses certain features caused by quantum fluc-
tuations in one dimension, it is still quite instructive.

The classical ground state is a canted antiferromagnetic
structure, shown in Fig. 5. The spins on both sublattices lie
in thexz plane canted towards ttezeaxis by an angle from

> - the =x axis. The classical energy of this state is

5 5 E(9)/L=—JS’cos 20—hScos#—HSsing. (3.1
X This is minimized foré the solution of
FIG. 5. Classical spin configuration.

4)Ssinf cosh+hSsind—HScosd=0. (3.2

With some assumptions this anisotropic exchange may carFor h=0, the solution is

cel the preexisting one. In any event, it is small and we will

ignore it. sinf=H/4JS. (33)
Now consider an external magnetic field, approximating|, order to do a systematic@kxpansion, it is convenient to

theg tensor as two times the identity matrix. The spin redef"regardH andh as being 0fO(S). We assume tha is less

nition of Eq.(2.4) introduces an effective staggered field. For 2 the saturation field, 5. The leading order spin-wave

example, for a uniform field in the direction expansion for a spin pointing in thedirection is

i St St
S—aja;, E(aj+aj)'l E(aj—ai)

Combining the actual form of thg tensor with the DM Herea; is a boson annihilation operator. To consider small

interaction, we can obtain effective uniform and staggeredjyctuations about the canted structure we simply write
fields corresponding to an arbitrary applied one. Writing the

o . o
—HY S'—»-HX cos; Sf+(— 1)) sinySf|. (2.7 g0
] I J

2 . (39

rotation matrices by+ a/2 aroundD as §2i~Ry§2i ,
Rp(+al2)=R"+R°, (2.9 S 1~RRyS 1, (3.5
the effective uniform and staggered fields are defined by whereR, is a rotation about thg axis by — 6:
HY=[R Yg"+ R g°]H, cos§ 0 -—sind
HS=[ R "+ R “g*]H. 2.9 Ry=| 01 0, (3.6

sin6 0 cosd
In general,H is nearly orthogonal téi". For smallg® and

D/J, the staggered field can be approximated as andR, is a rotation byr about thez axis:

-1 0 O

- - 1. -
Hs~gsH+ED><g”H, (2.10 R,= 0 -1 0]. 3.7
namely the sum of two contributions. 0 0 1
Henceforth, since we are ignoring the small residual exUsing the facts that
change anisotropy and assuming thitL HS, we will take T_
HY to be in thez direction ancH® to be in thex direction and R2=Ra,

refer to them as simplyd and h, respectively. Also setting

2ug=1 we arrive at the simple effective Hamiltonian: (RzRy)ai=(Ry)si

(RzRy)li: _(Ry)li ) (3.9

the Hamiltonian may be written in a manifestly translation-

. ) o ally invariant way:
with h<H. (Note that we have switched the directions of the

uniform and applied fields relative to our earlier pd&per . N T - - =
which, unfortunately, contained some inconsistencies of no- H:; [Jg)‘RszRySHl_H(RySi )z_h(RySJ )x]-
tation.) (39)

Heﬁ=2i[Jé&l—H&Z—h(—l)‘SX], (2.19)

Il SPIN-WAVE THEORY Itis the translationallinvariance of E_(8.9) which motivgted
the somewhat peculiar looking choice of transformation ma-
In this section we summarize the results of spin-wavetrices in Eqg.(3.5. Substituting Eq.(3.5 into the Hamil-
theory(leading order 13 expansionfor the effective Hamil-  tonian of Eq.(3.9), we find that the term oD(S?) is ac
tonian of Eq.(2.11). (As far as we know, spin-wave theory number and the term @(S*?) vanishes. The term dd(S)
results for this problem were first published in Ref.)1Al- is
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dependent oH up to H of O(JS). While this mean field

H~2 [(2JScos 20+ H sing+h cose)ala; exponent changes when one-dimensional quantum fluctua-
. tions are taken into account, it is reasonable to expect this
+(JS2)(cos 20—1)(a;raj+1+a;r+1aj) weak dependence oH to remain true. The upper mode,

E_. (0) depends strongly ol but only weakly onh. For h

+(J92)(cos 20+ 1)(aj*aj7t+1+ a;a;11)]. (3.10 <H, E, (0)~H.

Fourier transforming and performing a Bogoliubov transfor-

mation that mixes, with a’,, we obtain a single band of IV. BOSONIZATION FOR 0 STAGGERED FIELD
spin waves in the paramagnetic Brillouin zoregr<k< In the one-dimensional case, an exact picture of the low-
with dispersion relation energy behavior can be obtained using bosonization and RG

arguments. Here we summarize the results for the case of a

E(k)={[2)Scos 20+ H sinf+h cosd uniform field, but no staggered field.

—JS(1—cos 29)cosk]? We begin with the case where the uniform field also van-
S ishes. The low energy degrees of freedom of the quantum
—[JS(1+cos 29)cosk] T} (3.1  spin variables can be represented in terms of a free boson

The above transformation has allowed us to obtain a singl¥/ith Lagrangian density:

band in the paramagnetic Brillouin zone. We may equiva- 1

lently fold the dispersion relation into the antiferromagnetic L= 5[(f9t¢)2—vg((9x¢)2]- 4.1)
Brillouin zone, — w/2<k< /2. This gives us two branches

of spin waves with dispersion relations (Herevy is the spin-wave velocity which we will generally

E. (k) ={[2JScos 20+ H sin 6+ h cosé set equal to 1.The boson fieldg can be separated into left
- and right moving terms:
+JS(1— cos 20)cosk]?
—[JIS(1+cos 20)cosk]?}*2 (3.12 HLX)=SLLHX)+ Sr(t=x). 42
) . ) ) . Their difference defines the dual field:

While this is a fairly simple and explicit formula for the
energies in terms o, it must be borne in mind that is b= — b 4.3
determined in terms af, H, andh by Eq.(3.2). In the special L PR '
caseh=0, using Eq.(3.3), we obtain For H=0 there are low energy degrees of freedom at wave

12 vectors 0 andr. The spin operators can be approximated as

2
E+(k)=2JS{sin2 K+ 2(1) (cog k=*cosk)

43S . L 99 o
(3.13 j~_2wRK+ConS(_ ) cosﬁ,
Note that atkk=0, or equivalentlyk= 7r,
E_=0, s;we‘ZWR?" const co§+0(—1)i . (4.9
E.=H. (3.14  (The first constant above is universal. The next three are not,

ut C has been recently determined using the integrability of
he model*? and will be discussed in the next section.
For theH=0 Heisenberg modeR= 1/\/27. For thexxz
modelR (and C) vary with the anisotropy parameter. Writ-

The E_ mode is the Goldstone mode corresponding to
uniform precession about tteaxis. A nonzerc gives this
mode a gap, pinning the spins along theaxis. We may
calculate this gap, to lowest orderlirusing, from Eq(3.2),

0=sin"Y(H/4]S)+ 56 where ing the Hamiltonian
Hh
S0~ — . (319 H=0X [SS).1+5/S.,+ 0SSl (45
16J°S°—H i

To linear order the gap is given by exact Bethe ansatz results determine
A? &Ez’a &Ez’h 3.1 27R?=1 cos * 9 4.6
~{9—0 6+W . (3.19 mR°=1— = (4.6)
Thus R varies between 127 and 0 along thexxz critical line,
A~\4ISH 1+ (H?83°S?)][1—- (H/439)?]**+O(h32 Th=o=l in : (« anti

- H1+( )=« )°] (h™). In order to understand the vicinity of the isotropic antifer-

(3.17 romagnetic pointg=1, it is convenient to use non-Abelian
Note thatA is a singular function of the staggered field, bosonization:
exhibiting a mean field exponent of 1/2. On the other hand, it R o
depends only weakly on the uniform field, being almost in- §j~(JL+5R)+cons(—1)J tr(og). 4.7
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>

Since this is proportional to the free Lagrangian, we can
eliminate it by a rescaling of. This corresponds to a re-
scaling of the parameteR, decreasing it by an amount of
O(\,(0))=0(1- 6) in agreement with the Bethe ansatz re-
sult of Eq.(4.6).

