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Effects of interplay of dipole-dipole interactions and single-ion easy-plane anisotropy
on two-dimensional ferromagnets
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Using the nearest-neighbor Heisenberg model as a starting point, we provide a theoretical analysis on the
effects of the interplay of the dipole-dipole interactions and single-ion easy-plane anisotropy on the magnetism
of two-dimensional ferromagnets. The respective influence of the dipole-dipole interactions and single-ion
easy-plane anisotropy on the stability of the long-range magnetic order at finite temperature in two-dimensional
ferromagnets is investigated analytically, and the low-temperature spin-wave excitation spectrum, the tempera-
ture dependence of the spontaneous magnetization, and the transition temperature are calculated numerically.
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I. INTRODUCTION

There has been much interest recently in the field of m
netism in ultrathin films for reasons of both fundamen
physics and technical applications.1 These works are partly
motivated by the possible integration of the semiconduc
microelectronic technology with magnetic elements2 and is
simulated by the success in the growth of magnetic ultra
films on top of semiconductor surfaces. Although in the p
some theoretical work has been devoted to low-dimensio
magnetic systems, it is only in the past few years that te
nical progress has offered the possibility of comparing th
retical predictions with experimental measurements. This
turn will lead to more realistic understanding of magne
behavior in low-dimensional magnetic systems. Initial the
retical work on the particular case of a single monola
film, i.e., a two-dimensional system, indicated that such
system cannot present any spontaneous magnetization
nite temperature. This was first pointed out by Bloch3 and his
conjecture was later rigorously proved by Mermin a
Wagner,4 whose theorem shows that any long-range m
netic order at finite temperature cannot exist in an infin
two-dimensional spin system coupled by isotropic sho
range exchange interactions. But recent experiments hav
tablished that spontaneous magnetization at finite temp
ture does exist in ultrathin films~including single monolayer
films!, and both perpendicular and in-plane spontane
magnetization have been observed in magnetic ultra
films~including single monolayer films!.5–12 This apparent
contradiction between theoretical predictions and experim
tal results arises from the fact that an isotropic short-ra
exchange-coupled Heisenberg model does not take into
count all those important factors that may affect significan
the properties of a magnetic system, for example, the fin
size of specimens,13 the magnetocrystalline anisotropy,14–16

and the dipole-dipole interactions.17–18 Especially for mag-
netic ultrathin films, the magnetocrystalline anisotropy a
PRB 600163-1829/99/60~14!/10222~11!/$15.00
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the dipole-dipole interactions may play the crucial role
determining their magnetic properties.18–29Due to these rea-
sons, in the study of magnetism in ultrathin films, a cle
understanding of the effects of various kinds of magne
anisotropies and their interplay with dipole-dipole intera
tions is both theoretically and experimentally much des
able. A very common form of the magnetocrystalline anis
ropy is the single-ion anisotropy, taking usually the form
favoring an easy magnetization axis~single-ion easy-axis an
isotropy! or favoring an easy magnetization plane~single-ion
easy-plane anisotropy!. It has since been shown in the ca
of a single-ion easy-axis anisotropy favoring an easy mag
tization axis, the long-range magnetic order at finite tempe
ture in two-dimensional ferromagnets is stabilized by
anisotropy-induced energy gap at the bottom of the sp
wave excitation spectrum which removes the tw
dimensional~2D! divergence. However, in the case of singl
ion easy-plane anisotropy favoring an easy magnetiza
plane, since the spins can rotate freely in the easy plane
such gap should arise~the Goldstone theorem!. In such
cases, the stability of the long-range magnetic order at fi
temperature in two-dimensional ferromagnets cannot be
counted for by the formation of energy gap at the bottom
the spin-wave excitation spectrum, and the long-range m
netic order at finite temperature should result from the int
play of the anisotropy and dipole-dipole interactions. Wh
the effects of the interplay of the single-ion easy-axis anis
ropy and dipole-dipole interactions have been intensiv
studied by many authors in recent years,19–29up to now there
have been no theoretical investigations on the more su
effects of the interplay between the single-ion easy-plane
isotropy and dipole-dipole interactions. Their respective
fluence on the magnetism of two-dimensional ferromagn
still remains to be clarified. In this paper, using the neare
neighbor Heisenberg model as a starting point, we prese
theoretical analysis on the effects of the interplay of t
dipole-dipole interactions and single-ion easy-plane anis
10 222 ©1999 The American Physical Society
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ropy on the magnetism of two-dimensional ferromagnets,
cluding the stability of the long-range magnetic order at
nite temperature, the low-temperature spin-wave excita
spectrum, the temperature dependence of the spontan
magnetization, and the transition temperature.

