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Blume-Emery-Griffiths model in a random crystal field
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We study the Blume-Emery-Griffiths model in a random crystal field in two and three dimensions, through
a real-space renormalization-group approach and a mean-field approximation, respectively. According to the
two-dimensional renormalization-group calculation, non-symmetry-breaking first-order phase transitions are
eliminated and symmetry-breaking discontinuous transitions are replaced by continuous ones, when disorder is
introduced. On the other hand, the mean-field calculation predicts that first-order transitions are not eliminated
by disorder, although some changes are introduced in the phase diagrams. We make some comments on the
consequences of a degeneracy parameter, which may be relevant in martensitic transitions.
[S0163-182699)09925-7

[. INTRODUCTION or K, the qualitative effects will be the sanfas far as the
first-order phase transitions are concepnddhis is due to the
The Blume-Emery-Griffiths(BEG) model is a spin-1 fact that even if the initial disorder is on the bon(sterac-
Ising model, originally proposed to study’He*He tionsJ or K), a scale transformation will propagate this dis-
mixtures! Later, it was used in the description of a variety of order to the crystal field term, which will act just like field
different physical phenomena: multicomponent fliids, randomness on the coexistence boundary. Moreover, the ex-
microemulsions, semiconductor alloy$,electronic conduc- act form of the probability distribution is not relevant, either;

tion models’ etc. Its Hamiltonian reads we have performed calculations with other distributions and
they lead to the same qualitative picture as the one found in
- _ o 2.2 2 this work.
H= JUE,D S K%“) S'S +Z Ais @ Finally, we would like to mention that, to the best of our

] . _knowledge, the BEG model in a random crystal field has not
where the first two sums are over all nearest-neighbor pair§een studied so far. Previous studies concentrated on the
on a lattice, the last one is over all sites &e-+1,0. Jis  andom Blume-Capel mod@{21318.17.18yhich has a simpler
the exchange parametds,is the biquadratic interaction and phase diagram than the BEG model.

Aj is a site-dependent crystal field(=A for the pure The remainder of this paper is organized as follows. In
mode). The phase diagram of the model presents first-ordesec. || we outline the mean-field approximation we use and
and continuous phase transitions and,Kor 0, a rich vari-  giscuss the results, in Sec. Ill we present the real-space
ety of multicritical points>’ renormalization-groupRSRQ calculation(expected to hold
Nevertheless, some systems were found to be better dgyr two-dimensional systefisand in the last section we
scribed by a disordered BEG model, as, for instance, conversymmarize our main conclusions and comment on the influ-

tional -Shape memory a”o@ﬁnd fluid mixtures on disorder ence of a degeneracy param@mn the critical behavior.
materials(such as aerogel, for exampfe'® From the theo-

retical point of view, on the other hand, it has been argued
that randomness may have drastic consequences on multi- Il. MEAN-FIELD CALCULATION

critical behavior:>*? In two dimensions, for instance, any  \ve chose an ordinary mean-field approximation to study
infinitesimal amount of disorder supresses nonsymmetryge three-dimensional system. The procedure is rather usual
breaking first-order phase transitions and replaces symmetry.,4 \ve refer the reader to Ref. 19. where a detailed discus-
breaking first-order phase transitions by continuous ones;in of the method can be found.

The effect of disorder on three-dimensional systems is dif- However, we would like to stress that the mean-field ap-
ferent: first-order phase transitions only disappear at a finitgy,ximation we use is equivalent to a model where the inter-
amount of ranzq%nneég.Thls behavior has been observed in 4¢(ion s of infinite range, i.e., each spin interacts with every
some models’ other spin in the system. This will have explicit conse-

_In order to study the effects of disorder on its phase-,ances on the phase diagram and we will return to this point
diagram, we study the BEG model in a random crystal field e,

(henceforth called RBEG modegiven by the probability Most of the information about the phase diagram is nu-
distribution merically calculated but some analytical results can be ob-
PA) =1 (A +A)+(1—1)8(A,—A). 7 ;n/z:lr:;dbgnlzng,tgig},.we can find the ground state for any
It is worth stressing that the exact form of the disorder is not It is possible to show that the ground state magnetization
relevant to the overaljualitativeconsequences on the phasemy for d=A/zJ>0, wherez is the coordination number of
diagram. If randomness is chosen to be in the interactions the lattice, is given byresults forA<<0 can be inferred from
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FIG. 1. Mean-field phase diagram fisfJ=5 andr =0.1. Filled conventions as in Fig. If stands for tricritical points.

circles and the open square stand for critical end points and a Critif-. | ieflv th fth hes is that th
cal point, respectively. Continuoddashedllines represent continu- e d'_E_"”e _y,t e consequence of these approaches is that the
ous (first-orde) transitions. The phases are ordered with  transition line betwee®, andD phases does not extend to

=1 (0,), ordered with m=r (O,), disordered with ¢  d=c for all values ofr. All other results are similar to the

>1/2 (D), and disordered witlg<1/2 (D). ones obtained with our simple mean-field approximation. We
note in advance that the approach we used for the two-
the mapping (,A)«—(1—r,—A)] dimenisonal model leads to a finite valuergf as expected

on physical grounds.

