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Equilibrium properties of an axial next-nearest-neighbor Ising model in two dimensions
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We study thermodynamic properties of an axial next-nearest-neighbor Ising model in two dimensions using
a cluster heat bath Monte Carlo method. The method drastically reduces the relaxation time, and enables us to
study equilibrium properties of the model. We show that the model really exhibits two phase transifigps at
andT.,(<T.;), as predicted by a free fermion approximation. The onE.ais shown to be of the Kosterlitz-
Thouless type, and the other to be of the Pokrovsky-Talapov type. The higher transition tempEgratsre
considerably lower than those estimated by previous authors. Low-temperature properties as well as the lower
transition temperaturé,, are found to be well described by the fermion approximation.
[S0163-182699)04438-0

[. INTRODUCTION Kosterlitz-ThoulesgKT) transition*? For the phase transi-
tion between IC and2) phases, two analytic methods were
Systems with competitive interactions have been extenapplied for estimating its transition temperatiitg. One is a
sively studied in the last two decades, because they haviermion approximation which assumes that the IC phase near
very rich physical properties, including features such asabove theg(2) phase consists of regions of differdia) spin
commensurate-incommensurate phase transitions, '—ifShiTéonfigurations separated by++ or ——— domain walls
points, and multiphase pointsThe axial next-nearest- which run along the chain direction® The other is the in-
neighbor Ising(ANNNI) model is one of the simplest real- terface free energy method of Mer-Hartmann and Zittartz
izations of such systems. The two-dimensional ANNNI(MHZ)* which assumes that the interface runs along the
model consists of ferromagnetic Ising chains coupled by thejirection(axial direction perpendicular to the chaird.The
ferromagnetic nearest-neighbor and antiferromagnetic néXjatter method gives a higher transition temperature than the
nearest-neighbor interchain interactions. The Hamiltonian iy mer. Numerical calculations reported so*fai®supported
described by the MHZ result. This fact is rather strange, because the in-
terface that brings the phase transition from {8 phase to
H=—Jo> Sxyys(ﬂyy—JlE SiySey+1 the IC phase is likely to run along the chain direction, as
*y Y assumed in the fermion approximation.
The difficulty of examining the ANNNI model lies in the
—J5> ScyScy+2s (1)  lack of an appropriate method. In the MC method, due to a
Y very long relaxation time, no equilibrium quantity has yet
where S, ,=*1,Jo(>0) is the ferromagnetic nearest- been obtained for large lattices. One often measured the
neighbor interaction in the chains, and,(>0) and melting temperature of th€) phase and the peak tempera-
J,(<0) are the interchain nearest-neighbor and next-nearestdre of the specific heat to estimat&., and T.q,
neighbor interactions, respectively. It is well known that therespectively> However, the former gives nothing but an up-
ground state of the model is the ferromagnetic phase foper bound ofT,,, and the latter is a characteristic tempera-
k(=—J,13;)<3 and the(2) phase fork>3 which is de- ture around which the short-range order develops. In the
scribed by an alternate arrangement of two up-spin chaingsansfer-matrix method, the lattices & X~ are treated
and two down-spin chains in the axial direction, i.e.; + whereM =<8 or M=<16 when the method is applied in the
. axial® or chairf direction, respectively. Of course, those
The properties at finite temperatures have been studied byumbers oM would not be large enough for analyzing mod-
numerous methods. It is now widely believed that a floatingels with complex structures.
incommensuratélC) phase characterized by a power law In this paper, we develop a powerful method for treating
decay of the pair spin correlation appears between{®}e the model on larger lattices, and study its equilibrium prop-
phase and the paramagnetic phadelowever, the transition erties for x>1/2. Attention is paid to the nature of both
temperatures have not yet been determined reliably. As fophase transitions as well as their temperatdrgsand T.
the phase transition between the paramagnetic and IC phaséssing the method, we obtain equilibrium values of physical
the transition temperaturg,; has been estimated by various quantities of interest for different sizes of the lattice. Then
methods such as approximation theofiésMonte Carlo  we determine the values df.; and T, to a good accuracy
(MC) simulations?®’ a high-temperature-series expansion, with the aid of finite-size scaling analyses. We find that the
a finite-size scaling of correlation lengtta phenomenologi- phase transition af., is well described by the KT theory,
cal renormalizatiort® and a dynamical MC methdd.How-  and that afl ., by the fermion approximatioh** The method
ever, their results scatter d%,/J;,=1.2~1.8 for k=0.6. is described in Sec. Il. Results are presented in Sec. Il and
Moreover, no evidence has yet been given for whether thanalyzed in Sec. IV. Section V is devoted to conclusions. A
transition really belongs to the universality class of thebrief report of the method was already given in Ref. 18.
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FIG. 2. Two ways of division of the lattice into clusters.

