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Blume-Emery-Griffiths model in a random crystal field
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~Received 21 July 1998; revised manuscript received 30 November 1998!

We study the Blume-Emery-Griffiths model in a random crystal field in two and three dimensions, through
a real-space renormalization-group approach and a mean-field approximation, respectively. According to the
two-dimensional renormalization-group calculation, non-symmetry-breaking first-order phase transitions are
eliminated and symmetry-breaking discontinuous transitions are replaced by continuous ones, when disorder is
introduced. On the other hand, the mean-field calculation predicts that first-order transitions are not eliminated
by disorder, although some changes are introduced in the phase diagrams. We make some comments on the
consequences of a degeneracy parameter, which may be relevant in martensitic transitions.
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I. INTRODUCTION

The Blume-Emery-Griffiths~BEG! model is a spin-1
Ising model, originally proposed to study3He-4He
mixtures.1 Later, it was used in the description of a variety
different physical phenomena: multicomponent fluid2

microemulsions,3 semiconductor alloys,4 electronic conduc-
tion models,5 etc. Its Hamiltonian reads

H52J(
^ i , j &

SiSj2K(
^ i , j &

Si
2Sj

21(
i

D iSi
2 , ~1!

where the first two sums are over all nearest-neighbor p
on a lattice, the last one is over all sites andSi561,0. J is
the exchange parameter,K is the biquadratic interaction an
D i is a site-dependent crystal field (D i5D for the pure
model!. The phase diagram of the model presents first-or
and continuous phase transitions and, forK,0, a rich vari-
ety of multicritical points.6,7

Nevertheless, some systems were found to be better
scribed by a disordered BEG model, as, for instance, conv
tional shape memory alloys8 and fluid mixtures on disorde
materials~such as aerogel, for example!.9,10 From the theo-
retical point of view, on the other hand, it has been argu
that randomness may have drastic consequences on m
critical behavior.11,12 In two dimensions, for instance, an
infinitesimal amount of disorder supresses nonsymme
breaking first-order phase transitions and replaces symm
breaking first-order phase transitions by continuous on
The effect of disorder on three-dimensional systems is
ferent: first-order phase transitions only disappear at a fi
amount of randomness.12 This behavior has been observed
some models.12–15

In order to study the effects of disorder on its pha
diagram, we study the BEG model in a random crystal fi
~henceforth called RBEG model! given by the probability
distribution

P~D i !5rd~D i1D!1~12r !d~D i2D!. ~2!

It is worth stressing that the exact form of the disorder is
relevant to the overallqualitativeconsequences on the pha
diagram. If randomness is chosen to be in the interactionJ
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or K, the qualitative effects will be the same~as far as the
first-order phase transitions are concerned!. This is due to the
fact that even if the initial disorder is on the bonds~interac-
tions J or K), a scale transformation will propagate this di
order to the crystal field term, which will act just like fiel
randomness on the coexistence boundary. Moreover, the
act form of the probability distribution is not relevant, eithe
we have performed calculations with other distributions a
they lead to the same qualitative picture as the one foun
this work.

Finally, we would like to mention that, to the best of o
knowledge, the BEG model in a random crystal field has
been studied so far. Previous studies concentrated on
random Blume-Capel model,9,10,13,16,17,18which has a simpler
phase diagram than the BEG model.

The remainder of this paper is organized as follows.
Sec. II we outline the mean-field approximation we use a
discuss the results, in Sec. III we present the real-sp
renormalization-group~RSRG! calculation~expected to hold
for two-dimensional systems!, and in the last section we
summarize our main conclusions and comment on the in
ence of a degeneracy parameterp on the critical behavior.

II. MEAN-FIELD CALCULATION

We chose an ordinary mean-field approximation to stu
the three-dimensional system. The procedure is rather u
and we refer the reader to Ref. 19, where a detailed dis
sion of the method can be found.

However, we would like to stress that the mean-field a
proximation we use is equivalent to a model where the in
action is of infinite range, i.e., each spin interacts with ev
other spin in the system. This will have explicit cons
quences on the phase diagram and we will return to this p
later.

Most of the information about the phase diagram is n
merically calculated but some analytical results can be
tained. Among them, we can find the ground state for a
value ofJ, K, D, andr.

It is possible to show that the ground state magnetiza
m0 for d[D/zJ.0, wherez is the coordination number o
the lattice, is given by@results forD,0 can be inferred from
1033 ©1999 The American Physical Society



ic

is
w

b

n

th

b

in
t
m

In
es
sta

t the
to

e
wo-

he
he

s

tant

th

cri
-

1034 PRB 60N. S. BRANCO
the mapping (r ,D)↔(12r ,2D)]

m0512~12r !uFd2~k11!S 11r

2 D G , ~3!

wherek[K/J andu@x# is the step function, such thatu@x#
50 or 1 for x,0 or x.0, respectively. The ferromagnet
phaseO1 ~see figures in this section!, with m051, is stable
for d<dc5(k11)@(11r )/2#, while for d>dc the ground
state is such thatm05r ~denotedO2 in our figures!. Note
that, except forr 50, the ground state is always ordered; th
is a consequence of the simple mean-field approximation
used~we will return to this point below!.