We now consider the Heisenberg model with a uniform
external field(but no staggered fieldThe extra term in the
Lagrangian becomes, upon bosonization,

A, H ¢

Ly=—=—. (4.12
H 2 OX
This term can be eliminated by a redefinition of the boson
field:
G(t,x)— ¢(t,x) + " (4.13
X)— P(t,X) + —=x. .
N2

_ This leaves the free Lagrangian unchanged. However, it does
FIG. 6. The Kosterlitz-Thouless RG flows of E@.10. effect the interaction term and the bosonization formulas.

) o ) ) The interaction term is changed due to the shift of the
Hereg is the SU2) matrix field of the Wess-Zumino-Witten, components of the currents:

k=1 nonlinearc model (WZW mode). J, andJg are the

left and right moving conserved currents associated with the I r—dge™ M,
SU(2) symmetry of the spin chain. By comparing E¢4.4) . R
and(4.7) we may read off the correspondences between the N R
W2ZW fields and the free boson fields. These are
z z
L,R_>JL,R' (4.14)
‘]E:La_(ﬁ, Ji=— L(;Jrqg, (Note that the phases add, rather than cancel in the interac-
V8w V8 tion termJ;" J; .) The effect of these phases on the RG equa-
iR B tions can be determined from a consideration of the operator
J T Jpoce ETOR, product expansiofOPE. One of the OPE’s gets shifted
o - while the other one does not:
( el V2mé e‘i‘2”¢)
gec o i (4.8 o Jt
—ehimh ehEre 37 (%) (x)— e =0 "t

x—x'"
Hered.=d,%9,.

The bosonized spin-chain Lagrangian contains, in addi- +

. SO ) J
tion to the free boson Lagrangian, interaction terms I ()P (x)— L -, (4.15
) X—X
8
Lin=—= [N IR AL (FIRHH D] (4.9  The one-loop RG equations can be conveniently derived us-
V3 ing an ultraviolet cutoff on the distance between any pairs of
For the isotropic Heisenberg modal,= )\, =O(1). Includ- insertions of the interaction Lagrangian in perturbation
ing small anisotropy\,—\,«1— 8. These obey the RG theory. (See, for.egample, Ref. 13As the posmon space
equations: ultraviolet cutoff is increased fromto a’, we integrate over
that range of separation of the two points, using the OPE.
dn,/dIn E=(477/\/§))\f+0()\3), The net effect is that, when the cutoff is small compared to

1/H the phase factor in the OPE is nearly constant and can be
d\, /dInNE=(4x/ \/§)>\ZM +0O(\3%). (4.10 ignored. However, when the cutoff is large compared tb, 1/
_ . o the phase factor produces rapid oscillations which tend to
The RG trajectories are hyperbolas as shown in Fig. 6. FOgancel out the term from the effective renormalization. Re-
N>\, they end at the\; axis, corresponding to thexz  \ering to an energy cutoff, this means that the RG equations
critical line. For\, <\, they lead towards strong coupling, s Eq. (4.10 are essentially correct foE>H, but for E
corresponding to the easy axis ordered phase. Reverting @ the right hand side should be replaced by 0 in the first
Abelian bosonization, we see that the fixed point Lagrangia%quation' That is\, ceases renormalizing, & of O(H)

contains the extra term whereas\, continues to renormalize as before. Thus the RG

82 - trajectories are essentially two straight lines. E3#H the
——N(0)I2i= — —\(0)[(d,)2— (9,0)2]. couplings renormalize along the isotropic separatxixE)
3R B3 AOL(58)"= (%) =\, (E), butforE<H, \, is constant and, renormalizes

(4.1)  to 0. (See Fig. 7. Thus, in order to determina,(0) we
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Spin-wave velocit;
1.6 T T T I? = |V |y

14
12+

1L

v/J 08
06

04 F

02 F

0 1 I 1 I 1 1 I 1 I
0 02 04 06 0.8 1 1.2 14 1.6 18 2

H/J

FIG. 9. Spin-wave velocity as a function of the applied field
H, determined from Bethe ansatz integral equations.

which break Lorentz invariance. The net effect is thatthe
dependence dR becomes more complicated at larg¢and
also the spin-wave velocity also change withWe have so

FIG. 7. The RG flows in the presence of a magnetic field. Thefar set it equal to 1. It is known to have the vald/2 from

turn occurs at an energy scale ofHD.

the Bethe ansatz, for the Heisenberg modeHat0. It can
be determined numerically from the Bethe ansatz integral

simply need to calculat®(H) using the isotropic RG equa- equations* and is given in Fig. 9.

tions of Eq.(4.10. For H<J, these give

V3

M= @y

(4.19

This argument may seem rather naive and it certainly does

not give the correct RG trajectory fé& of O(H). However,
due to the weak, logarithmic, dependence)ofon E we
expect that this argument gives the correct behavior, ()

Apart from the function® (H) andR(H), we will also be
interested in the behavior of the magnetizatioH). From
bosonization we obtain

(4.18

o
m(H)— 2w’

asH—0. One way of obtaining this result is from calculat-
ing the zero field susceptibility:

with H for H<J. This argument then determines the depen-

dence ofR on H for H<J:
2
2mR?=1— —=\,(0)=1—

V3

Precisely this result was obtained from the Bethe afiatz
the limit H<J. (See Fig. 8. For larger values oH higher

iy 410

x=%<($ sz>2>T:%<de%)z>T- (419

Bosonization leads to an exact relation between the three
functionsv (H), R(H), andm(H). This follows from calcu-
lating the susceptibility at arbitrary fieldd, using Eq.(4.4)

order terms in the RG equations would be needed and addjyith the corresponding value &(H):
tional interactions would have to be considered, some of

Critical Exponent
T T T

1 T T T

2rR?

H/J

FIG. 8. Critical exponent 2R? as a function of the applied field
H. Exact solution is compared with the leading termsRZ~ 1

—112logHy/H)] in the RG analysis. We show a good fit to the

numerical solution of the Bethe ansatz integral equations Wgh
=\/327%/e. This choice ofH, is four times the value in Ref. 14,
which gives worse fitting.

an X = oo 420

In particular, in the limit of smalH this predicts a logarith-
mic correction to the magnetizatidn:

H

27v 1

. (4.21

m—

2 (I

Equations (4.17), (4.20, and (4.21) are universal. They
should remain true for generic half-integer spin isotropic an-
tiferromagnets in the gapless phase. For the particular case of
the nearest neighbd®=3 Heisenberg model we can set
=7J/2 in EqQ.(4.2]). Equation(4.20 agrees very well with
our numerical solution of the Bethe ansatz equatigBge
Figs. 8, 9, and 10.As far as we know the firstnumerical
calculation of these quantities for<tH<2J were Ref. 16

for m(H), Refs. 17 and 18 foR(H), and Ref. 19 fow (H).
(Numerical calculations in Refs. 18 and 19 were based on the
Bethe ansatz integral equations of Ref.)14.
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Magnetization , . model. In this section we discuss the dependence of the gap
Exact —— on the uniform and staggered field.
The renormalization group scaling dimension of this op-

erator ismR? from which it follows that the gap scales as

3405105

for some functionA. Since, for small uniform fields7R?
~1/2, it follows that the exponent is approximately 2/3, as
found in the experiment. Note that this formula is valid for
1z 14 16 18 2 h—0 at fixedH. This is a reasonable order of limits for
describing the experiments sinbes only a few percent of
FIG. 10. Magnetizatiom as a function of the applied field, ~ H- The exponent is determined IR(H), given in Fig. 8.
determined from Bethe ansatz integral equations. We wish to improve on this result in two ways. First of
all, if we consider the case whet¢ is strictly 0, then this
Oncem, v, andR are determined from the Bethe ansatz,formula is modified to
all low energy properties of the system are determined by b 23 ]
:)eonsomzatmn. From Ed4.4) the magnetization can be writ- A/J_)Ao(j) In1’6< _)_ (5.5

0.6 T T T

1[2— 7R(H)Y
, (5.9

0 02 04 06 08

1
H/J

h

1 i We will calculate exactly the amplitudd,. This is not of
mH = ——— | dx—. 4.2 direct relevance to the experiments, however, since they are
(H) 27R(H) X (4.22 ; A i ;
77 in the opposite limitH>h. More importantly, we can deter-