The paper is organized as follows: In Sec. II, we fi
establish a self-consistent Green’s-function formalism to
scribe the off-diagonal quantum mixing effects of the anis
ropy in single-ion easy-plane ferromagnets with any s
quantum number. Due to the off-diagonal quantum mix
effects of the single-ion easy-plane anisotropy, the theor
cal treatment of single-ion easy-plane ferromagnets is m
difficult than that of single-ion easy-axis ferromagnets.30–41

In the case of isotropic or single-ion easy-axis ferromagn
it is well known that the most remarkable merit of th
Green’s-function method is its approximate validity at bo
low and high temperature except in the vicinity of the critic
point,42,43 which the other approaches such as spin-w
theory, mean-field approximation, and high-temperature
ries expansion method did not possess. But due to the
diagonal quantum mixing effects of the single-ion easy-pla
anisotropy, the usual Green’s-function formalism that are
plicable to isotropic or single-ion easy-axis ferromagn
cannot be applied to single-ion easy-plane ferromagnets,
significant modifications are needed. In Sec. II, we will e
tablish a modified form of the usual Green’s-function fo
malism so that it can be applied to single-ion easy-pla
ferromagnets. By making comparison with some other p
vious theoretical approaches for single-ion easy-plane fe
magnets, we will show that just like the usual Green
function formalism for isotropic or single-ion easy-ax
ferromagnets, this modified Green’s-function formalism c
also present an approximately valid description for single-
easy-plane ferromagnets at both low and high temperat
except in the critical region. In Sec. III, we will apply thi
modified Green’s-function formalism to investigate the
fects of the interplay of the dipole-dipole interactions a
single-ion easy-plane anisotropy on the magnetism of t
dimensional ferromagnets.

II. GREEN’S-FUNCTION APPROACH
FOR THE OFF-DIAGONAL QUANTUM MIXING

EFFECTS OF SINGLE-ION EASY-PLANE ANISOTROPY

In this section, we establish a self-consistent Green
function formalism to describe the off-diagonal quantu
mixing effects of the single-ion easy-plane anisotropy. F
clarity, we will neglect the dipole-dipole interactions for th
moment. But as will be shown in Sec. III, it is easier
include the dipole-dipole interactions in this Green
function formalism.

A spin-S ferromagnet with single-ion anisotropy is d
scribed by the following Hamiltonian:

H52J(̂
i j &

Si•Sj1D(
i

~Si
x!2, ~1!

whereSi are Heisenberg spin operators with spin quant
numberS, J is the nearest-neighbor exchange integral,
symbol^ i j & indicates that the sums are restricted to near
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neighbor pairs. Since the main purpose of this paper is
investigate the effects of the dipolar interactions and
single-ion easy-plane anisotropy, for simplicity and clari
only the nearest-neighbor exchange couplings of spins
be taken into account in the following. The second term
Hamiltonian~1! is the single-ion anisotropy term. IfD^0, the
anisotropy is the easy-axis type, and thex axis is the easy
magnetization axis. IfD.0, the anisotropy is the easy-plan
type, and they-z plane is the easy magnetization plane, th
is the case which we will discuss in this paper. In this ca
the spins will be forced into the easy-plane~the y-z plane!
by the anisotropy. By means of the identityS2S15S(S
11)2Sz2(Sz)2, the Hamiltonian can be rewritten as

