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Equilibrium properties of an axial next-nearest-neighbor Ising model in two dimensions

A. Sato and F. Matsubara
Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan

~Received 14 May 1999!

We study thermodynamic properties of an axial next-nearest-neighbor Ising model in two dimensions using
a cluster heat bath Monte Carlo method. The method drastically reduces the relaxation time, and enables us to
study equilibrium properties of the model. We show that the model really exhibits two phase transitions atTc1

andTc2(,Tc1), as predicted by a free fermion approximation. The one atTc1 is shown to be of the Kosterlitz-
Thouless type, and the other to be of the Pokrovsky-Talapov type. The higher transition temperatureTc1 is
considerably lower than those estimated by previous authors. Low-temperature properties as well as the lower
transition temperatureTc2 are found to be well described by the fermion approximation.
@S0163-1829~99!04438-0#
en
a
a
h
-
l-
N
th
ex
n

t-

re
he
fo

ain

d
in
w

f
as
s

n,

th
he

-
re

ear

the

the

in-

as

o a
et
the

a-

p-
a-
the

e
e

d-

ng
p-

h

al
en

he

and
. A
I. INTRODUCTION

Systems with competitive interactions have been ext
sively studied in the last two decades, because they h
very rich physical properties, including features such
commensurate-incommensurate phase transitions, Lifs
points, and multiphase points.1 The axial next-nearest
neighbor Ising~ANNNI ! model is one of the simplest rea
izations of such systems. The two-dimensional ANN
model consists of ferromagnetic Ising chains coupled by
ferromagnetic nearest-neighbor and antiferromagnetic n
nearest-neighbor interchain interactions. The Hamiltonia
described by

H52J0(
x,y

Sx,ySx11,y2J1(
x,y

Sx,ySx,y11

2J2(
x,y

Sx,ySx,y12 , ~1!

where Sx,y561, J0(.0) is the ferromagnetic neares
neighbor interaction in the chains, andJ1(.0) and
J2(,0) are the interchain nearest-neighbor and next-nea
neighbor interactions, respectively. It is well known that t
ground state of the model is the ferromagnetic phase
k([2J2 /J1), 1

2 and the^2& phase fork. 1
2 which is de-

scribed by an alternate arrangement of two up-spin ch
and two down-spin chains in the axial direction, i.e.,•••1
122•••.

The properties at finite temperatures have been studie
numerous methods. It is now widely believed that a float
incommensurate~IC! phase characterized by a power la
decay of the pair spin correlation appears between the^2&
phase and the paramagnetic phase.2,3 However, the transition
temperatures have not yet been determined reliably. As
the phase transition between the paramagnetic and IC ph
the transition temperatureTc1 has been estimated by variou
methods such as approximation theories,4,5 Monte Carlo
~MC! simulations,2,6,7 a high-temperature-series expansio8

a finite-size scaling of correlation length,9 a phenomenologi-
cal renormalization,10 and a dynamical MC method.11 How-
ever, their results scatter asTc1 /J151.2;1.8 for k50.6.
Moreover, no evidence has yet been given for whether
transition really belongs to the universality class of t
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Kosterlitz-Thouless~KT! transition.12 For the phase transi
tion between IC and̂2& phases, two analytic methods we
applied for estimating its transition temperatureTc2. One is a
fermion approximation which assumes that the IC phase n
above thê 2& phase consists of regions of different^2& spin
configurations separated by111 or 222 domain walls
which run along the chain direction.3,13 The other is the in-
terface free energy method of Mu¨ller-Hartmann and Zittartz
~MHZ!,14 which assumes that the interface runs along
direction~axial direction! perpendicular to the chains.15 The
latter method gives a higher transition temperature than
former. Numerical calculations reported so far6,9,10supported
the MHZ result. This fact is rather strange, because the
terface that brings the phase transition from the^2& phase to
the IC phase is likely to run along the chain direction,
assumed in the fermion approximation.