This difficulty is not largely relieved even when one
chooses an open boundary condition, because open bound-
aries lead to a pinning effeti,i.e., the end two chains tend
to take either++ or —— spin configuration. In this case,
we must rearrange at least 8spins at the ends as shown in
(b-1) and (b-2) of Fig. 1. Thus the ANNNI model is one of
the most difficult models in the computer simulation.
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B. CHB method
FIG. 1. Spin configurations of the ANNNI model. The symbols

+ and— mean the chains with up and down spins, respectively. ~ R€cently, we found an algorithm called the cluster heat
bath(CHB) method!”*8which enables us to update the spin
Il METHOD configuration of a blocKclustep of the spins with the aid of
the transfer matrix method. The CHB method is particularly
We examine the ANNNI model in two dimensions using effective for simulating the ANNNI model, because we can
the MC method. choose clusters d¥l, x L, spins'®
We describe the procedure of applying the CHB method
to the ANNNI model in two dimensions. For simplicity, we
consider the lattice consisting df,=2L chains withL,
The difficulty in the conventional MC method lies in the =L spins, i.e., the lattice with X Ly,=LX2L spins, and
fact that the spin configuration obtained in this method afs chosen to be a multiple of 4. A periodic boundary condi-
low temperatures depends on initial spin configurations. Thision is imposed on the chairghe x direction and an open
is because the spin configuration of the IC phase at temper&oundary condition in the axial directiofthe y direction.
tures neaiT, onsists of regions of th¢2) phase separated The latter boundary condition is used so as to reduce the
by +++ or ——— domain walls*’ We consider the pro- relaxation time. We choose the clusterMf =8 chains. We
cess of the(2) phase melting to the IC phase. The spindecompose the lattice into either of the two sets of the clus-
configuration of the(2) phase is schematically depicted in ters shown in Fig. 2. The decompositiaias and(b) are used
(a-1) of Fig. 1. In this case, every chain is stable, because ifor odd and even MC sweeps, respectively. The spin con-
has an interchain coupling energy ad2.,(<0), whereL,  figuration for every cluster is updated in order by applying
is the number of the spins on each chain. Suppose all théthe CHB algorithm. In this procedure, we may add the do-
spins on one chain ifa-1) are flipped yielding one domain main walls at both ends in the odd sweep and put them inside
wall. This change brings two unstable chains with positivethe lattice, and vice versa.
interchain coupling energies of 2J,L, and 20+ J,)L,. In the application of the CHB algorithm, we further de-
Then, even if this spin configuration is realized by chance, iicompose each cluster into a setlofayers ofM, spins, so
will come back quickly to the old spin configurati¢a-1). A that the spins on each layer interact only with the spins on
spin configuration that contains no chain with a positive in-the adjacent layers. In updating the spin configuration in a
terchain coupling energy is a sequence of blocks of two otluster, we must give a spin configuration of one layer, be-
three chains with the same spin direction such- as+ + cause the algorithm works for systems having boundaries.
———++——+++——-...To obtain the IC phase start- This layer is chosen at random and its spin configuration is
ing from the(2) phase, we must insert four domain walls left unchanged. The spin configurations of the remaining
simultaneously as illustrated {a-2) of Fig. 1. Therefore, we (L—1) layers are updated step by step by using their Boltz-
must rearrange at least ll§spins, which is not easy to be mann weightg®
realized by using the conventional single-spin-flip MC To examine the validity of the method, we first make
method. simulations using both the conventional MC method and the