1+r We have already pointed out tha(A =<«) does not de-
o 3 pend onK; this comes from the mapping between the
_ . RBEG model and the site-diluted spin-1/2 Ising model. The
wherek=K/J and 6[x] is the step function, such th&fx]  s=0 stategabsent sitésplay no role in the dynamics of the
=0 or 1 forx<0 orx>0, respectively. The ferromagnetic model and the present sites can only be in the sttes or
phaseO; (see figures in this sectipmwith my=1, is stable 5= —1; thus, the biquadractic interactidis irrelevant in
for d=d.=(k+1)[(1+r)/2], while for d=d. the ground thjs limit. If, for instance, the probability distributioR(A;)
state is such thaing=r (denotedO, in our figures. Note =r8(A;)+(1—r)8(A;—A) is used, theA =2 limit will be
that, except for =0, the ground state is always ordered; thisequivalent to the site-dilutedpin-1 Ising model, and then
is a consequence of the simple mean-field approximation we (A =) will depend onK. Note that the discussion in this
used(we will return to this point below paragraph applies to the two-dimensional case as well.

One can obtain the continuous transition line exactly, by e now turn to the discussion of thiesT/zJIX A/zJ
expanding® ., in powers of the magnetizationand taking  phase diagrams. In Figs. 1-4 we depict sections of constant

m0=1—(1—r)0[d—(k+1)

the coefficient oim® equal to zero: K/J=5, for many values of. The phase diagram for=0
(pure BEG model is qualitatively the same as far=0.1
N 1-r r 4) (Fig. 1), except that th@, phase is not present.
=

Note that the size of the ordered phases increasesrwith
This is expected, sinceis the fraction of sites which feel a

+ ;
2+e kedte 2+e ke Ut

wheret.=kgT./zJ. More specifically, note that, fod>1,
the value of the critical temperature is=r. So, for any
value ofr#0, the critical line between the paramagnet and

the O, phases extends = (see figures in this sectipn 1.0 D
This is not the expected behavior for a cubic lattice, for the
following reason. The RBEG model fat=c is equivalent zy | T

to the site-diluted spin-1/2 Ising model, since fhre=, a

+ A crystal field acting on a given site forces that site to be
in the S=0 state(absent, while a— A field forces the site to 0.5 1 o
be either in the stat&=1 or in the states=—1 (both rep-
resent a present sjteThus, only for high enoughan infinite
cluster of S= = 1 states will form and will be able to sustain
order. Exactly ar =r, there is such an infinite cluster but ;
its critical temperature is zero. Therefore, the critical param- | | : S —

eterd. should only reach infinity for=r.. However, the 1.0 20 30 40 50

simple mean-field analysis we made leads {0, since it A

is equivalent to a model with infinite-range interactions. In =

some case$!’*®more elaborated mean-field-like procedures  FIG. 3. Mean-field phase diagram f§¢J=5 andr =0.5. Same
were applied to the Blume-Capel model in a random crystatonventions as in Fig. 2.
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lll. TWO-DIMENSIONAL

D RENORMALIZATION-GROUP
1.0
KT It is well known that mean-field-like approximations are
zJ not suitable to describe low-dimensional systems. We have