One can obtain the continuous transition line exactly,
expandingFmin in powers of the magnetizationm and taking
the coefficient ofm2 equal to zero:

tc52S 12r

21e2ked/tc
1

r

21e2ke2d/tc
D , ~4!

where tc[kBTc /zJ. More specifically, note that, ford@1,
the value of the critical temperature istc5r . So, for any
value of rÞ0, the critical line between the paramagnet a
the O2 phases extends tod5` ~see figures in this section!.
This is not the expected behavior for a cubic lattice, for
following reason. The RBEG model ford5` is equivalent
to the site-diluted spin-1/2 Ising model, since forD5`, a
1D crystal field acting on a given site forces that site to
in theS50 state~absent!, while a2D field forces the site to
be either in the stateS51 or in the stateS521 ~both rep-
resent a present site!. Thus, only for high enoughr an infinite
cluster ofS561 states will form and will be able to susta
order. Exactly atr 5r c , there is such an infinite cluster bu
its critical temperature is zero. Therefore, the critical para
eter dc should only reach infinity forr>r c . However, the
simple mean-field analysis we made leads tor c50, since it
is equivalent to a model with infinite-range interactions.
some cases,9,17,18more elaborated mean-field-like procedur
were applied to the Blume-Capel model in a random cry

FIG. 1. Mean-field phase diagram forK/J55 andr 50.1. Filled
circles and the open square stand for critical end points and a
cal point, respectively. Continuous~dashed! lines represent continu
ous ~first-order! transitions. The phases are ordered withm
51 (O1), ordered with m5r (O2), disordered with q
.1/2 (D1), and disordered withq,1/2 (D2).
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field. Briefly, the consequence of these approaches is tha
transition line betweenO2 andD phases does not extend
d5` for all values ofr. All other results are similar to the
ones obtained with our simple mean-field approximation. W
note in advance that the approach we used for the t
dimenisonal model leads to a finite value ofr c , as expected
on physical grounds.

We have already pointed out thattc(D5`) does not de-
pend on K; this comes from the mapping between t
RBEG model and the site-diluted spin-1/2 Ising model. T
S50 states~absent sites! play no role in the dynamics of the
model and the present sites can only be in the statesS51 or
S521; thus, the biquadractic interactionK is irrelevant in
this limit. If, for instance, the probability distributionP(D i)
5rd(D i)1(12r )d(D i2D) is used, theD5` limit will be
equivalent to the site-dilutedspin-1 Ising model, and then
tc(D5`) will depend onK. Note that the discussion in thi
paragraph applies to the two-dimensional case as well.

We now turn to the discussion of thekBT/zJ3D/zJ
phase diagrams. In Figs. 1–4 we depict sections of cons
K/J55, for many values ofr. The phase diagram forr 50
~pure BEG model! is qualitatively the same as forr 50.1
~Fig. 1!, except that theO2 phase is not present.

Note that the size of the ordered phases increases wir.
This is expected, sincer is the fraction of sites which feel a

ti-

FIG. 2. Mean-field phase diagram forK/J55 andr 50.3. Same
conventions as in Fig. 1;T stands for tricritical points.

FIG. 3. Mean-field phase diagram forK/J55 andr 50.5. Same
conventions as in Fig. 2.
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PRB 60 1035BLUME-EMERY-GRIFFITHS MODEL IN A RANDOM . . .
2D crystal field~we have already commented on the ‘‘tail
which separates theO2 andD2 phases, given bytc5r ). An-
other important feature is the presence of a first-order
between two disordered phases, forr 50.1 andr 50.3. In
both of these phasesm50 but q.1/2 for D1, while q
,1/2 for D2. We would like to call attention to the phas
diagram for r 50.3 ~Fig. 2!; this type of diagram is no
present in the Blume-Capel model.

The corresponding phase diagrams forK/J53 show only
three types of critical behavior: forr near zero, they are
similar to the phase diagram forK/J55 andr 50.3 ~Fig. 2!,
for intermediate values ofr, the behavior is the same as fo
K/J55 and r 50.5 ~Fig. 3!, and for r close to one, the
equivalence is with the diagrams forK/J55 and r 50.7
~Fig. 4!.

The Blume-Capel model (K/J50) has already been stud
ied within mean-field approximations,9,10,16,17,18although for
different probability distributions; the results we find in th
case are in qualitative agreement with those of Refs. 10
16 and we shall not depict all of them here. The only exc
tion is the diagram forr 50.1 ~Fig. 5!, which is not present
for higher values ofK/J.