Therefore the exact formula for the field-induced shifgins ~ Mine the amplitude functiopd(H/J) in Eq. (5.4) for H<J:

b— b+ 2mR(H)M(H)X. (4.23 A(%) A |n1/6( %) 5.6
All low energy Green'’s functions are then determined from _ _ .
Eq. (4.4 after shiftinge(x). In particular we see tha&? has We will also determine exactly the numerical factd,

the soft wave vectors 0 ang=27m(H) whereasG* has  Which is different tharA, in Eq. (5.5). While the logarithmic

the soft wave vectors: 277m(H) and . factors in Egs(5.5 and(5.6) are universal and follow from
an RG treatment of the marginal interaction, the exact nu-
V. BOSONIZATION FOR NONZERO STAGGERED FIELD merical coefficients are specific to the ordinary nearest

neighbor Heisenber§= 3 model and are obtained by using

Now we consider the effective Hamiltonian of E§.11) a remarkable exact conjecture made recently by Lukyanov
with both uniform and staggered fields nonzero dreH. and ZamalodchikoVextended to the Heisenberg point fol-
We begin by using the results of the previous section tdowing the method in Ref. 12See also Ref. 2D.
obtain theh=0 theory with the shifted and rescaled boson Our calculations follow the notation of Refs. 21 and 12.
field characterized byR(H), m(H), andv(H). For h=0,  We consider the renormalization group equation obeyed by
upon making these tranformations, the Lagrangian density ithe effective coupling constagi E) multiplying the cos in-
simply the free boson one of E¢.1). From the bosoniza- teraction in Eq(5.1), with bare valuenC/J for a bare cutoff
tion formulas of Eq.(4.4) the staggered field adds the inter- J, taking into account, to linear order, the effect of the mar-

action term ginal interactions of Eq4.9). This is
Lin=hCcog27R%). (5.1) dg. = .

Noting the duality transformation betweghand ¢ ) o
The anomalous dimension is given, to low order, by

hp=0yb, Ixp=—0b, (5.2) L.

we may also write the free Lagrangian in termsdof Y=o ﬁ)‘Z' (5.8
1 . ~ \, obeys the RG equation of EGt.10. By the usual scaling
EO:E[(at‘f’)z_(axd’)Z]' (5.3 arguments, we determined the gappy reducing the ultra-
violet cutoff down to a scaléd such thatg(A) is O(1).
Hence we have the standard sine-Gordon field theory. Araking into account the dependence of the effective coupling
impressive array of conjectured exact results are available ogonstantg(E) on the bare coupling constarit/J, then de-
this model, which can be brought to bear on the spin-chaifermines the dependence of the gaphoin the caseH=0,
problem. The interaction term is sometimes written ashe RG flow of\,(E) is given by Eq(4.10 for all E. On the
cosB¢, so we see that we hayg=2xR. In the next section other hand, for finiteH, \,(E) essentially stops renormaliz-
we will discuss details of the excitation spectrum of thising at a scale of ordefl. Integrating Eq(5.7) gives
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1/4

(5.19

7\ L4In@/H)

This integral can be conveniently evaluated by changing inthis gives

tegration variables to\, (E’) using the second of Egs.

(4.10. This gives

g(E)=g(I(E/D ¥ (E)A (D] (5.10

Determining the gap by the conditiag(A)=1 and setting
g(J)«h/J, gives
h/J=B(A/3)¥ 4w\, (A)/\3]Y4 (5.12)

for some nonuniversal constaBf of O(1).

In the caseH =0, the solution of the RG equation, Eq.

(4.10, is

V3

M)~ Ay

(5.12

Thus,

A13=B~?3(h/3)?FIn(3/h)]Yg 1+ O(1/In(I/h))].
(5.13

For nonzeradH, the first of Eq.(4.10 is only valid for E
>H. At lower energies\, stops renormalizing. Its fixed
value at lowE determineR(H):

2mN,(0)/\3=1-27R(H)2~ (5.14

1
21n(J/H)

A(H)—B %% Y In(J/H)]YE. (5.20

Note that the same numerical constaBt,occurs in theH
=0 case, Eq.5.13 and theH>A case, Eqs(5.4) and
(5.20. However, in the latter case it gets multiplied by an
extra factor ofe™ ¢,

Finally we wish to determine the dimensionless ampli-
tude,B, appearing in Eq(5.11) and below. This can be done
using two remarkable results. One of them is the exact pro-
portionality constant in the bosonization formula for the
staggered part d8', that is the constar@ in Eqg. (4.4). This
fixes the coupling constant in the sine-Gordon mo@xd, in
Eqg. (5.1). The other recent result is the exact relationship
between the sine-Gordon coupling constant and the mass of
the lightest particle in the spectrum of the sine-Gordon
model, which is the gap\. This determines the exact rela-
tionship betweer andh. This calculation was done in zero
uniform field for thexxz S=3 antiferromagnet of Eq4.5).

The calculation was performed for all along the critical
line, —1<8<1. Due to the logarithmic corrections at the
isotropic point,6=1, an additional calculation is needed at
that point. This can be done using the RG. We essentially
just need to apply Eq(5.11) to the case oH=0 but §
slightly less than 1. Comparing to the exact result forall
<1 then determines the coefficies,

For 6<1 andH=0 we use the RG equations of Eq.
(4.10 at low energies. The RG flows are hyperbolas termi-

We can extend somewhat the accuracy of our results tpating on the positiva., axis. These flows are conveniently
larger H, by expressing the subsequent results in terms ofabeled by

R(H), determined numerically from the Bethe ansatz, rather

than by using the above asymptotic snidltesult forR(H).
For A<H, we use the second of E@.10 with \, fixed at
\,(0) as given by Eq(5.14 and the initial condition

A (H)=N\(H)=x,(0), (5.19
to obtain
3 E 2[1-27R(H)3]
M(E)~£[1—2WR(H)Z](ﬁ)
(5.16

SettingE=A and substituting into Eq5.11) gives

~=B

3 [2(1-27R?) Y4

(5.17

J

h A 2—7R? J (1-27R?)/2
EE

Thus we obtain Eq(5.4) with

J (1-27R?)12
) [2(1—27R?)]Y4

—1/(2— wR?)

(5.18

Note that in Eq(5.4) and(5.18, Ris a function ofH, shown
in Fig. 8 and given approximately by E¢5.14). As H—0,
we may evaluated(H) explicitly, from Eq.(5.14). Using

cos !

e=4m\,(0)/\3=2[1-27R?]=2 (5.21)

™

The solution of Eq(4.10 with this initial condition is

47N (D) €
3 Sinfen(IA)]” (622
Substituting into Eq(5.11) gives
h A 3/2 € 1/4
3 (3 [W] - 63

Note that in the isotropic limite— 0, we recover our previ-
ous logarithmic result of Eq5.5). On the other hand, taking
A/J—0 with € held fixed it gives

(5.29

) 32+ €ld

h
n 1/4
J*)(ZE) B 3

By comparing this to the exact result for arbitrady(and
hencee) we may extract the value of the amplitudz,

In Ref. 6 the spin correlation function in thexz antifer-
romagnet is shown to have the asymptotic behavior

C(R)?