then to resort to a different technique, in order to study the
RBEG model in two dimensions. RSRG procedures, on the
05T 9 other hand, have been successfully applied to two-
dimensional systems. Note, however, that RSRG approxima-
L tions, in general, do not lead to results as precise as those
: > obtained with Monte Carlo simulations, phenomenological
renormalization, or conformal invariance techniques. Never-
theless, they allow for a correct description of universality
A ' classes, order of the transitions, crossover phenomena, etc.
z] The procedure is the same as the one thoroughly dis-
cussed in Ref. 13. There is just one technical point we would
like to stress. Although we start with a uniform distribution
for J and K, the renormalization procedure will introduce
randomness in all renormalized quantitids,( K’, andA’).
A possible approach is to follow the successive renormalized
distributions of these parameters in order to study the phase
®liagram. We adopted an alternative way, which forces the
renormalized distributions to be the same as the initial ones,
but with renormalized parameters, nameW,;p(J)z o(J
=), Pa(K)=8(K—-K"), and P,,(Aj)=r"6(Aj+A")
+(1-r")6(A;—A"). The values ofl’ andK' are obtained
imposing that the first moment of the actual distributions for
J andK and of P,,(J) and P,,(K) are equal, respectively.
similar to the phase diagram fé/J=5 andr =0.3 (Fig. 2), The valuesr’ andA’, are calculated imposing that t.he_two
for intermediate values af, the behavior is the same as for [OWest moments of%;,(A) match those of the real distribu-
K/J=5 andr=0.5 (Fig. 3, and forr close to one, the tion. This procedure has to bg used with some care: in certain
equivalence is with the diagrams fé¢/J=5 andr=0.7 syst_er_’n_s,where the ran_dom—fleld_mecha_nlsm is important and
(Fig. 4). the _|n|t|al ran_domness is on the [nteract!oh_(or_mstancéz,
The Blume-Capel modeK/J=0) has already been stud- forcmg the field back into a umfgrm distribution Ieads_to
ied within mean-field approximatiof€216:17- L& though for incorrect res_ult;. In Rgf. 2Q, fqr instance, the crystal field
different probability distributions; the results we find in this Probability distribution is maintained uniform throughout the

case are in qualitative agreement with those of Refs. 10 anﬁenormalization procedure. Consequently, the critical behav-

16 and we shall not depict all of them here. The only excepl©’ Of the random model is characteristic of a high-

tion is the diagram for =0.1 (Fig. 5), which is not present dimensional system: the critical temperature of the tricritical
for higher values oK/J ' Y point diminishes as randomness is increased but only reaches

On general grounds, one should note that the mean-fielg‘e zero temperature axis at a finite value of the disorder. As
approximation we employed suggests that the random cryst :cs;:_usseocljln Rre1f. 12, the mechanism re(;s_ponsmle f(lnr thzlack
field does not destroy the first order transitions between dic0f first-order phase transitions in two-dimensional random

ordered phases and between an ordered and a disorderdyptems is the disorder in the crystal field, which is not taken

phase. Even first order lines between ordered ph@sesdar into account by approximat_ions_such as the one used in_ Ref.
to the one in Fig. bsurvive the introduction of randomness. 20. !n the modgl we study n this paper, however, the disor-
der in the field is not approximated away by our RSRG pro-

cedure.

Our results forK =2 are presented in Fig. 6, where we
depict thekT/zJx A/zJ phase diagram for=0 (pure BEG
mode), r=0.2,r=0.45, and =0.5. Let us first comment on
the pure BEG moddlcurve (a) of Fig. 6]. As for K/J=5 in
three dimensions, there are two types of disordered phases:
both havem=0 but g>1/2 for phaseD; and q<1/2 for
phaseD,. The continuous line between phag@sand D,
belongs to the universality class of the Ising model: this line
is attracted to the Ising fixed poir€*=(J=0.4407K=
—0.07308A = — ). The dashed line between phasgeand
D, is attracted to the fixed poift;=[J=0,K=0,A=2(J

FIG. 5. Mean-field phase diagram fis¥J=0 andr=0.1. Same +K)], which represents a first-order transition in bottand
conventions as in Fig. 2. g, i.e., the largest eigenvalue of the even and the odd sectors

FIG. 4. Mean-field phase diagram ffJ=5 andr=0.7. Same
conventions as in Fig. 2.

— A crystal field(we have already commented on the “tail”
which separates th®, andD, phases, given by.=r). An-
other important feature is the presence of a first-order lin
between two disordered phases, for0.1 andr=0.3. In
both of these phasesi=0 but q>1/2 for D;, while q
<1/2 for D,. We would like to call attention to the phase
diagram forr=0.3 (Fig. 2); this type of diagram is not
present in the Blume-Capel model.

The corresponding phase diagramsHKdd =3 show only
three types of critical behavior: for near zero, they are
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b @ critical point which separates th@ andD, phases aT=0.
® Forr<0.5, the transition at zero temperature takes place at a
finite value ofA/zJ. Forr=0.5, the critical line between the
ordered and the disordered phases extendd 1d= in the
diagram. In fact, folA/zJ=«~ the RBEG model is equivalent
to the site-dilute spin-1/2 Ising model, as discussed above.
Thus, only for high enough an infinite cluster ofS=+1
states will form and will be able to sustain order. There is a
critical value ofr, r, such that the critical line between the
ordered and disordered phases only reachies]=« for r
=r.. Our evaluation of . is 1/2, while the accepted value
for the site percolation critical probability on the square lat-
A tice isr.=0.59272° This difference is due to the small cell
27 we use in this work; nevertheless, the correct qualitative pic-
ture is obtained, i.e., a finite value of.