On general grounds, one should note that the mean-
approximation we employed suggests that the random cry
field does not destroy the first order transitions between
ordered phases and between an ordered and a disord
phase. Even first order lines between ordered phases~similar
to the one in Fig. 5! survive the introduction of randomnes

FIG. 4. Mean-field phase diagram forK/J55 andr 50.7. Same
conventions as in Fig. 2.

FIG. 5. Mean-field phase diagram forK/J50 andr 50.1. Same
conventions as in Fig. 2.
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III. TWO-DIMENSIONAL
RENORMALIZATION-GROUP

It is well known that mean-field-like approximations a
not suitable to describe low-dimensional systems. We h
then to resort to a different technique, in order to study
RBEG model in two dimensions. RSRG procedures, on
other hand, have been successfully applied to tw
dimensional systems. Note, however, that RSRG approxi
tions, in general, do not lead to results as precise as th
obtained with Monte Carlo simulations, phenomenologi
renormalization, or conformal invariance techniques. Nev
theless, they allow for a correct description of universal
classes, order of the transitions, crossover phenomena,

The procedure is the same as the one thoroughly
cussed in Ref. 13. There is just one technical point we wo
like to stress. Although we start with a uniform distributio
for J and K, the renormalization procedure will introduc
randomness in all renormalized quantities (J8, K8, andD8).
A possible approach is to follow the successive renormali
distributions of these parameters in order to study the ph
diagram. We adopted an alternative way, which forces
renormalized distributions to be the same as the initial on
but with renormalized parameters, namely,Pap8 (J)5d(J
2J8), Pap8 (K)5d(K2K8), and Pap8 (D i)5r 8d(D i1D8)
1(12r 8)d(D i2D8). The values ofJ8 andK8 are obtained
imposing that the first moment of the actual distributions
J and K and ofPap8 (J) andPap8 (K) are equal, respectively
The valuesr 8 and D8 are calculated imposing that the tw
lowest moments ofPap8 (D) match those of the real distribu
tion. This procedure has to be used with some care: in cer
systems, where the random-field mechanism is important
the initial randomness is on the interaction (J, for instance!,
forcing the field back into a uniform distribution leads
incorrect results. In Ref. 20, for instance, the crystal fie
probability distribution is maintained uniform throughout th
renormalization procedure. Consequently, the critical beh
ior of the random model is characteristic of a hig
dimensional system: the critical temperature of the tricriti
point diminishes as randomness is increased but only rea
the zero temperature axis at a finite value of the disorder.
discussed in Ref. 12, the mechanism responsible for the
of first-order phase transitions in two-dimensional rand
systems is the disorder in the crystal field, which is not tak
into account by approximations such as the one used in
20. In the model we study in this paper, however, the dis
der in the field is not approximated away by our RSRG p
cedure.

Our results forK52 are presented in Fig. 6, where w
depict thekT/zJ3D/zJ phase diagram forr 50 ~pure BEG
model!, r 50.2, r 50.45, andr 50.5. Let us first comment on
the pure BEG model@curve~a! of Fig. 6#. As for K/J55 in
three dimensions, there are two types of disordered pha
both havem50 but q.1/2 for phaseD1 and q,1/2 for
phaseD2. The continuous line between phasesO and D1
belongs to the universality class of the Ising model: this l
is attracted to the Ising fixed pointC* [(J50.4407,K5
20.07308,D52`). The dashed line between phasesO and
D2 is attracted to the fixed pointF1[@J5`,K5`,D52(J
1K)#, which represents a first-order transition in bothm and
q, i.e., the largest eigenvalue of the even and the odd sec
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1036 PRB 60N. S. BRANCO
of the linearized RGT matrix are equal tobd ~see Ref. 20!.
On the other hand, the dashed line between phasesD1 and
D2 is attracted to the fixed pointF2[(J50,K5`,D52K
1 ln 2); in this fixed point only the largest eigenvalue of t
evensector of the linearized RGT matrix is equal tobd; this
is a sign of a discontinuity inq ~but not inm) when the line
is crossed.21

In curves ~b!, ~c!, and ~d! of Fig. 6 we depict the
kT/zJ3D/zJ phase diagram forrÞ0. We note that the first-
order line is either replaced by a line of continuous tran
tions ~betweenO andD2 phases! or is eliminated~between
D1 andD2 phases!, for any infinitesimal amount of random
ness. In fact, the first-order fixed point attractorsF1 andF2
are unstable along ther direction. There is still a line sepa
rating the two disordered phases~not depicted in Fig. 6!, D1
and D2, for rÞ0, but this line is attracted to the (r 51/2,J
50,K50,D5`) fixed point. This point represents a mod
with independent spins, in which no phase transition can t
place. We note that our results are in accordance with g
eral arguments on the effects of randomness on multicrit
phase diagrams,12 although, to the best of our knowledg
some features of these arguments have never been test
far.