A. Difficulty in the MC simulation
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temperatures. We calculate the specific Heathe average
value of the square of the chain magnetizatjdt,), and the
spin correlation in the axial directiof§,S,). These are de-
fined as
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FIG. 3. The MC sweep dependences of the square of the chain
magnetizationM, at T=1.0J; starting with two initial spin con- whereE is the energy and- - -) is the MC sweep average.
figurations of a paramagnetic pha&ARA) and the(2) phaseAP)  Hereafter, we measure the temperature in units of the Boltz-
by (a) the conventional MC method ar(t) the CHB method. The  mann constaritg=1. The size of the lattice is from>816 to
broken line indicates the equilibrium value. 64x 128, i.e.,.L=8~64. The MC sweeps are about 200 000
for the largest lattice. Data for about five independent runs
CHB method starting with two different initial conditions, are averaged for each size of the lattice. Here detailed results
i.e., a paramagnetic spin configuration and ¢Bg spin con-  gre presented in the case o 0.6(J,= —0.6J;).
figuration. In Fig. 3, we present typical examples of the MC  The temperature dependence of the specific heat is pre-
sweep dependence of the squitte of the chain magnetiza- sented in Fig. 4. It exhibits a double peak. The one which
tion, occurs at a higher temperatureTof 1.5J, is very broad and
oL . ) almost independent of the lattice sizeThe other, occurring
1 1 at T~0.91,, is rather sharp and exhibits a size dependence
oL E ([ E Sxy) ' 2 implying the occurrence of a phase transition.
The temperature dependence(df,) is presented in Fig.
In the CHB method, about 1000 MC sweeps are necessaly. As the temperature is decreased, it exhibits a rapid in-
for the two runs to obtain the same value. In contrast to this¢rease below ~1.5J; and saturates arourit~0.9J,. A re-
in the conventional MC method, MC sweeps about 1000markable size dependence is seenTor0.9J; revealing the
times larger are necessary. This difference in the number afecay of the spin correlation even in the chain direction.
the MC sweeps becomes larger as the temperature is de- The spin correlatiofS,S,) in the axial direction is pre-
creased and/or the size of the lattice is increased. Note, in theented in Fig. 6. It exhibits an oscillatory decay. The decay
CHB method, about 30 times as much CPU time is necessarate becomes smaller as the temperature is decreased and the
for every MC sweep. period of the oscillation decreases towards 4, revealing the
occurrence of thg2) phase. A weak beat is seen at low
temperatures. The phase of the oscillation changes at necks.
This fact confirms the suggestion that the spin structure of
In this paper, we examine the ANNNI model withy  the IC phase just above tk&) phase may be described by a
=J, and k>1/2 for which the(2) phase is realized at low periodic arrangement of domain walls.

Ill. RESULTS
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FIG. 5. The temperature dependence of the square of the chaijyres have not yet been settled. We examine properties of
magnetizationM) for different sizes of the lattice. Error bars are {yge phase transitions and the transition temperatures ana-
smaller than symbols. lyzing the results presented in Sec. Ill.