The difficulty of examining the ANNNI model lies in the
lack of an appropriate method. In the MC method, due t
very long relaxation time, no equilibrium quantity has y
been obtained for large lattices. One often measured
melting temperature of thê2& phase and the peak temper
ture of the specific heat to estimateTc2 and Tc1,
respectively.6 However, the former gives nothing but an u
per bound ofTc2, and the latter is a characteristic temper
ture around which the short-range order develops. In
transfer-matrix method, the lattices ofM3` are treated
whereM&8 or M&16 when the method is applied in th
axial10 or chain9 direction, respectively. Of course, thos
numbers ofM would not be large enough for analyzing mo
els with complex structures.

In this paper, we develop a powerful method for treati
the model on larger lattices, and study its equilibrium pro
erties for k.1/2. Attention is paid to the nature of bot
phase transitions as well as their temperaturesTc1 andTc2.
Using the method, we obtain equilibrium values of physic
quantities of interest for different sizes of the lattice. Th
we determine the values ofTc1 andTc2 to a good accuracy
with the aid of finite-size scaling analyses. We find that t
phase transition atTc1 is well described by the KT theory,12

and that atTc2 by the fermion approximation.3,13The method
is described in Sec. II. Results are presented in Sec. III
analyzed in Sec. IV. Section V is devoted to conclusions
brief report of the method was already given in Ref. 18.
10 316 ©1999 The American Physical Society
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II. METHOD

We examine the ANNNI model in two dimensions usin
the MC method.

A. Difficulty in the MC simulation

The difficulty in the conventional MC method lies in th
fact that the spin configuration obtained in this method
low temperatures depends on initial spin configurations. T
is because the spin configuration of the IC phase at temp
tures nearTc2 onsists of regions of thê2& phase separate
by 111 or 222 domain walls.3,7 We consider the pro-
cess of the^2& phase melting to the IC phase. The sp
configuration of thê 2& phase is schematically depicted
~a-1! of Fig. 1. In this case, every chain is stable, becaus
has an interchain coupling energy of 2J2Lx(,0), whereLx
is the number of the spins on each chain. Suppose all
spins on one chain in~a-1! are flipped yielding one domain
wall. This change brings two unstable chains with posit
interchain coupling energies of22J2Lx and 2(J11J2)Lx .
Then, even if this spin configuration is realized by chance
will come back quickly to the old spin configuration~a-1!. A
spin configuration that contains no chain with a positive
terchain coupling energy is a sequence of blocks of two
three chains with the same spin direction such as•••11
222112211122•••. To obtain the IC phase star
ing from the ^2& phase, we must insert four domain wa
simultaneously as illustrated in~a-2! of Fig. 1. Therefore, we
must rearrange at least 16Lx spins, which is not easy to b
realized by using the conventional single-spin-flip M
method.

FIG. 1. Spin configurations of the ANNNI model. The symbo
1 and2 mean the chains with up and down spins, respectivel
t
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e
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-
r

This difficulty is not largely relieved even when on
chooses an open boundary condition, because open bo
aries lead to a pinning effect,16 i.e., the end two chains ten
to take either11 or 22 spin configuration. In this case
we must rearrange at least 8Lx spins at the ends as shown
~b-1! and ~b-2! of Fig. 1. Thus the ANNNI model is one o
the most difficult models in the computer simulation.

B. CHB method

Recently, we found an algorithm called the cluster h
bath~CHB! method,17,18 which enables us to update the sp
configuration of a block~cluster! of the spins with the aid of
the transfer matrix method. The CHB method is particula
effective for simulating the ANNNI model, because we c
choose clusters ofM y3Lx spins.18

We describe the procedure of applying the CHB meth
to the ANNNI model in two dimensions. For simplicity, w
consider the lattice consisting ofLy52L chains with Lx
5L spins, i.e., the lattice withLx3Ly5L32L spins, andL
is chosen to be a multiple of 4. A periodic boundary con
tion is imposed on the chains~the x direction! and an open
boundary condition in the axial direction~the y direction!.
The latter boundary condition is used so as to reduce
relaxation time. We choose the cluster ofM y58 chains. We
decompose the lattice into either of the two sets of the c
ters shown in Fig. 2. The decompositions~a! and~b! are used
for odd and even MC sweeps, respectively. The spin c
figuration for every cluster is updated in order by applyi
the CHB algorithm. In this procedure, we may add the d
main walls at both ends in the odd sweep and put them in
the lattice, and vice versa.