H52J(̂
i j &

Si•Sj1
1

4
D(

i
@~Si

1!21~Si
2!2#

2
1

2
D(

i
~Si

z!21
1

2
NDS~S11!, ~2!

whereN is the total number of spins in the system and
have chosen thez axis to be along the direction of the spo
taneous magnetization. From this form of the Hamiltonia
we can see that the single-ion easy-plane anisotropy ind
an off-diagonal quantum mixing between theum
22&,um&,um12& single-ion eigenstates ofSz. Because of
the complexities caused by this off-diagonal quantum mix
effects of the single-ion easy-plane anisotropy, the theor
cal treatment of single-ion easy-plane anisotropy is mu
more difficult than that of single-ion easy-axis anisotrop
even the description of the ground states of such spin
tems is very nontrivial. Many conventional theoretical me
ods that are applicable to isotropic or single-ion easy-a
magnets cannot be applied to single-ion easy-plane mag
For instance, the well-known spin-Bose operator transform
tions by Holstein and Primakoff44 and by Dyson45 and
Maleev46 cannot be applied in the description of low
temperature spin-wave excitations in single-ion easy-pl
magnets.30–33 Due to these complexities, the mean-field a
proximation is commonly used in the calculations of t
thermodynamic quantities of single-ion easy-plane magn
However, in the mean-field approximation, both quantu
and thermal fluctuation correlations have been neglec
Several approaches which can improve the mean-field
proximation have been proposed: the method of matching
matrix elements~MME! ~Refs. 30–33! and the method of
characteristic angle~CA! transformation34 for describing the
low-temperature spin-wave excitations in easy-plane fe
magnets, the zero-temperature series expansion meth35

and the coupled-cluster method36–38for studying the ground-
state energy and the ground-state magnetization of e
plane spin-1 ferromagnets, the linked-cluster series exp
sion method ~LCE! ~Refs. 39–41! for studying the
thermodynamic quantities of easy-plane spin-one ferrom
nets. Though there have been such approaches for easy-
ferromagnets, there are some shortcomings in these
proaches: the MME method and the CA transformat
method can describe the low-temperature spin-wave exc
tions in easy-plane ferromagnets, but these methods
based on the transformations of spin operators into sim
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Bose operators are valid only at low temperatures~far below
the Curie temperature!; the zero-temperature series expa
sion method and the coupled-cluster method are approp
for studying the ground-state energy and the ground-s
magnetization of easy-plane ferromagnets, but they can
describe the low-temperature magnetic excitations in s
spin systems, moreover, it is difficult to extend these met
to easy-plane ferromagnets with spin greater than 1;
linked-cluster series expansion method~LCE! is also valid
only for studying the thermodynamic quantities and can
describe the low-temperature spin-wave excitations in ea
plane ferromagnets, it is also very difficult to extend th
method to easy-plane ferromagnets with any spin quan
number. In addition, if the dipole-dipole interactions are
cluded, the applications of these methods will become m
more complicated. To overcome these shortcomings of th
theoretical methods, we establish a self-consistent Gree
function formalism to describe the off-diagonal quantu
mixing effects of the single-ion easy-plane anisotropy.
will be shown in the following, like the usual Green’s
function formalism for isotropic or single-ion easy-axis fe
romagnets, this self-consistent Green’s-function formali
can also present an approximately valid description
single-ion easy-plane ferromagnets with any spin quan
number at both low- and high-temperature except in the
cinity of the critical point. At low temperature, it is similar t
the method of matching of matrix elements~MME! and can
present a correct description of the low-temperature s
wave excitations in single-ion easy-plane ferromagnets
high temperature, it can improve the mean-field theory s
stantially except in the critical region. Moreover, unlik
those previous theoretical methods,30–41 this Green’s-
function formalism can be easily extended to include
dipole-dipole interaction.
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Considering the off-diagonal quantum mixing effects
the single-ion easy-plane anisotropy, unlike the case of
tropic ferromagnets or ferromagnets with easy-axis anis
ropy, we introduce two kinds of retarded Green’s functio
G1

(n)( i , j ;t,t8) andG2
(n)( i , j ;t,t8), to describe the propagatio

of magnetic excitations in such spin systems:

G1
(n)~ i , j ;t,t8!5^^Si

1~ t !;„Sj
2~ t8!…n„Sj

1~ t8!…n21&&

52 iQ~ t2t8!