IV. PHASE TRANSITION . -
A. KT-like phase transition

Now we discuss the phase transitions at the higher and
lower temperature$., andT,,. It has been believed that the
phase transition between the paramagnetic and the IC pha
is of the KT2 type, and the other transition is of the

First we consider phase transition at the higher tempera-
stéﬁe T;. If the IC phase has a nature of the KT phase, the
Spin correlation function decays according to the power law

Pokrovsky-Talapov typ&® However, the transition tempera- (SocSey) =T~ "codqy) for x,y>1, 6)
1.0 - ' ' ' ' with r=x?+y?. Here » andq are the decay exponent and
the wave number, respectively. Then the square of the chain
05 @Th=140 | magnetization becomes
/\>‘ n 2L L
» 1
2 0.0 ﬂ A AAAAAA AAAAAAA M-)y= —— S ~L"7 7
% dvvvvvvvvv (My) 2L2yzl><21< 1ySky) : (7)
0.5} . Thus, if we plot(M,) as a function oL on a log-log scale,
the data at the same temperature will lie on a straight line.
1.0 , , , , , We show the results in Fig. 7. In fact, the data for
o =<1.2Q); seem to lie on a straight line. We have estimated
values of the decay exponemt for different temperatures
0.5 b TA=LLS using the least-square method. The results are plotted in Fig.
R AAAA 8 as a function of the temperature. As the temperature is
> decreasedy decreases monotonously and its error bar be-
4 00 M\nnvnvnvnvﬂvnV"VAVAV"V"VAV"VA\ comes smaller. The declination becomes smaller and seems
v UUWVVV to be almost constant aroufid=1.2Q],. As the temperature
05 ] is decreased further, a change in the declination is seen
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FIG. 8. The temperature dependence of the decay expanient
FIG. 6. The spin correlation functiofS,S,) for the lattice  the chain direction. The dotted line indicates the KT criterion of
64x128. n=1/4.
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FIG. 9. A typical result of the scaling plot ¢M,).
P 9 plot ¢M2) FIG. 10. The temperature dependence of the decay expanent

aroundT = 1.00J,. Finally, =0 aroundT =0.9QJ; suggest- in the axial direction. The dotted line indicates the KT criterion of

ing the occurrence of th€2) phase. It is very interesting to n=1/4.

notice that, at the characteristic temperatiire 1.2Q1,, 7 . _
~1/4 which is the criterion of the KT phase transition. The [ure is decreasedy tl)/e4c8mes 14_4 %r%g?af_— T01~1‘16].1'h
error bars are very small below this temperature, suggestinglowever’ It stays own'to -99); In contrast with

e monotonous decrease in the chain direction. This differ-

the occurrence of the KT phase. To confirm this finding, we . . . T
P g nce in the value of) between the two directions is likely to

make a scaling analysis. If the correlation length diverge$ X S
ad? g y g g come from the spin structure near the transition to (g

phase, i.e., it consists of regions of t®) phase separated
E~expbt™29), (8) by the +++ or ——— domain walls. We also make the
scaling analysis ofK, ) assuming the same scaling relation
as(M,) but with different values ofy, T, andb. Unfortu-
nately, because of the scattering of the data, it was not easy
(M)HL7=Y[L lexp(bt 097, (9) tp estimate those values definitely without any preconcep-
tion. But, putting the same value @f,=1.16J,, we can fit
whereY is some scaling function. A typical result is shown the data fairly well as shown in Fig. 11. The value of
in Fig. 9. We can obtain a good scaling plot when we choose-(.27 is also compatible with that in the chain direction.
Thus we may conclude that the phase transition between the
Te1/3,=1.16+0.04, (10 paramagnetic phase and the IC phase belongs to the same
_ universality class of the KT phase transition. We should note
7=0.25-0.02. (11 that the valueT.,~1.16], is lower than any of previous
The most interesting point is that the estimated value;of estimation<—68-10
~0.25 is just the same as that of the KT criterfn.