In the application of the CHB algorithm, we further de
compose each cluster into a set ofL layers ofM y spins, so
that the spins on each layer interact only with the spins
the adjacent layers. In updating the spin configuration i
cluster, we must give a spin configuration of one layer,
cause the algorithm works for systems having boundar
This layer is chosen at random and its spin configuration
left unchanged. The spin configurations of the remain
(L21) layers are updated step by step by using their Bo
mann weights.18

To examine the validity of the method, we first mak
simulations using both the conventional MC method and

FIG. 2. Two ways of division of the lattice into clusters.



,

C
-

sa
hi
0
r
d
t

sa

.
ltz-

0
ns
ults

pre-
ich

nce

in-

ay
d the
the
w
cks.
of

a

ha

for

10 318 PRB 60A. SATO AND F. MATSUBARA
CHB method starting with two different initial conditions
i.e., a paramagnetic spin configuration and the^2& spin con-
figuration. In Fig. 3, we present typical examples of the M
sweep dependence of the squareM2 of the chain magnetiza
tion,

M25
1

2L (
y51

2L S 1

L (
x51

L

Sx,yD 2

. ~2!

In the CHB method, about 1000 MC sweeps are neces
for the two runs to obtain the same value. In contrast to t
in the conventional MC method, MC sweeps about 10
times larger are necessary. This difference in the numbe
the MC sweeps becomes larger as the temperature is
creased and/or the size of the lattice is increased. Note, in
CHB method, about 30 times as much CPU time is neces
for every MC sweep.

III. RESULTS

In this paper, we examine the ANNNI model withJ0
5J1 andk.1/2 for which the^2& phase is realized at low

FIG. 3. The MC sweep dependences of the square of the c
magnetizationM2 at T51.0J1 starting with two initial spin con-
figurations of a paramagnetic phase~PARA! and thê 2& phase~AP!
by ~a! the conventional MC method and~b! the CHB method. The
broken line indicates the equilibrium value.
ry
s,
0
of
e-

he
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temperatures. We calculate the specific heatC, the average
value of the square of the chain magnetization^M2&, and the
spin correlation in the axial direction̂S0Sy&. These are de-
fined as

C5
1

2T2L2
~^E2&2^E&2!, ~3!

^M2&5
1

2L (
y51

2L K S 1

L (
x51

L

Sx,yD 2L , ~4!

^S0Sy&5
1

L (
x51

L
1

2L2y (
y851

2L2y

^Sx,y8Sx,y81y&, ~5!

whereE is the energy and̂•••& is the MC sweep average
Hereafter, we measure the temperature in units of the Bo
mann constantkB51. The size of the lattice is from 8316 to
643128, i.e.,L58;64. The MC sweeps are about 200 00
for the largest lattice. Data for about five independent ru
are averaged for each size of the lattice. Here detailed res
are presented in the case ofk50.6(J2520.6J1).

The temperature dependence of the specific heat is
sented in Fig. 4. It exhibits a double peak. The one wh
occurs at a higher temperature ofT;1.5J1 is very broad and
almost independent of the lattice sizeL. The other, occurring
at T;0.9J1, is rather sharp and exhibits a size depende
implying the occurrence of a phase transition.

The temperature dependence of^M2& is presented in Fig.
5. As the temperature is decreased, it exhibits a rapid
crease belowT;1.5J1 and saturates aroundT;0.9J1. A re-
markable size dependence is seen forT.0.9J1 revealing the
decay of the spin correlation even in the chain direction.