(S —=(~1) 5172, (5.29
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with an exact expression determined for the amplitudeConsidering the numerical difficulties related to logarithmic

C(R)2. In the isotropic limit,R— 1/\2 corrections this is remarkably good agreement with the exact
result of Eq.(5.33. In the experimentally relevant casg,
C(R)? 1 <H, the gap behaves as in E®.4) and, for smalH/J, the
> Ael2 302 (5.26 amplitude is given by Eq5.6) with, from Eq. (5.20),
A=B %% 16~1 50416. (5.35

In Ref. 7 the operator cosiRé is normalized so
Thus our expression for the gap becomes

- ~ 1 2
- —-27R 2
(cod2mR$(0)]eog 27RA(r)])— S| A/J—1.50416In(J/H)1¥8(h/3) 12~ =RE? (5 36

5.2
(.29 For largerH/J, greater accuracy might be obtained by using
(after accounting for a difference in normalization of the freegq. (5.18 with B given in Eq.(5.31). That is

boson Lagrangian by a factor ofs§. This determines the
exact proportionality constant in the bosonization formula ofA/Jﬁ{0_422159\]/H)[1—27TR(H)2]/2
Eq. (4.4):
X[2(1_ZWR(H)2)]1/4}—1/[2—wR(H)Z](h/J)ll[z—wR(H)Z]’

(5.37

thereR(H) is given, from the Bethe ansatz, in Fig. 8. In-
serting its asymptotic value at lot,

S'~(-1)IC(R)cog§ 27R¢]. (5.28

Hence the coupling constant in the sine-Gordon Lagrangia
is preciselyC(R)h. The exact relationship between this cou-
pling constant and the mas4, of the soliton of the sine-
Gordon model is

1
27R(H)2~1— -—r, 5.3

2 1= T (1— 7R?/2) gives back Eq(5.36. We note that, to actually fit the ex-

perimental data, we take=cH for some constant of pro-
1 2-mR? portionality which depends on field direction but is generally
\/;F(m) of order a few %. Thus the actual scaling of gap with field is

= (5.29  not a pure power law.
il
4—2mR VI. STRUCTURE FUNCTIONS

Here we have inserted, by dimensional analysis, the spin- Fqor H=0 it is convenient to use non-Abelian bosoniza-

wave velocityv. Taking the isotropic limit on both sides of ion Eq.(4.7), so that the interaction term is written
this equation, using = wJ/2, gives

Linctr(go™). (6.1
h <A>3/2+E/4 r/s [F(Z/S)rlz In thi th del h &V try. Note that
—_— | = n this case the model has an @Jsymmetry. Note tha
2\2m%ey I 271 (3/4) [ T'(1/6) when both uniform and staggered fields vanish and ignor-

(5.30 ing the marginal operator, the symmetry is actually

We see that this is equivalent to the RG result of &24  SU2)XSU(2):
with the amplitude determined to be

g—UgV". (6.2
32
_ 1/4F(1/4) [F(ZIQ’) (5.3 These two independent $2)'s act on left and right-movers
['(3/4) | T'(1/6) separately. The ordinary $2) symmetry of the spin chain is

the diagonal subgroup witt =V. This symmetry is broken

From Eq.(5.13, for H=0, the gap behaves as : )
by the staggered field. However, a different(@Usubgroup

A1J—Ay(h13)?FIn(I/h)]Ye, (5.32  of the original SU(2) SU(2) survives for which
with V=o0*Ud". (6.3
I'(3/4)12RT (1/6) We may redefine the field by
AO=872/3=271/ m m%177695
(5.33 g—go* (6.9

Since we were not aware of the result of Ref. 7 at the time, i Which case the interaction becomeg twhich has the

Ref. 2 the behavior of the gap with staggered figlat H diago_nal SL_OZ) symmetry. In fact, thi$ continuum limit in_—
—0) was estimated numerically by extrapolating Lanczoderaction arises from a staggered Heisenberg exchange inter-

results for lengths up to 22 sites. A very good fit to Eq_iatcnon, ?shoccurs_ in thellsplln-I:e;]erls problem. Thelequwa—
(5.32 was obtained with ence of the continuum limit of these two apparently very

different problems, is a nontrivial consequence of the chiral
Ag~1.85. (5.34  symmetry which maps<{1)IS; into (—1)'S;-S; ..
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If we assume that thg on_Iy effect of the uniform field is to linear combination of the solitofcreated by tgo~) and the
add a term to the Hamiltonian: antisoliton (created by tgo ™). G?%,w) consists of two
identical contributions from ther~ and ot terms in Eq.

_ P Lz 1z (6.11). Each contributes exactly (1/8YY(7,w). The effect

oH HOLHJR), 6.5 of H is to split the soliton and antisoliton contributions@&?

27 X
_ i into two separate contributions at different wave vectars
then the uniform field can be removed by the gauge transfors iy Thus ignoring the small S@) symmetry breaking
mation: '

H ¢

H G nm*H,0)=(112GYY (7, v). (6.12
P)— )+ ,/ZWX’ 6.6 It is also interesting to note that the staggered part of the
_ energy density is given by
or equivalently
] H S-S 1x(—1Ditrg. (6.13
J N 6.
LRTYLR™ 3 6.9 This operator couples to lattice displacemepisonong and

is used to describe Raman scattering experiments. Upon

(Here we have sat=1.) This transforms the matrix field making the gauge transformation of E§.8 and the redefi-

as nition of Eq. (6.4) this becomes
g(X)—>eiHXUZ/2g(X)eiHXUZ/2. (68) | g0 | | .
This gauge transformation leaves invariant the staggered SESTPEI A UTJFG'(”_H)' = (6.14

field term trgo™®. Thus the exact S(2) symmetry remains in

this approximation. However, additional irrelevant terms inThus this operator also creates the soliton and antisoliton.
the Hamiltonian in the presence of a uniform field break theHence this theory predicts a single particle excitation observ-
exact SU2) symmetry, as evidenced by the change in theable in Raman scattering at the same field-dependent wave
parameteR with field. The SW2) symmetry is only present vector and frequency as the incommensurate mode observed

for R=1/\27. in neutron scattering.
The non-Abelian bosonization formula for the staggered Upon allowing for SWY2) symmetry breaking the radius
part of the spin operatorgor H=0) is changes. After making the gauge transformation, @)U
R _ R symmetry still survives, corresponding to shifting by a
Sjw(—l)JCtrgo. (6.9 constant. The triplet is now split, with the lowest breather

The magnetic field leads to the gauge transformation of E having a different mass than tthdegenerate soliton antisoli-
, R i .
(6.8). The parts of the spin operators with wave-vectors neafo" Par- Sm(_:e the operatoes® have charge* 1. with
- thus become respect to this (Il) symmetry, we see that the soliton and

antisoliton are created by the= 7= 27m Fourier modes of

S}"‘%C cogmj)trgo? (a=x,y), sz, respectively. The breathers can be~classﬂ‘ied as even or
_ _ _ _ odd with respect to the discrete symmeiiy- — ¢. The odd
Si~C{e'" Mitrg(1+¢?)/2— €™ Mitrg(1- 0%)/2}. breathers are created by thes = component ofs and the

(6.10 even breathers by thg=7 component ofS*. It can be
shown that even and odd breather alternate in the spectrum

Now making the transformatio X this becomes )
9 9—go of the sine-Gordon model. Furthermore, the number of

S;QC coq mj)trg, breathers increases with decr_easimg\ third breather drops
below the soliton antisolitons(s) continuum immediately as
S}’%iC cog mj)trgo?, soon ask decreases below the isotropic valuey/24 with

- () o ()] N another one dropping belovy thes continuum each time

Sj~Cie trgo/2—e trgo™/2}. (6.1  2/7R2 passes through an integer. The mass of e
In general the spectrum of the sine-Gordon theory consists diéather, expressed in terms of the soliton mbksis
the soliton, antisoliton, and breathetsoliton-antisoliton
bound states? In the SU2) symmetric case, the excitation
spectrum of the sine-Gordon model wj= 2 consists of
a triplet composed of soliton, antisoliton, and lowest breather
and a second breather, heavier by a factoy®f The degen- 1 2
eracy of the triplet is a result of the $2) symmetry. Due to EE pr=vs
the SU2) symmetry, the three elements of the triplet are ™

produced by the 3 operatorsgw with equal intensity, Thus the odd-numbered breathers contribute single-particle
whereas the singlet is produced by the operatgr ffhus  poles toGYY and the even-numbered ones@d* while the
settingH=0 (but noth) the structure function&”¥ andG**  soliton and antisoliton contribute single-particle pole&ts.
would be equal. Note that, fad =0, S]-Zoctrgay, creates the In addition, various multiparticle continua contribute to the
y-polarized member of the triplet. This can be regarded as three spectral functions.

M,=2M sin(nm&l2), (6.195

here

~1. (6.16
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For a field of 7 T we estimaterR?=0.41. There are 3 smaller than the first fok nears. Henceforth we ignore this
breathers at this point, with masses O0791.48M, and  small correction and simply ugg?3(k)~Gaa(k).