3^@Si
1~ t !,„Sj

2~ t8!…n~Sj
1~ t8!…n21#2&, ~3!

G2
(n)~ i , j ;t,t8!5^^Si

2~ t !;„Sj
2~ t8!…n„Sj

1~ t8!…n21&&

52 iQ~ t2t8!

3^@Si
2~ t !,„Sj

2~ t8!…n„Sj
1~ t8!…n21#2&, ~4!

where n51, 2, . . . , 2S, and ^A&5Tr(e2bHA)/Tr(e2bH),
A(t)5eiHtAe2 iHt , @A,B#25AB2BA. In the case of isotro-
pic ferromagnets or ferromagnets with easy-axis anisotr
@without the off-diagonal terms like (S1)2 and (S2)2 in
Hamiltonian~2!#, the second kind of Green’s functionsG2

(n)

should vanish exactly due to the conservation of thez com-
ponent of the total angular momentum. The off-diagon
quantum mixing effects of the single-ion easy-plane anis
ropy term breaks down this conservation condition, thus
second kind of Green’s functions will be nonvanishing. T
derive the Green’s functionsG1

(n) and G2
(n), we follow the

method of equation of motion. The equation of motion f
G1

(n) andG2
(n) gives
i
d

dt
G1

(n)~ i , j ;t,t8!5d~ t2t8!d i j ^g1
(n)~Sz!&22J(

a
^^Si

z~ t !Si 1a
1 ~ t !;„Sj

2~ t8!…n„Sj
1~ t8!…n21&&

12J(
a

^^Si 1a
z ~ t !Si

1~ t !;„Sj
2~ t8!…n„Sj

1~ t8!…n21&&

1
1

2
D^^Si

z~ t !Si
1~ t !1Si

1~ t !Si
z~ t !;„Sj

2~ t8!…n„Sj
1~ t8!…n21&&

1
1

2
D^^Si

z~ t !Si
2~ t !1Si

2~ t !Si
z~ t !;„Sj

2~ t8!…n„Sj
1~ t8!…n21&&, ~5!

i
d

dt
G2

(n)~ i , j ;t,t8!5d~ t2t8!d i j ^g2
(n)~S2,Sz!&12J(

a
^^Si

z~ t !Si 1a
2 ~ t !;„Sj

2~ t8!…n„Sj
1~ t8!…n21&&,

22J(
a

^^Si 1a
z ~ t !Si

2~ t !;„Sj
2~ t8!…n„Sj

1~ t8!…n21&&

2
1

2
D^^Si

z~ t !Si
1~ t !1Si

1~ t !Si
z~ t !;„Sj

2~ t8!…n„Sj
1~ t8!…n21&&

2
1

2
D^^Si

z~ t !Si
2~ t !1Si

2~ t !Si
z~ t !;„Sj

2~ t8!…n„Sj
1~ t8!…n21&&, ~6!
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wherei and i1a denote two nearest-neighboring lattice sit
and

g1
(n)~Sz!5@S1,~S2!n~S1!n21#

5~2nSz1n22n!F (n21)~Sz!, ~7!

g2
(1)~S2,Sz!5@S2,S2#50, ~8!

g2
(2)~S2,Sz!5@S2,~S2!2S1#522~S2!2Sz, ~9!

g2
(n)~S2,Sz!5@S2,~S2!n~S1!n21#

52@~n21!~n22!~S2!212~n21!

3~S2!2Sz#F (n22)~Sz!, ~n.2!, ~10!

in which

F (n)~Sz!5~S2!n~S1!n

5Pp51
n @S~S11!2~n2p!~n2p11!

2~2n22p11!Sz2~Sz!2#. ~11!

To constitute a set of closed equations forG1
(n) andG2

(n) , as
usual, we decouple the higher-order Green’s functions in
right-hand sides of Eqs.~5! and~6! according to the random
phase approximation~RPA!:42

Si
z~ t !Sj

6~ t !'^Sz&Sj
6~ t !, iÞ j . ~12!