On the other hand, the whole line of continuous tran
tions for rÞ0 belongs to the pure Ising model universal
class, i.e.,C* is a stable fixed point along ther direction.
This is expected, since, for the hierarchical lattice used
this work, the specific heat critical exponent of the pure Is
modela is negative and disorder is irrelevant, according
the Harris criterion.22 For the corresponding model on a tw
dimensional Bravais lattice, wherea50, the Harris criterion
is inconclusive. The accepted behavior, when disorde
present, is the following: critical exponents of the rando
model retain the same values as their pure conterparts
logarithmic corrections are introduced by randomness.23 Ex-
perimental results also indicate the same critical expon
for pure and random two-dimensional Ising model.24

We would like to call attention to the behavior of th

FIG. 6. Renormalization-group phase diagram forK52 and~a!
r 50, ~b! r 50.2,~c! r 50.45, and~d! r 50.5. Filled circles stand for
critical end points,O for the ordered phase andD1 andD2 for the
two disordered phases~see text!. Continuous~dashed! lines repre-
sent continuous~first-order! transitions. The transition lines exten
to D→` only for r>0.5. Note that the critical end point~filled
circle! is present only forr 50.
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critical point which separates theO andD2 phases atT50.
For r ,0.5, the transition at zero temperature takes place
finite value ofD/zJ. For r>0.5, the critical line between the
ordered and the disordered phases extends toD/zJ5` in the
diagram. In fact, forD/zJ5` the RBEG model is equivalen
to the site-dilute spin-1/2 Ising model, as discussed abo
Thus, only for high enoughr an infinite cluster ofS561
states will form and will be able to sustain order. There is
critical value ofr, r c , such that the critical line between th
ordered and disordered phases only reachesD/zJ5` for r
>r c . Our evaluation ofr c is 1/2, while the accepted valu
for the site percolation critical probability on the square l
tice is r c50.5927.25 This difference is due to the small ce
we use in this work; nevertheless, the correct qualitative p
ture is obtained, i.e., a finite value ofr c .

Finally, we would like to stress that there are only tw
types of phase diagrams for the BEG model; for high valu
of K these diagrams have the same structure as forK52. For
small values ofK, the structure is the same as for the Blum
Capel (K50) model. As this model has been studie
elsewhere,13 we will not discuss it here.

IV. SUMMARY

We studied the RBEG model in two and three dimensio
within a RSRG framework and a mean-field approximatio
respectively. The disorder is on the crystal field term, wh
follows a probability distribution given byP(D i)5rd(D i

1D)1(12r )d(D i2D).
For the mean-field approximation~expected to represen

the qualitative behavior of three-dimensional systems!, the
presence of randomness increases the ordered phase
brings qualitative changes to thekT/zJ3D/zJ phase dia-
gram. More specifically, first-order transitions are presen
the disordered model, but new multicritical points emer
depending on the value ofr.

In two dimensions, the RSRG approach we use shows
randomness has a drastic effect on critical behavior: it
presses non-symmetry-breaking first-order transitions and
places symmetry-breaking discontinuous transitions by c
tinuous ones. These results are in accordance with gen
arguments concerning the effects of quenched impurities
multicritical behavior. The line of continuous transitio
present for the disordered (rÞ0) model, belongs to the uni
versality class of the two-dimensionalpure Ising model; this
results agrees with the Harris criterion, since the specific h
critical exponenta is negative for the hierarchical lattic
used in this work. It has been conjectured that a new unst
critical point, at finite temperatures, might be present for
disordered system;9 we found no evidence of this point, fo
any value ofK.

We have also studied the so-called degenerate Blu
Emery-Griffiths ~DBEG! model, introduced in the study o
martensitic transitions.8 In the DBEG model, theS50 states
are assumed to have a degeneracyp, which mimics the ef-
fects of vibrational degrees of freedom. It has been show
Ref. 8 that the effect of increasingp is to shrink the ordered
phase and to increase the region where the transition i
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first order. Using the same probability distribution for th
crystal field as in the RBEG model, we were able to sh
that the parameterp may bring onlyquantitativechanges to
the phase diagrams, for anyK/J, r, andp. This is expected,
since the DBEG model is equivalent to the usualBEG
model with all crystal fields displaced by ln(p). In particular,
any infinitesimal amount of randomness in two dimensio
destroys the first order transitions, no matter the value op.

Finally, we would like to stress that our approximatio
does not allow for a study of the BEG model with negati
K, where new and interesting critical behavior emerge7
v

.

s

.

Work is now being done to discuss this model in the pre
ence of a random crystal field.
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