The spin correlation̂S0Sy& in the axial direction is pre-
sented in Fig. 6. It exhibits an oscillatory decay. The dec
rate becomes smaller as the temperature is decreased an
period of the oscillation decreases towards 4, revealing
occurrence of thê 2& phase. A weak beat is seen at lo
temperatures. The phase of the oscillation changes at ne
This fact confirms the suggestion that the spin structure
the IC phase just above the^2& phase may be described by
periodic arrangement of domain walls.

in

FIG. 4. The temperature dependence of the specific heatC for
different sizes of the lattice. Error bars are attached only for data
T<1.0J1.



an
e
a
e
-

s of
ana-

ra-
the
aw

d
hain

ne.

ed

Fig.
is

be-
ems

een

ha
re

of
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IV. PHASE TRANSITION

Now we discuss the phase transitions at the higher
lower temperaturesTc1 andTc2. It has been believed that th
phase transition between the paramagnetic and the IC ph
is of the KT12 type, and the other transition is of th
Pokrovsky-Talapov type.19 However, the transition tempera

FIG. 5. The temperature dependence of the square of the c
magnetization̂ M2& for different sizes of the lattice. Error bars a
smaller than symbols.

FIG. 6. The spin correlation function̂S0Sy& for the lattice
643128.
d

ses

tures have not yet been settled. We examine propertie
those phase transitions and the transition temperatures
lyzing the results presented in Sec. III.

A. KT-like phase transition

First we consider phase transition at the higher tempe
ture Tc1. If the IC phase has a nature of the KT phase,
spin correlation function decays according to the power l

^S0,0Sx,y&;r 2h cos~qy! for x,y@1, ~6!

with r 5Ax21y2. Hereh andq are the decay exponent an
the wave number, respectively. Then the square of the c
magnetization becomes

^M2&5
1

2L2 (
y51

2L

(
x51

L

^S1,ySx,y&;L2h. ~7!

Thus, if we plot^M2& as a function ofL on a log-log scale,
the data at the same temperature will lie on a straight li
We show the results in Fig. 7. In fact, the data forT
<1.20J1 seem to lie on a straight line. We have estimat
values of the decay exponenth for different temperatures
using the least-square method. The results are plotted in
8 as a function of the temperature. As the temperature
decreased,h decreases monotonously and its error bar
comes smaller. The declination becomes smaller and se
to be almost constant aroundT51.20J1. As the temperature
is decreased further, a change in the declination is s

in

FIG. 7. ^M2& for fixed temperatures as functions ofL.

FIG. 8. The temperature dependence of the decay exponenth in
the chain direction. The dotted line indicates the KT criterion
h51/4.
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10 320 PRB 60A. SATO AND F. MATSUBARA
aroundT51.00J1. Finally, h50 aroundT50.90J1 suggest-
ing the occurrence of thê2& phase. It is very interesting to
notice that, at the characteristic temperatureT51.20J1 ,h
;1/4 which is the criterion of the KT phase transition. T
error bars are very small below this temperature, sugges
the occurrence of the KT phase. To confirm this finding,
make a scaling analysis. If the correlation length diverg
as12

j;exp~bt20.5!, ~8!

with t5(T2Tc1)/Tc1 andb being some constant,^M2& may
be scaled as

^M2&L
h5Y@L21exp~bt20.5!#, ~9!

whereY is some scaling function. A typical result is show
in Fig. 9. We can obtain a good scaling plot when we cho

Tc1 /J151.1660.04, ~10!

h50.2560.02. ~11!

The most interesting point is that the estimated value oh
;0.25 is just the same as that of the KT criterion.12

Next we examine the spin correlation in the axial dire
tion. The analysis is more difficult than that in the cha
direction, and results are less accurate, because the spin
relation decays oscillatory and much CPU time is necess
to obtain the data with good accuracy. In addition, to obt
reliable results we must treat larger lattices because the
tion of Eq. ~6! holds for y@1. A conventional way to esti-
mate the decay constant is to fit the data to Eq.~6! using the
least-square method. Another way is to make the Fou
translation of the data. We have made both analyses,
these were not so effective, because we could use the da
^S0Sy& only in a limited range ofy(2L@y@1). Here, to
estimateh, we consider an integrated quantity^KL& which is
similar to ^M2&:

^KL&5
4

L3 (
x51

L

(
y15L/211

L

(
y25y111

y11L/2

u^Sx,y1
Sx,y2

&u. ~12!