Next we examine the spin correlation in the axial direc-
tion. The analysis is more difficult than that in the chain
direction, and results are less accurate, because the spin cor-Next we consider the phase transitionTas. In this tem-
relation decays oscillatory and much CPU time is necessarperature range, it is natural to consider the dengiy) of
to obtain the data with good accuracy. In addition, to obtairthe domain walls. We can readily calculate it for the finite
reliable results we must treat larger lattices because the relégttice as follows:
tion of Eq. (6) holds fory>1. A conventional way to esti-
mate the decay constant is to fit the data to @gusing the 1 2X[(L—1)—(m(x))]
least-square method. Another way is to make the Fourier <nL>:E E 2L )
translation of the data. We have made both analyses, but =1
these were not so effective, because we could use the data of

with t=(T—T¢;)/T.; andb being some constantM,) may
be scaled as

B. Lower-temperature phase transition

(13

1.0 . T T T T

(SoSy) only in a limited range ofy(2L>y>1). Here, to )
estimater, we consider an integrated quant{tg, ) which is 08| foyoet®0 oo ]
similar to (M,): ' ufm
4 L L yi+L2 Q06 g 1
=
K)=— . (12 M T=116 ° 6
< L> L3 X§=:1 y1=§2+1 Y2=;1+1 |<Sx,ylsx,y2>| 12 v 04t b=1.4 : E:; 1
] ) n1=0275 , ..
Here we only use the data in the inner pa L of thelL 02l a i:gj ]
X 2L lattice, because we treat the lattice with open bound-
aries. We make the same estimationyads in the case of the 0.0 it sssl b st sl
chain direction, and plot the results as a function of the tem- 10 10 L.leig{bt.o.s} 10

perature in Fig. 10. We find a temperature dependence simi-
lar to that in the chain direction. Especially, as the tempera- FIG. 11. A typical result of the scaling plot ¢K).
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FIG. 12. The temperature dependences of the deroity of

the domain walls for different sizes of the lattice. Closed circles

indicate extrapolated values.

FIG. 14. The temperature dependence of the wave vegtor
gether with those of the fermion approximations. The broken and
dotted curves are those of the VB and GC approximations, respec-

where m(x) is the number of spin pairs foxth column tlvel_y, and the_ closed circle indicates the result of the finite-size
s]pallng analysis.

which has different signs. The temperature dependencies 0
(n,) for differentL are shown in Fig. 12. As the temperaturelI8

. . ermion approximations, i.eT.,~0.907; by Villain and
is decreased, the size dependence becomes remarkable be 3 — 13
T~1.00,. After several trials, we have found that the data fit 8k (VB)° andT,~0.914), by Grynberg and CewGO)

. but considerably different from that of the MHZ method of
well by (n,)—1/L. The results of the extrapolation t Te,~1.100,.2° We note that the previous application of the
—oo are also plotted in the figure.

The extrapolated value becomesi)=0 around T MHZ method is not appropriate, because it considers the
—0.890;, which suggestd ., 0.89J,. This result is consis- interface along the axial direction. If we consider the creation

) ; : . of domain walls along the chain direction as considered in
ter;t WLFh thgt ?s;tr;madte;j f;orwtgegglehawordof_rtﬁe chain MaY3ihe fermion approximations, we obtain a similar value of
netization. but the data 1o oWy round. Then we ex- T.»,~0.906),(see the Appendix We also note that a cluster
amine the temperature dependencémf) atT~T., using a

scaling analysis. Since the fermion approximation suggeste\:ﬁariation method by Murait al> gives a close value of
A . . ~0. Ithough th h i iff I f
that (n) vanishes in proportion toT(— T,)? with g=1/22 Tcz 0.91,, although the method gives a different values o

th 4 th lation lenat b <1~ 1.56]; for the other phase transition.
we suppose thagn) an e correlation lengt§ may be Finally, we compare our result with those of the fermion
expressed as

approximation. We estimate the wave veajdirom
(M~(T-Te)”, (14

E~(T—Te) " (15) q=— 7, 17)
Then the data for differerit will be scaled as and plot it in Fig. 14 as a function of the temperature to-
<nL>Lﬁ/V:F(L1/Vt), (16) gether with those of the fermion approximation.s. Agree-
ments between our MC result and those approximation re-
with t=(T—Tg,)/T¢,. Putting8=1/2, we try to fit the data sults are very good. Especially, our result reproduces GC'’s
and find that a good scaling plot is obtained when/J;  result excellently up td~T.,. We conclude, hence, that the
~0.91 andv~1.0. A typical result is shown in Fig. 13. We present MC study supports the picture of the IC phase in the
suggest, hence, that a usual second-order phase transitifsrmion approximations. We should make a comment. The
occurs at the lower transition temperatureTgh~0.91);.  fermion approximation of GC seems to give a better result
This transition temperature is very close to the results of thehan the free fermion approximation of VB, because it takes
into account an interaction between the fermions. In fact, in