1.8M™. A resolution limited peak was observed at The direction(and magnitudeof the effective staggered
=1.22m, at energy 0.22 meV. We identify this with the soli- field depends on both the staggered part ofghensor and
ton (or antisolito) contribution to G*5 hence M DM interaction. Since the DM interaction in Cu benzoate is
=0.22 meV. A resolution limited peak is clearly Observableunknown, the directior is not known at presentThe DM

in the neutron scattering data gt=7 and an energy of jneraction in Cu benzoate may be estimated from various
0.17 meV=0.7M. This agrees very well with the predic- gyperimental results based on the present theory. We will

tior\1Nfor the firlst tire?taer mass. diction of Eq(6.12. Th discuss this issue in the next sectjodowever, the direction
e may also test the SP) prediction of Eq(6.12). The x can be deduced from the polarization anaffsisf the

SU(2) symmetry is broken by various small effects as EXeM eutron scattering experiment. Deneénl. analyzed the po-
plified by the fact thatwR?+ 1/2. In particular, this implies g exp ) ' y P

that G¥Y(») has a second peak, of very low intensity, larization of the neutron scattering at constant enefgy

corresponding to the third breather. Ignoring these effects WZO'21 meV and various momentum transfers. For magnetic

field H=7T||b and momentum transfer along the chain
expect the intensity of the lowest breather pealGiff to be : g '
approximately twice the intensity of the soliton peakGA% this should probe the lowesn€ 1) breather. As discussed

However. before a comparison can be made with ex eriz_ibove, this odd breather is polarized orthogonal to the total
. P PETlefrective staggered field. In Ref. 1 it was claimed that the

ment it must be taken into account that the unpolarized N bserved scattering is polarized in #kdirection. Also note

tron scattering cross section contains an important directio at a misstatement of the crvstal orientation occurred in Ref
dependence arising from the Fourier transform of the dipole- y ’

H £~y 22
dipole interaction between the neutron and the spins. Thé3 SO that the wrong sign appeared therekfca.” Correct-
cross section can be written ing this error, the polarization is+18° from a axis, or

equivalently +35° from a” axis. This implies that, for an
. <y R R applied field inb direction, the total effective staggered field
o(k,0)=2 (1-k§)G*(K,0)f(K), (6.17  —72° (+108°) from a axis, or equivalently —55°
2 —55° (+125°) froma” axis.(There is actually another fea-

wherek is a unit vector in the direction d¢ and the function  ture of the polarization analysis in Ref. 23 which appears
inconsistent with the theory presented here, namely the po-

f(k) is slowly varying. Thus the SO!ItOI’l, even brea:[hers ano‘arization analysis in zero field. The strong dependence of
odd breathers are weighted by different factorskf, 1 e intensity on the component of the momentum is taken

—k2, and 1- Rf,, respectively. We also have to consider theto indicate thatG*°~0. Our work ignores any anisotropy in
variation off(k) in examining the relative intensity of soli- the zero field limit and therefore predid®°=G=G*¢ in
tons to breathers since they occur at different valuds, oft that limit. We do not understand the source of this discrep-
must be recalled that here refers to the direction of the @NCy at present.

. L A . . The constan® (momentum transferscan experiments,
eﬁgctlve .staggered magnetic f|e(la|an the d|r¢ct|on of thg sensitive to the breather modes, were carried oFl)Jt at the fixed
uniform field). In the neutron scattering experiments the f'ewmomentum transfer:
was along théb axis. We note that tha" axis is rotated by '
about—17° from the crystal axisa. [We define the rotaton
angle in theac (a”c”) plane so that axis is +90° rotated (k-a,k-b,k-c)/27=(—-0.3,0,1, (6.19
from a axis]

Strictly speaking, we must take into account the effect ofwhere the lattice constants ase=6.91A, b=34.127, and
the redefinition of the spin operators, discussed in Sec. llc=89.3A. Here we have again corrected the misstateffient
that was used to eliminate the DM interaction. Lett&fyto of the crystal orientation in Ref. 1 mentioned above. Note
be the rotated spin operators, defined in @), and invert-  that the antiferromagnetic wave vector, in the chain direc-
ing the transformation, we may write the structure functiontion, is actually 27/c rather than the normat/c, because
for the original spin operators in terms of the structure functhere are two Cu atoms per unit cell along thexis. The
tion for the rotated operators, which we write G&°(k). In crystal axes, b, andc are essentially orthogonal. Thus, in

this way we obtain the a-b-c system
G*(K) = co(a/2) G*(K) + sirP(a/2) GYY(k— ), k=(—0.26,0,0.97, (6.20
GYY(k) = cog(al2)GYY(k) + sirP(al2) G*(k— ). k is rotated+ 105° from thea axis, or +122° from thea”

(6.18 axis. We note that, thik is almost parallel to the direction of
G remains 0 due to translation invariance and &f& are  the total effective staggered field estimated from the polar-
unaffected by the transformation. Hexeandy refer to two  ization analysis above.
axes orthogonal t& (notorthogonal toH as in most of this 1€ constan® scan for the soliton modes was done for a
papen We expect the second terms in Ed6.18 to be Slightly different momentum transfer
negligible sincea is small. Furthermore, th&23(k) are
small fork=~0 also making the second terms in .18 (k-a,k-b,k-¢)/2m=(—-0.3,0,1.12. (6.21)



1050 IAN AFFLECK AND MASAKI OSHIKAWA PRB 60

However, the direction of this momentum transfeis al-  the soliton to persist as a single-particle excitatioGft up

most the same as the above and we will ignore the differf0 Wave vectorr. Its energy should obey the Lorentz invari-

ence. ant formula:
The fact that, an intense first breather peak is observed

_ R w=M?+k?= M2+ H?2. (6.22
experimentally, supports the deduction thkais nearly par- ] .
allel to the total effective staggered field. In fact, assumingHerek is measured from the incommensurate wave vector

that k is completely parallel to the staggered field, the ap—k+H andv is set equal to 1.SinceH>M this gives ap-

. Do proximatelyw=H, as seen in the experiment. The intensity
E)f;g)r(rl]r?s;ef'?sfzk))rggtzgclecrn'?ﬁgylys thheg tlgehl,:\,;ets \ -Egatlr(]: ﬁ]th- of this feature inG** can be easily calculated. The result
. f hl | Ik Li iH fv Wlh I! / follows from the fact that thek near = parts of the spin
sity of the lowest peak ak==7xH (from the soliton operators are all Lorentz scalars. The matrix element be-

antisoliton inG*?*). This prediction is only a very approxi- yyeen ground state and a single particle excited state of a
mate one due to the breaking of &l There could also be | grentz scalar operator is independent of the momentum of
corrections from the functiof(k) in Eq. (6.17. Experimen-  the particle, by Lorentz invariancéassuming a Lorentz-
tally this ratio appears to be about 2.8. This is perhaps satisavariant normalization of the statdt then follows that the

factory agreement. This agreement is only worsendddé- ~ Soliton and antisoliton peaks i@“* have an intensity that is
viates from the direction of the staggered field. proportional to 1b. The energy is approximately four times
Thus, analyses of polarization and of the scattering intenhigher atk=m. We must also take into account that both
sity of the lowest breather mode are consistent, and appaf®!iton and antisoliton are contributing &t= which in-
ently lead to the conclusion that the total staggered field fof"€@Ses the intensity by a factor of 2. Thus, we expect the

. A . single-particle peak ab~H, k=7 to have an intensity ap-
H| /b is almost parallel to th& direction of Eq.(6.20 used in proximately 1/2 that of the peak k= 7+ H. Experimentally
the constan® scan.