Here we only use the data in the inner partL3L of the L
32L lattice, because we treat the lattice with open bou
aries. We make the same estimation ofh as in the case of the
chain direction, and plot the results as a function of the te
perature in Fig. 10. We find a temperature dependence s
lar to that in the chain direction. Especially, as the tempe

FIG. 9. A typical result of the scaling plot of^M2&.
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ture is decreased,h becomes 1/4 aroundT5Tc1;1.16J1.
However, it staysh;1/4 down toT;0.95J1 in contrast with
the monotonous decrease in the chain direction. This dif
ence in the value ofh between the two directions is likely to
come from the spin structure near the transition to the^2&
phase, i.e., it consists of regions of the^2& phase separate
by the 111 or 222 domain walls. We also make th
scaling analysis of̂KL& assuming the same scaling relatio
as^M2& but with different values ofh, Tc1, andb. Unfortu-
nately, because of the scattering of the data, it was not e
to estimate those values definitely without any preconc
tion. But, putting the same value ofTc151.16J1, we can fit
the data fairly well as shown in Fig. 11. The value ofh
;0.27 is also compatible with that in the chain directio
Thus we may conclude that the phase transition between
paramagnetic phase and the IC phase belongs to the s
universality class of the KT phase transition. We should n
that the valueTc1;1.16J1 is lower than any of previous
estimations.4–6,8–10

B. Lower-temperature phase transition

Next we consider the phase transition atTc2. In this tem-
perature range, it is natural to consider the density^nL& of
the domain walls. We can readily calculate it for the fin
lattice as follows:

^nL&5
1

L (
x51

L
23@~L21!2^m~x!&#

2L
, ~13!

FIG. 10. The temperature dependence of the decay exponeh
in the axial direction. The dotted line indicates the KT criterion
h51/4.

FIG. 11. A typical result of the scaling plot of^KL&.
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where m(x) is the number of spin pairs forxth column
which has different signs. The temperature dependencie
^nL& for differentL are shown in Fig. 12. As the temperatu
is decreased, the size dependence becomes remarkable
T;1.0J1. After several trials, we have found that the data
well by ^nL&21/L. The results of the extrapolation toL
→` are also plotted in the figure.

The extrapolated value becomeŝn&50 around T
50.89J1, which suggestsTc2;0.89J1. This result is consis-
tent with that estimated from the behavior of the chain m
netization. But the data forT;0.90J1 round. Then we ex-
amine the temperature dependence of^nL& at T;Tc2 using a
scaling analysis. Since the fermion approximation sugge
that ^n& vanishes in proportion to (T2Tc2)b with b51/2,3

we suppose that̂n& and the correlation lengthj may be
expressed as

^n&;~T2Tc2!b, ~14!

j;~T2Tc2!2n. ~15!

Then the data for differentL will be scaled as

^nL&Lb/n5F~L1/nt !, ~16!

with t5(T2Tc2)/Tc2. Puttingb51/2, we try to fit the data
and find that a good scaling plot is obtained whenTc2 /J1
;0.91 andn;1.0. A typical result is shown in Fig. 13. W
suggest, hence, that a usual second-order phase tran
occurs at the lower transition temperature ofTc2;0.91J1.
This transition temperature is very close to the results of

FIG. 12. The temperature dependences of the dencity^nL& of
the domain walls for different sizes of the lattice. Closed circ
indicate extrapolated values.

FIG. 13. A typical result of the scaling plot of^nL&.
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fermion approximations, i.e.,Tc2;0.907J1 by Villain and
Bak ~VB!3 andTc2;0.914J1 by Grynberg and Ceva~GC!,13

but considerably different from that of the MHZ method
Tc2;1.10J1.15 We note that the previous application of th
MHZ method is not appropriate, because it considers
interface along the axial direction. If we consider the creat
of domain walls along the chain direction as considered
the fermion approximations, we obtain a similar value
Tc2;0.906J1~see the Appendix!. We also note that a cluste
variation method by Muraiet al.5 gives a close value o
Tc2;0.91J1, although the method gives a different values
Tc1;1.56J1 for the other phase transition.