0.6 the case o0fk=0.6, a better agreement with the MC result is
L T 20912 1 obtained in the GCs approximation. However, &sin-
[;—o I creases, the deviation of GC'’s result from the MC result
204 1o ° ] increases faster than that of VB’s result. For largeas will
j W ¢ be shown in Sec. IV C, the agreement with the MC result is
s f ﬂox S Lets ] rather better in the VB’s approximation and still better in our
Vool MW . Looa 1 MHZ theory.
8 x L=32
F, o8 o L=48 1 C. Phase diagram
0.0 bt We have also examined the model with different values of
-20 0.0 20 (L 4.0 6.0 k. The decay exponeny and the domain wall densityn)

estimated by using the least-square method are plotted in
FIG. 13. A typical result of the scaling plot ¢h, ). Figs. 15 and 16, respectively, as functions of the tempera-
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FIG. 17. The phase diagram of the ANNNI model with=J;.
Open and filled circles indicaf€;; andT,, respectively, and lines
are guides to the eyes. The dotted curve is the result of the MHZ
theory of Ref. 15, and three broken curves are, from below, those of
our MHZ theory, the fermion approximation of VBRef. 3 and

ture. From the results, we give the phase diagram shown iH“’"‘ of GC(Ref. 13.

Fig. 17. Here we ploT;,'s estimated from the KT criterion

of »=1/4 andT.,’s from the condition of(n)=0. It is  upper transition temperatuiig;. Of course, these arguments
noted, however, that we have confirmed those values usingold when these two types of the instability of {® phase

the same scaling analyses as made in Secs. IV A and B. Theecur separately. If one occurs at a lower temperature, then
most important point is that, in contrast with the previousthe other will follow in somewhat different manner. In fact,
results, the IC phase appears in a small temperature rande; obtained by the present MC study is slightly different
above the(2) phase. It should be noted again that the fer-from that of the previous MHZ method.

mion approximationgand our MHZ theory give values of
T, very close to that of the MC result. On the other hand,
the transition temperatur@., estimated by the previous
MHZ theory is rather close to the higher transition tempera-
ture T¢;. These results are not unexpected. Suppose that sev- The ANNNI model in two dimensions is a prototype of
eral domain walls along the chain direction are created in theystems with competitive interactions. It has been believed
(2) phase. Then th2) phase is destroyed, but a strong spinthat a floating IC phase appears between(thephase and
correlation along the chain still remains. Since, as seefhe paramagnetic phase. However, both higher and lower
above, the IC phase just above §®) phase has this spin transition temperature,; and T, have not yet been estab-
structure, the fermion approximatiqasid our MHZ theory  lished because of the difficulty of numerical calculations.
give the lower transition temperatufg,. On the other hand, In this paper, we have developed an efficient method for
if the interface runs along the direction perpendicular to theobtaining equilibrium properties of the model. We find that
chain, the spin correlation along the chain decays exponenhe phase transition aff.; is well described by the
tially like that in the case of the nearest-neighbor ferromagkosterlitz-Thouless theory, and that &t, by the fermion
netic Ising model. Thus the previous MHZ theory gives theapproximations. Applying the finite-size scaling analyses, we
determineT; andT,, in a good accuracy. In contrast to the

| i previous suggestiong,., is well described by the fermion

° b g-g _ approximations which concern with the instability of 2
=10 - phase against the creation of the+ + or — —— domain
k=12 J walls along the chain direction. On the other hang,; is