Finally, we would like to stress that there are only two

0.6+
kT

zJ

031 O

@ /

FIG. 6. Renormalization-group phase diagramHKor 2 and(a)

r=0,(b) r=0.2,(c) r=0.45, andd) r =0.5. Filled circles stand for . . .
critical end points©O for the ordered phase ardl, andD,, for the types of phase diagrams for the BEG model, for high values

two disordered phasdsee text. Continuous(dashedl lines repre- of K these diagrams have the s_ame structure aks fo2.. For
sent continuousfirst-ordey transitions. The transition lines extend SMall values oK, the structure is the same as for the Blume-
to A—oo only for r=0.5. Note that the critical end poirtfilled Capel K=0) model. As this model has been studied
circle) is present only for =0. elsewherd? we will not discuss it here.

of the linearized RGT matrix are equal bd (see Ref. 2

On the other hand, the dashed line between phBseand IV. SUMMARY

D, is attracted to the fixed poirft,=(J=0K=0,A=2K ) i i .

+ In2); in this fixed point only the largest eigenvalue of the  We studied the RBEG model in two and three dimensions
evensector of the linearized RGT matrix is equallf; this ~ Within @ RSRG framework and a mean-field approximation,

is crossed? follows a probability distribution given byP(A;)=r 5(A;
In curves (b), (c), and (d) of Fig. 6 we depict the +A)+(1—r)s(Aj—A).
kT/zJx AlzJ phase diagram far# 0. We note that the first- For the mean-field approximatiof@xpected to represent

order line is either replaced by a line of continuous transithe qualitative behavior of three-dimensional systentise
tions (betweenO and D, phasesor is eliminated(between presence of randomness increases the ordered phase and
D, andD, phasej for any infinitesimal amount of random- brings qualitative changes to thel/zJx A/zJ phase dia-
ness. In fact, the first-order fixed point attractérsandF,  gram. More specifically, first-order transitions are present in
are unstable along thedirection. There is still a line sepa- the disordered model, but new multicritical points emerge,
rating the two disordered phas@®t depicted in Fig. D, depending on the value of

andD,, for r#0, but this line is attracted to the £1/2 In two dimensions, the RSRG approach we use shows that
=0K=0,A=e) fixed point. This point represents a model randomness has a drastic effect on critical behavior: it su-
with independent spins, in which no phase transition can takgresses non-symmetry-breaking first-order transitions and re-
place. We note that our results are in accordance with gefjjaces symmetry-breaking discontinuous transitions by con-
eral arguments on the effects of randomness on multicriticah,ous ones. These results are in accordance with general

phasefdiagram% arllthough, to the br:est of our knowledge, ,.quments concerning the effects of quenched impurities on
some features of these arguments have never been teStEdrﬁ Iticritical behavior. The line of continuous transition,

far. . s
On the other hand, the whole line of continuous transi-present for the disordered £0) model, belongs to the uni-

. ; . . versality class of the two-dimensionalire Ising model; this
tions forr=0 belongs to the pure Ising model universality results agrees with the Harris criterion, since the specific heat
class, i.e.C* is a stable fixed point along thedirection. 9 ' P

This is expected, since, for the hierarchical lattice used ir?ritica_l exponenta Is negative fqr the hierarchical lattice
this work, the specific heat critical exponent of the pure Ising!S€d In this work. It has been conjectured that a new unstable
model a is negative and disorder is irrelevant, according toC'itic@l point, at finite temperatures, might be present for the
the Harris criteriorf? For the corresponding model on a two- disordered systerhyve found no evidence of this point, for
dimensional Bravais lattice, whete=0, the Harris criterion ~ any value ofk. _
is inconclusive. The accepted behavior, when disorder is We have also studied the so-called degenerate Blume-
present, is the following: critical exponents of the randomEmery-Griffiths (DBEG) model, introduced in the study of
model retain the same values as their pure conterparts binartensitic transition$In the DBEG model, th&=0 states
logarithmic corrections are introduced by randomrfédsx-  are assumed to have a degenerpcyhich mimics the ef-
perimental results also indicate the same critical exponentiects of vibrational degrees of freedom. It has been shown in
for pure and random two-dimensional Ising motfel. Ref. 8 that the effect of increasinis to shrink the ordered
We would like to call attention to the behavior of the phase and to increase the region where the transition is of
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first order. Using the same probability distribution for the Work is now being done to discuss this model in the pres-

crystal field as in the RBEG model, we were able to showence of a random crystal field.

that the parametgr may bring onlyquantitativechanges to

the phase diagrams, for at§/J, r, andp. This is expected,

since the DBEG model is equivalent to the usBEG ACKNOWLEDGMENTS
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