Finally, we compare our result with those of the fermio
approximation. We estimate the wave vectorq from

q5
12^n&

2
p, ~17!

and plot it in Fig. 14 as a function of the temperature
gether with those of the fermion approximations. Agre
ments between our MC result and those approximation
sults are very good. Especially, our result reproduces G
result excellently up toT;Tc1. We conclude, hence, that th
present MC study supports the picture of the IC phase in
fermion approximations. We should make a comment. T
fermion approximation of GC seems to give a better res
than the free fermion approximation of VB, because it tak
into account an interaction between the fermions. In fact
the case ofk50.6, a better agreement with the MC result
obtained in the GC’s approximation. However, ask in-
creases, the deviation of GC’s result from the MC res
increases faster than that of VB’s result. For largerk, as will
be shown in Sec. IV C, the agreement with the MC resul
rather better in the VB’s approximation and still better in o
MHZ theory.

C. Phase diagram

We have also examined the model with different values
k. The decay exponenth and the domain wall densitŷn&
estimated by using the least-square method are plotte
Figs. 15 and 16, respectively, as functions of the tempe

s FIG. 14. The temperature dependence of the wave vectorq to-
gether with those of the fermion approximations. The broken a
dotted curves are those of the VB and GC approximations, res
tively, and the closed circle indicates the result of the finite-s
scaling analysis.
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10 322 PRB 60A. SATO AND F. MATSUBARA
ture. From the results, we give the phase diagram show
Fig. 17. Here we plotTc1’s estimated from the KT criterion
of h51/4 and Tc2’s from the condition of^n&50. It is
noted, however, that we have confirmed those values u
the same scaling analyses as made in Secs. IV A and B.
most important point is that, in contrast with the previo
results, the IC phase appears in a small temperature r
above thê 2& phase. It should be noted again that the f
mion approximations~and our MHZ theory! give values of
Tc2 very close to that of the MC result. On the other han
the transition temperatureTc2 estimated by the previou
MHZ theory is rather close to the higher transition tempe
tureTc1. These results are not unexpected. Suppose that
eral domain walls along the chain direction are created in
^2& phase. Then thê2& phase is destroyed, but a strong sp
correlation along the chain still remains. Since, as s
above, the IC phase just above the^2& phase has this spin
structure, the fermion approximations~and our MHZ theory!
give the lower transition temperatureTc2. On the other hand
if the interface runs along the direction perpendicular to
chain, the spin correlation along the chain decays expon
tially like that in the case of the nearest-neighbor ferrom
netic Ising model. Thus the previous MHZ theory gives t

FIG. 15. The temperature dependences of the decay exponeh
in the chain direction for differentk. The dotted line indicates the
KT criterion of h51/4.

FIG. 16. The temperature dependences of the extrapolated
city ^n& of the domain walls for differentk. The lines are guides to
the eyes.
in
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upper transition temperatureTc1. Of course, these argumen
hold when these two types of the instability of the^2& phase
occur separately. If one occurs at a lower temperature, t
the other will follow in somewhat different manner. In fac
Tc1 obtained by the present MC study is slightly differe
from that of the previous MHZ method.

V. CONCLUSIONS

The ANNNI model in two dimensions is a prototype o
systems with competitive interactions. It has been belie
that a floating IC phase appears between the^2& phase and
the paramagnetic phase. However, both higher and lo
transition temperaturesTc1 andTc2 have not yet been estab
lished because of the difficulty of numerical calculations.