) ) ] this ratio looks somewhat larger than 1/2 but it must be re-
On the other hand, in Ref. 2 we discussed a feature in thg,ampered that the peak at=H, k= is sitting on top of a

experimental data &=, ando=0.34 meV=1.58M.This  packground fromGYY. Taking this into account, the agree-

is very close to the predicted mass of the second breathegent looks fair.

which contributes taG**. A recent calculation, based on in-  There is actually a possible objection to this argument.

tegrability of the sine-Gordon model, indicates that the rela-The same reasoning would seem to imply sharp peaks near

tive intensity of the second breather in pealGit should be  w=H at k=7+H coming fromGYY and G**. These were

roughly 1/2 of the intensity of the first breather@¥Y. How-  not observed experimentally; at most a small shoulder was

ever, we expect this to have essentially zero intensity in th@bserved beginning ai=H for k= 7+ H. This may simply

neutron scattering cross section due to the factor-ekiin ~ mean that the breathers have merged into the continuum by
Eq. (6.17. [In Ref. 5 an apparently good agreement betweerthis wave vectofdue to nonrelativistic effects not contained
theory and experiment was obtained because the factors 8F the continuum limit field theory whereas the soliton has

(1—k2) were not included. In Ref. 2 intensities were not "Ot

considered. A possible resolution of this disagreement is di we r_10te|that stpln-\:c\llavte tf:_eor)é fails t:’ gaphturg the one-
that this “feature” at @=0.34 meV, discussed by two dimensional quantum fluctuation dominated physics in vari-

roups of theorists, is just noise. As stated in Ref. 23,0us ways. It predicts_ a single low energy mode V_V“h
group J «h2 instead oh?? with soft wave vectorsr and 0, miss-

“Given the quality of the data, this double-gap conjecture is. . . . .
. y gap J ing the incommensurate shift. It also predicts another single

highly speculative.” Clearly more data is needed to deter- icl de at imat t th
mine whether or not there is really another sharp peak at thigarticle mode at energy approxima dly at the same wave

frequency. An even more statistically insignificant feature inVectors.
the data, ak=7 andw=0.44 meV, was discussed in Ref. 5
where it was interpreted as the third breather pealGi.

Both the energy £2M) and the intensity(very approxi- In the present framework, the only unknown parameters
mately 1/6 the intensity of the first breathergree with the  of Cu benzoate are the DM vector, which has not been de-
predictions of the sine-Gordon model. Note that in this casgermined directly in previous studies. Based on the present
the factor of 1- k§ is common to first and third breathers so theory, we can in principle determine the DM vector from
it does not affect the intensity ratio. However, once againseveral experimental results. Actually, there seem to be no
considerably more data is needed to determine if there isolution that can perfectly fit all the available experimental
really a peak at this frequency. data, as explained below. Presumably, a precise error esti-
Another striking feature of the neutron scattering data is anate on an experiment gives a permissible region for the
second resolution limited peak &= and ®=0.8 meV DM vector, and such constraints from several experiments
~H. This also has a possible interpretation in our fieldwould give a region of possible values of the true DM vec-
theory approach. It is natural to assume that this peak actder. However, it should be noted that we have been ignoring
ally comes fromG?% At this wave vector, from Eq(6.11), the interchain effects, irrelevant operators, etc., which might
this is proportional tdtrgo~ trgo ™) at wave vectok=H.  be necessary in such a precise discussion.
We expect the continuum limit to hold for some range of Firstly, as argued in Sec. ID must lie in thea”-c” plane,
wave vectors close to the gap minimum at wave veetor |eaving two free parameters. The total staggered field is de-
+H. Thus, at least for weak enough fields, we would expectermined by Eq(2.9).

VIl. ESTIMATE OF DM VECTOR
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Here we list the constraints on the DM vector from vari- Here we use only the result fét|c”, which is presum-
ous experiments. ably most reliable. FoH||c”, the gap is very well fit by the
power law A=kH?3, without introducing the logarithmic
correction. The proportionality constant is givenloy1.316
if A andH are measured in units of kelvin and tesla, respec-

As observed in Ref. 1, the induced gap is strongly depentively. By comparing this with Eq(5.32 and(5.33, where
dent on the direction of the applied uniform field. In the we assume the logarithmic factor to be close to unity for the

present theory, this is accounted by the field direction depempresent case, we obtais=0.111. This also gives a constraint
dent constants of proportionality between the uniform ancon the DM vector through Eq2.9).

staggered magnetic fields. As discussed in Sec. Il, the pro-
portionality constant should be given by théensors and the

DM vectorD. Since theg tensors were obtained previously,
the measured gap can be used to deterrBine

A. Angular dependence of the gap

C. ESR linewidth

An anomalous broadening of ESR, which is strongly de-

Spendent on the field direction, at low temperatures was

The gap is proportional to essentially the 2/3 power of thi ) _ :
effective staggered field. The specific heat measurements 8Pserve65 in Cu ben_zoate. The mechanism of this broaden-
Ing was left unexplained. However, we have recently devel-

Ref. 1 were fit by the authors to the specific heat of a collec- d a field-th h to ESR 1 chai
tion of free massive relativistic bosons. The masses wer@P€d a € -theory approach to on quantum spin chains

- : N t low temperaturé® According to the theory, the contribu-
found to scale approximately &3 with a direction depen- a . . AR
dent amplitude in th@”:b:c"=0.55:1.0:2.0. In Ref. 2, this tion of the staggered field to the ESR linewidth is given by

ratio was used to estimate the DM vector.
Very recentlf the specific heat of the sine-Gordon model h?
was calculated from the thermal Bethe ansatz and fit to the Ie § (7.9
Cu benzoate data. Again a good fit of the gapH®® was
obtained for fields in thé or c” directions with a somewhat This diverges at lower temperature, in agreement with the

different amplitude ratido:c”=1.0:2.2.[The velocityv(H)  experiment. The direction dependence can also be explained
is another parameter in the fit. This may also be determineg the direction-dependent proportionality constant between
from Bethe ansatz for th&=3 chain in a uniform field. A the effective staggered field and applied uniform field. Actu-
slightly better fit to the specific heat data was obtained inyly, this is consistent with the previous discussion on the
Ref. 8 by lettingv(H) be a free parametdr. field-induced gap, at least qualitatively. In particular, for

_ A reasonable fit was not obtained for the field in & a7 the low-temperature anomalous part of the ESR line-
direction where the specific heat data is nearly linear. Thigyidth vanishes. This implies the cancellation of the stag-
suggests that, fdrl|a” the apparent gap structure was eithergereq field forH||a”. While this appears to contradict the
due to some sort of experimental error or due to othelpparent gap found in Ref. 1, it is rather consistent with more
mechanismsthan the effective staggered field. In any case refined analysis discussed in the last subsection. In addition,
it seems that the effective staggered field ftjfa” is rather ¢ gives the largest linewidth, which is consistent with the
close to zero. This implies the cancellation of the effectlve|arger field-induced gap foi||c”.
staggered field coming from the staggeéensor and the  on the other hand, the ratio of the staggered field is not
DM interaction. It is not quite unnatural, because for theqyantitatively consistent with the specific heat measurement.
applied field inac plane, both the staggered field generatedrhe estimate of the staggered field is somewhat subtle be-
by the staggered tensor and the DM interaction point I case there are also contributions to the ESR linewidth from
d|rect|on._ Thus there is a dlre_:cnon in tae plane where the  giher source¢most importantly exchange anisotropy/dipolar
cancellation occurs, for a wide range of parameters. ActUinteraction. The low-temperature anomalous part, which is
al]y, the cancella‘uor] of the staggered field is a]so consistenig|ated to staggered field, appears to be approximately 1:4.6
with the electron spin resonan@@SR) result, which will be  for H||b andH||c”. This gives the ratio of the staggered field

explained later. . . 1:2.1 forH|b andH||c”. This is smaller than expected from
Assuming the cancellation of the staggered fieldH§a”,  ihe specific heat analysis.

and that observed gap fét|b andH||c” are entirely due to
the staggered field, the ratio of the proportionality constants
between staggered and uniform fields fdéjfa”, H|b, and
Hl|c” are 0:1:@.2)*?=3.26. The ratio gives a constrainton ~ As we have discussed in Sec. VI, the analyses on the
the DM vector through Eq(2.9). polarization and intensity of the first breather suggests that
the total effective staggered points t072° (+108°) from

a axis, or equivalently-55° (+125°) froma” axis, if the

) ~ external field is applied irb direction. This gives another
Based on several exact results on the sine-Gordon fieldgnstraint on the DM vector.

theory and on th&=} Heisenberg antiferromagnetic chain,
we have determined the magnitude of the gap for a given
staggered fielch. Thus, comparing this with the gap esti-
mated from the specific heat measurement, we can fix the There are several experimental data which give some con-
proportionality constant between the staggered fiehdand  straints on the DM vector, and they are not perfectly consis-
the applied fieldH (h=cH). tent. The estimate of DM vector is also sensitive to the as-

D. Neutron scattering

B. Magnitude of the gap

E. Summary of the estimate of the DM vector
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o1 ' : : : This suggests that the observed ratio of the gap was
D,, Magpnitude of the gap (H//c”) — 3 wrong, or was affected by factors other than the staggered
/J i field. More experimental data are needed to draw a reliable

ESR linewidth ratio|
|

conclusion.