J approximately described by the previous MHZ theory which

02}
AL J concerns with the instability of thé2) phase against the
Vouil _ formation of the interface along the axial direction.
J Therefore we may roughly say on the unusual spin order-
4 ing of the ANNNI model withk>1/2: as the temperature is
- increased, those two instabilities occur successively  at
. and T¢;. At intermediate temperature§ L<T<T¢,), the
ol : L1 '1'5 - ; - (2) phase is unstable but a strong spin correlation still re-

mains in the chains, because the interface along the axial

direction are still absent. This is the origin of the appearance
FIG. 16. The temperature dependences of the extrapolated deff the IC phase. As the temperature approache$ o a

city (n) of the domain walls for differenk. The lines are guides to number of the domain walls along the chain are created and

the eyes. the spin structure is strongly deformed. Then dislocations of

FIG. 15. The temperature dependences of the decay expgnent
in the chain direction for different. The dotted line indicates the
KT criterion of n=1/4.

V. CONCLUSIONS

L

T/,
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: : : : . APPENDIX
6 T Here we consider a lattice with open boundary conditions
5 + o+ o+ o+ 4+ for both directions. Kroemer and Pesch calculated the inter-
4 + + + + + + face free energy using the Mer-Hartmann and Zittartz
3 - -+ + - = (MHZ) method. They considered the interface along the
2 - - B B N N axial direction(typeY). In that case, the loss of the interface
1 + - - - 4+ o+ ) : _
o 4 + 4 + . + energy is J, for every chain. Another type of the interface
-1 + o+ o+ o+ 4+ - exists, which runs along the chain directi@ype X). In this
2 - - - - - = case, two domain walls are created simultaneously and the
-3 - - - - - - resulting energy loss is 2(J;—2J,)=2J4(2«x—1) for ev-
41 + + ot t ery column in the axial direction, because the spin configu-
. . . . . . . ration in the axial direction changes from+---—— to

ny n, n3 0, ng ng + + .- -+ + due to the pinning effecf Of course, in a very

large lattice, we can neglect interactions of those domain
FIG. 18. An example of spin configurations considered in Eq.walls. Thus, at least fa¥; (2« —1)<J,, the interface of type
(18). X will be more likely to appear when the temperature is
increased.

We can readily calculate the wall formation free energy
the network of the domain walls will also be possible. If this when the interaction of domain walls can be neglected. Sup-
instability of the IC phase occurs @t,, the phase transition pose that, for every column in the axial direction, t{@)
will exhibit the KT nature as discussed by Villain and Bhk. spin configurations are separated by only ohe-r + or
These considerations explain our MC results. An interesting- — — domain wall, as shown in Fig. 18. We denote the
problem which remains unsolved is the location of the Lif-position of the center of the domain wall ag for the ith
sihitz point at whichT.; and T., come together. One has column. Supposey;=n, =0, thenn;=0,+2,+4, ..., be-
believed that it exists at=x.=<1.03® but we could not find  cause the position of the domain wall changes*® when
it up to k=1.2, as shown in Fig. 17. Moreover, our prelimi- the spin on an edge of the domain wall is reversed. Then the
nary calculations have suggested its absence up=t@.0.  energy of this domain wall with column positiofis;} with
Then we think thatc. will be much larger than that believed respect to thé2) phase is
previously, if it even exists.

Finally, we should note that the results in this paper are L-1
obtained within a reasonable computer CPU time by using E({ni})=J1(2K—1)L+JOE [N 1—ni|. (A1)
the CHB method. The method is particularly effective for =1
analyzing properties of complex Ising systems such as Isinghe calculation of the free energy of this domain wall is
spin-glasse$>#! The method is also applicable for analyzing straightforward* and the result is given as
different models with discrete spin variables such as the

Potts and chiral clock models. 1+exp —2J3o/T)

1—exr(—2J0/T)>' (A2)

From =0, we obtain the equation of the melting tempera-
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