In this paper, we have developed an efficient method
obtaining equilibrium properties of the model. We find th
the phase transition atTc1 is well described by the
Kosterlitz-Thouless theory, and that atTc2 by the fermion
approximations. Applying the finite-size scaling analyses,
determineTc1 andTc2 in a good accuracy. In contrast to th
previous suggestions,Tc2 is well described by the fermion
approximations which concern with the instability of the^2&
phase against the creation of the111 or 222 domain
walls along the chain direction. On the other hand,Tc1 is
approximately described by the previous MHZ theory whi
concerns with the instability of thê2& phase against the
formation of the interface along the axial direction.

Therefore we may roughly say on the unusual spin ord
ing of the ANNNI model withk.1/2: as the temperature i
increased, those two instabilities occur successively atTc2
and Tc1. At intermediate temperatures (Tc2,T,Tc1), the
^2& phase is unstable but a strong spin correlation still
mains in the chains, because the interface along the a
direction are still absent. This is the origin of the appeara
of the IC phase. As the temperature approaches toTc1, a
number of the domain walls along the chain are created
the spin structure is strongly deformed. Then dislocations

t

n-

FIG. 17. The phase diagram of the ANNNI model withJ05J1.
Open and filled circles indicateTc1 andTc2, respectively, and lines
are guides to the eyes. The dotted curve is the result of the M
theory of Ref. 15, and three broken curves are, from below, thos
our MHZ theory, the fermion approximation of VB~Ref. 3! and
that of GC~Ref. 13!.
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the network of the domain walls will also be possible. If th
instability of the IC phase occurs atTc1, the phase transition
will exhibit the KT nature as discussed by Villain and Bak3

These considerations explain our MC results. An interes
problem which remains unsolved is the location of the L
sihitz point at whichTc1 and Tc2 come together. One ha
believed that it exists atk5kc&1.0,3,8 but we could not find
it up to k51.2, as shown in Fig. 17. Moreover, our prelim
nary calculations have suggested its absence up tok52.0.
Then we think thatkc will be much larger than that believe
previously, if it even exists.

Finally, we should note that the results in this paper
obtained within a reasonable computer CPU time by us
the CHB method. The method is particularly effective f
analyzing properties of complex Ising systems such as Is
spin-glasses.20,21The method is also applicable for analyzin
different models with discrete spin variables such as
Potts and chiral clock models.
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FIG. 18. An example of spin configurations considered in E
~18!.
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APPENDIX

Here we consider a lattice with open boundary conditio
for both directions. Kroemer and Pesch calculated the in
face free energy using the Mu¨ller-Hartmann and Zittartz
~MHZ! method. They considered the interface along
axial direction~typeY). In that case, the loss of the interfac
energy is 2J0 for every chain. Another type of the interfac
exists, which runs along the chain direction~typeX). In this
case, two domain walls are created simultaneously and
resulting energy loss is 2(2J122J2)52J1(2k21) for ev-
ery column in the axial direction, because the spin confi
ration in the axial direction changes from11•••22 to
11•••11 due to the pinning effect.16 Of course, in a very
large lattice, we can neglect interactions of those dom
walls. Thus, at least forJ1(2k21),J0, the interface of type
X will be more likely to appear when the temperature
increased.

We can readily calculate the wall formation free ener
when the interaction of domain walls can be neglected. S
pose that, for every column in the axial direction, two^2&
spin configurations are separated by only one111 or
222 domain wall, as shown in Fig. 18. We denote t
position of the center of the domain wall asni for the i th
column. Supposen15nL50, then ni50,62,64, . . . , be-
cause the position of the domain wall changes by62 when
the spin on an edge of the domain wall is reversed. Then
energy of this domain wall with column positions$ni% with
respect to thê2& phase is

E~$ni%!5J1~2k21!L1J0(
i 51

L21

uni 112ni u. ~A1!

The calculation of the free energys of this domain wall is
straightforward,14 and the result is given as

s/L;J1~2k21!2T lnS 11exp~22J0 /T!

12exp~22J0 /T! D . ~A2!

From s50, we obtain the equation of the melting temper
ture of the^2& phase as

sinhS J1~2k21!

Tc2
D sinhS 2J0

Tc2
D 51. ~A3!

This equation reproduces that of Villain and Bak in the ca
k→0.5.
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