VIIl. SUSCEPTIBILITY

In the first subsection we consider the staggered suscepti-
bility, resulting from the application of a staggered magnetic
field, using the mapping onto the sine-Gordon model. In the
next subsection we combine this with the standard uniform
magnetization of the&S=3 Heisenberg model to obtain the
total physical susceptibility.

&
o
o

Neutron scattering pojarization |
4]

-01 L
0.05 0.1 0.15 0.2

-0.1 -0.05

A. Staggered susceptibility

D,
% We first discuss the susceptibility of the sine-Gordon

. . . m I. Writing the sine-Gordon Lagrangian in the form
FIG. 11. Estimate of the DM vector from various experiments. ode g the sine-Gordon Lagrangia et

Each constraint gives a set of allowed DM vectors as a curve in 1
D, — D¢ plane. The constraint from neutron scattering polarization £=§r9,,¢é’,,¢>+ 2u cog\2m), (8.1
is drawn with an assumed error &f5°.
and adopting units where the velocity is set to 1, we define

sumed form of theg tensor, extracted from ESR the sine-Gordon susceptibility as

measurementS$The experimental data are presumably sub- B

ject to several errors which has not been identified precisely. _ E
0—,M2’

We hope that more experimental data will be available in the
future to make more precise comparison with the theory. . .

P P y SwhereF is the free energy. The ground state endligy., the
=0 free energyis expressed in terms of the gaf 2

X= (8.2

The ESR linewidth was measured for various direction
of the applied field. Thus it is perhaps quite reliable that thel

staggered field precisely cancelsHifa”. As we have dis- A2
cussed, this is rather consistent with the refined specific heat Eo= — ——. (8.3
result. This gives a single constraint on the DM vector. In the 4.3

linearized approximation, it reads This determines th&=0 susceptibility using the exact rela-

tionship between the coupling constapnt, and the masa:

D " D "
her =0.0190+0.0453=~ ~1.0585-=0. (7.2 A=, (8.9
wherg/:28
213
The estimated ratio of the staggered field fokb and KEAOZ(zw)ye:2771/5[1“(3/4)} [F(lle)}~4.82764.

H|c” was inconsistent between the specific heat and ESR. I'(y4) T2
However, it should be recalled that each analysis has its own (8.5
problem. In the specific heat analysis, an apparent gap strugis gives theT=0 suscenptibility:
ture, which is unrelated to the staggered field, was observed g P y:
for H||a”. Whatever the origin of this gap structure, it is A3
natural to expect similar contributions also for other field x(0)= NS (8.6

directions. Unfortunately, we do not know how to estimate

these effects at present. On the other hand, there are alg@e high-temperature susceptibility is given by
contributions to the ESR linewidth from other sources than

the staggered field, and the subtraction causes some uncer- B o
tainty, in addition to the estimate of the linewidth itself. X—>4f0 deide@OSVZde’(T,X)COS\/27T¢(0,0)>-
The constraints on the DM vector from various experi- 8.7)

mental results are summarized in Fig. 11. For the case of

neutron scattering polarization we have included an estiThis Green’s function is normalized to 1/2atT=7=0). At
mated error bar from the polarization analysis of Ref. 23. Wdinite 7 and T we have

have not attempted to estimate error bars in the other cases.

We see that a candidate DM vectorD{ D) 1
~(0.13,0.02), which satisfies the most reliable requirement m_’ Bl G .
of the cancellation foH|/a”, is roughly consistent with all p sin (7+ix)sin (7—ix)

the constraints except for the ratio of the gap betwiéh B A
andH||c”. Here 8=1/T. Thus, the susceptibility becomes

1

- (8.9
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05 : Sta.glgered sulsceptibilitx from sine~Glordon mlo]:el - | H h R2 12— 77,RZ)
xact ————
I~ High-temperature leading n mg— D j 3 (8 . 13)

0.4

for some functionD. For weak fields the exponent is ap-
proximately 1/3. In a similar way to our analysis of the gap
in the previous section, by combining the exact results for
the xxz model with an RG analysis of the marginal operator
we may determine the scaling of magnetization with stag-
L J gered field in the case of zero uniform field

0 I L ! 1 I ) ) )
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T/A Ms— Do(h/J)m[ In

0.3

_Axsa
202n)377
0.2

01

1/3

(8.19

FIG. 12. Susceptibility of the sine-Gordon model, as defined by . . .
Egs.(8.1) and(8.2), divided by a factor of 2(2)%?2 This is essen- and determ'ne the behavior @¥(H/J) in Eg. (8.13 for
tially the staggered susceptibility of the spin chain, multipliedtpy ~ Small field
up to a slowly varying logarithmic factor. The exact curve is ob-
tained by a numerical solution of the integral equation, and the
high-temperature asymptotics is from the perturbation theory
0.278\/T. The T=0 value is given by 0.229, in agreement with
Egs.(8.6) and(8.5).

D(H/J)—D[In(I/H)TY. (8.15

mg obeys a standard RG equation relating a change in the
cutoff energy scalek;, to a change in the coupling constant,

A
X(T)—)ZWTJOO dXJBdT\/ 2 ). oy e
e o cosi2mx/ B) — coq 277l B) TinE P PN y(N) |m=0. (8.16
:E[F(lm) 2:8'75376_ (8.9 Working to linear order in the marginal couplings, as before,
TIT(3/4) T we setB~0 and use Eq(5.8). Using Eq.(4.10, and lower-

(This result for the integral can be obtained, by analytic con'"d the cutoff scale to the gag,, this gives

tinuation, from the general result of Schdfz.An integral 12
equation determining the sine-Gordon free energy at fihite m _),:(_)
. . . e S

was given in Ref. 30. We may determine the susceptibility J
by differentiating twice with respect ta. Note however that . .
this integral equation actually determinE¢T)—E, so we for nge ponstaml,:. Using Eq.(5.11). and Eq.(5.33 this
must add the zero-temperature part of the susceptibilit can be written as
given above. The resulting susceptibilityA is plotted ver- 13
susT/A in Fig. 12. As expected, it agrees quite well with 1/2 E 4_
high temperature result 8.735761 down toT~A. It has a J \/§
maximum at abouff~0.5A. The T=0 value is given by . ] ) ] )
Egs.(8.6) and (8.5). where A, is defined in Eq.(5.5 and determined in Eq.

Up to a multiplicative factor and logarithmic corrections, (5-33. As in the previous sections we obtain the various

the sine-Gordon susceptibility essentially gives the staggerel@rmulas from the different asymptotic scaling ©f (4) in

susceptibility of theS=1 chain, i.e., its response to a stag- the three case$i=0, H>A, andH=0 with exchange an-

gered field isotropy e, defined in Eq(5.21). Using Eq.(5.12 we obtain
Eq. (8.14 with

-1/4

T
—MN, (D) , (8.17

V3

-1/3

: (8.18

P°F
xs(T,hH)=—— (8.10 Do=FA}2. (8.19

oh?’
Using Eq.(5.16 we obtain Eq(8.13 with
In order to determine this factor and estimate the logarithmic

corrections we first consider tie=0 staggered magnetiza- H ~2(1-27R%)/3
tion of theS=1% chain. D(j>=D0[2(1—277R2)]‘1’3(j) :
We refer to the staggered magnetizatiomas (8.20
(SH=(-1)Ims. (8.1)  Using Eq.(5.14 we obtain Eq(8.15 with
In the continuum limit, D=Dge 3 (8.21
msoc<trggx>oc<cos(27TRH,)>_ (8.12 Using Eq.(5.22, in the limit A/J—0, in Eq.(8.17) we

obtain an expression famng in terms of A with exchange
Since this operator has scaling dimensioR?, a standard anisotropy:

RG scaling argument gives the scaling of the staggered mag-
netization with staggered field me— F(2€) Y4 A1) V2 <4, (8.22
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We may determine the constdftby comparing to the exact Comparing to Eq(8.29 suggests the heuristic formula

result of Ref. 7. From Eq5.28

ms— C(R)(exg 2R $]), (8.23

with the exact formula foIC(R) given in Eq.(5.26. This
expectation value is given in terms of the soliton massn
Ref. 7, Eq.(15), with

(8.29

Inserting a power of the spin-wave velocity, by dimen-
sional analysis, and taking the limit of small we obtain

s (WIAT(34) (T (23T (506))
i T N6 177
A 1/2—el4
X > (8.25

This gives a result consistent with E&.23 and determines
the constantF, to be

:29/4ﬁ I'(3/4)

F 343 [(1/3)

[[(213)T(5/6)] ¥?=2A%?%(3\3m),
(8.26

where the constari, is defined in Eq(5.5) and its value is

given in Eq.(5.33. Here we have used the exact identity

I'(1/6)I'(5/6)=2x. Hence the amplitude of Eq8.14 is
given by

Do=FAY?=2A2%/(3\3). (8.27

We thus obtain thél =0 staggered susceptibility of the
=1 chain by differentiatingng with respect tch

2A% InY2(J/A)

T=0h)= _ 8.2
x(T=0N)= =3 (8.28
for H=0. Comparing to Eq98.5) and (8.6), we see that
InY2(J/A)
(8.29

xs(T=04)= WXSG(T: 04).

The susceptibility forT>A (and H=0) follows from
Egs.(8.8) and(8.9). Here we use the exact result for tfie
=0 correlation function of th&=} chaint?

SX SX O (IL)]JZ

(8.30

~ InY{J/max(T,A)]
 2(2m)

xsal[2(27)%?]~ x4 is plotted in Fig. 12.

Including a small uniform fieldH, only makes unimpor-
tant changes in these formulas. A0, the power ofA in
Eqg. (8.28 changes by a small amount; the argument of the
logarithm changes td/H and the amplitude by a factor of
e 8 ForT>A we must distinguish two regimes, depending
on the relative magnitude dfi and T. For A<T<H, the
power of T changes. On the other hand, fAH<T we
expect to obtain Eq(8.31).

xs(T.A) xsdT,4). (832

B. Physical susceptibility

Above we considered the staggered susceptibility result-
ing from (independent staggered and uniform fields. To
make any comparison with experiments we must take into
account that the effective staggered field is proportional to
the uniform field,

h=cH, (8.33

where the constant of proportionalityis strongly dependent
on field direction. The physical susceptibility is conveniently
obtained from its thermodynamic definition

d°F

X=7 7T 2

et (8.39

whereF is the free energy. Writindg- as a function of uni-
form and staggered fields, we must ket cH before taking
the H derivative. We may calculate the free energy in the
rotated spin basis of Eq2.4), used throughout this paper.
Noting that the first derivative of with respect toH or h
gives the uniform magnetizatiom, and staggered magneti-
zationm, respectively(in the rotated basjswe obtain

amy  dmg _ amg

_ u
Xphys— 9H +C oh +2C_&H ) (8.35
where we have used
om,  oms fﬁd 83
TR ), drmdnmu(n). (8.30

We may ignore the dependence oof the first term and use
the standard result for the uniform susceptibility of t8e
=1 chain, x2. For low fields and temperatures this gives

aom, 0 1 1

gH X 27Tvs: E'

(8.39

This differs from the correlation function of the sine-Gordon independent of field and temperature_ The second term in Eq

model by a factor of (Im)¥%2(27)%2 [Note the factor of 4

difference in the susceptibilities due to the factor of 2 in the

interaction term of the sine-Gordon Lagrangian of B31).]

(8.39 is larger than the third so we approximate

Xphys= Xy Cxs(h,T), (8.38

Upon going to finiteT and Fourier transforming at zero fre- whereys is the staggered susceptibility discussed in the pre-
quency and wave vector, we expect the logarithmic factor taious subsection. Thus, when measuring the physical suscep-

become IHXJ/T). Thus

oA ~ 0.2779041W4/T) _ In*2(J/T) oA

(8.3)

tibility of the present system, one actually probes also the
staggered susceptibilifyf.

While the first term, the standard result for the suscepti-
bility of the S=3 chain, goes to a finite constant, tand
H—0, the second term, resulting from the effective stag-
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gered field, is highly singular. At zero field it blows up at
T—0 as 0.27814%J/T)/T. Thus, although it is multiplied
by the small constant?, it eventually dominates for low
enoughT. For any finite field, the divergence of the second
term is cut off, at essentially the gap enerdyh), at a value
of approximately 0.229 ?(J/A)/A, as shown in Fig. 12. At
low fields the behavior looks quite similar to a paramagnetic
impurity contribution. It can be distinguished from that, S
however, by its very strong field-direction dependence. The
effect is largest for the field in the direction when the
parametec®~0.01.

The experimental susceptibil#§of Cu benzoate shows
very peculiar behavior at low fields and temperatures. As the

O

]

temperature is lowered, in low fields, the susceptibility 3
grows. This effect is highly direction dependent with the B
biggest effect occurring for fields in the direction. This FIG. 13. Spin order for antiferromagnet with DM interaction.

effect is cut off by the application of a field. Qualitatively,

the experimental results look similar to our predictions.

However, at a more quantitative level there are many differredefinition in Sec. Il which maps the system into easy
ences. The anomalous low field low part of y is much  plane xxzmodel which is well known to have a disordered
larger in the experiments than in the theory. For instance, &jround state with power-law correlations. We may think of
zero field, a temperature of 14J/18, andc®=0.01, the the spins as fluctuating primarily in the plane perpendicular

value that we find foH|c, the second term in Eq8.35 is 15 5 with a tendency for the cross product of neighboring

still smaller than the first by a factor of about 1/2. The ins to be parallel t®. This system has a (@) symmetr

anomalous contribution could be somewhat larger due to th P D€ para ' Y y y.

third term in Eq.(8.35 and the logarithmic correction. How- hterchain coupling would normally be expected to produce
o ) long-range order with both an antiferromagnetic component

ever, the anomalous term jf observed in Cu benzoate at and a possible perpendicular ferromagnetic component. For
this zero field and lowrT is about six timedarger than the P berp 9 P '

x°. This is perhaps too large to be explained by our theonfXample, forDxz,

which is purely one-dimensional. <§j> =—my(— 1)ix+ mug,_ (8.39
Furthermore, the detailed experimental dependenc& on

andH is quite complex. The maximum susceptibility occurs (See Fig. 13.

at a field of about 30 G an@i=1.5 K. At lower fields or The standard mean field treatment of the interchain

temperatures the susceptibility decreases somewhat. At loiateractiond® would suggest a critical temperature of order

fields, two extra low temperature peaks are observed in ththe interchain couplingassuming that it is antiferromag-

susceptibility as a function of (in addition to the normal netid. On the other hand, when a magnetic field is applied

one for anS=3 chain atT~0.6J). While it is tempting to  (not parallel toD), the U1) symmetry is broken and the

try to identify the higheft peak with the peak irys shown  phase transition should disappear, and m, now becomes

in Fig. 12, and the loweT- peak with the onset of N order,  nonzero even in the purely one-dimensional system and are

both susceptibility peaks are broad, unlike what would beno longer order parameters for spontaneous symmetry break-

expected from a phase transitiogfindeed, no evidence for ing. Thus the application of a magnetic field smoothes out

magnetic order was found from neutron scatteffhdown to  the phase transition in this system. Surprisingly, neutron

T=0.8 K) A strong frequency dependence of the [wand  scattering experiments in zero field have failed to detect a

H susceptibility was also observed. Neel transition.
We expect that a proper theoretical description of the low
field and temperature susceptibility of Cu benzoate will re- ACKNOWLEDGMENTS
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