However, it should be noted the above ordinary RPA dec
pling scheme is not appropriate ifi 5 j . In this case, an ap
propriate decoupling scheme is that of Callen a
Anderson:43

Si
z~ t !Si

6~ t !1Si
6~ t !Si

z~ t !'2G^Sz&Si
6~ t !, ~13!

G512
1

2S2 @S~S11!2^~Sz!2&#. ~14!

Using the decoupling schemes of Eqs.~12! and ~13!, and
making the usual Fourier transformations, we obtain t
closed equations for the Fourier componentsG1

(n)(k,v) and
G2

(n)(k,v):

@v2«k2DG^Sz&#G1
(n)~k,v!2DG^Sz&G2

(n)~k,v!

5^g1
(n)~Sz!&, ~15!

@v1«k1DG^Sz&#G2
(n)~k,v!1DG^Sz&G1

(n)~k,v!

5^g2
(n)~S2,Sz!&, ~16!

where

«k52JZ^Sz&~12gk!, ~17!
e

-

d

o

gk5
1

Z (
a

eik–a, ~18!

in which Z is the number of the nearest neighbors anda
denotes the lattice vectors between two nearest neighb
From Eqs.~15! and ~16!, we get

G1
(n)~k,v!5

1

2E~k!@v2E~k!#
$DG^Sz&^g2

(n)~S2,Sz!&

1^g1
(n)~Sz!&@E~k!1«k1DG^Sz&#%

2
1

2E~k!@v1E~k!#
$DG^Sz&^g2

(n)~S2,Sz!&

2^g1
(n)~Sz!&@E~k!2«k2DG^Sz&#%, ~19!

G2
(n)~k,v!52

1

2E~k!@v2E~k!#
$DG^Sz&^g1

(n)~Sz!&

2^g2
(n)~S2,Sz!&@E~k!2«k2DG^Sz&#%

1
1

2E~k!@v1E~k!#
$DG^Sz&^g1

(n)~Sz!&

1^g2
(n)~S2,Sz!&@E~k!1«k1DG^Sz&#%,

~20!

where

E~k!5A~«k1DG^Sz&!22~DG^Sz&!2, ~21!

which is just the magnon dispersion relation.
From Eqs. ~7!–~11!, ~19!, and ~20!, we can see tha

G1
(n)(k,v) andG2

(n)(k,v) are functions of two kinds of un-
known variables: ^(Sz)n& and ^(S2)2(Sz)n21&, (n
51,2,. . . ). The nonvanishing of the second kind of var
ables is a direct consequence of the off-diagonal quan
mixing effects of the single-ion easy-plane anisotropy. Th
two kinds of unknown variables must be determined by so
self-consistent procedures. Through the use of the Zubar
equation,47 we can get

^~S2!n~S1!n&

5
1

N (
k

i E dv

2p

G1
(n)~k,v1 i01!2G1

(n)~k,v2 i01!

ebv21

5
1

N (
k

1

2E~k!@ebE(k)21#
$DG^Sz&^g2

(n)~S2,Sz!&

1^g1
(n)~Sz!&@E~k!1«k1DG^Sz&#%

2
1

N (
k

1

2E~k!@e2bE(k)21#
$DG^Sz&^g2

(n)~S2,Sz!&

2^g1
(n)~Sz!&@E~k!2«k2DG^Sz&#%, ~22!
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^~S2!n~S1!n21S2&

5
1

N (
k

i E dv

2p

G2
(n)~k,v1 i01!2G2

(n)~k,v2 i01!

ebv21

52
1

N (
k

1

2E~k!@ebE(k)21#
$DG^Sz&^g1

(n)~Sz!&

2^g2
(n)~S2,Sz!&@E~k!2«k2DG^Sz&#%

1
1

N (
k

1

2E~k!@e2bE(k)21#
$DG^Sz&^g1

(n)~Sz!&

1^g2
(n)~S2,Sz!&@E~k!1«k1DG^Sz&#%, ~23!

in which n51,2, . . . , 2S, and

^~S2!n~S1!n&5^F (n)~Sz!&,

^~S2!n~S1!n21S2&5^~S2!2& for n51

and

^~S2!n~S1!n21S2&

5^~S2!2@S~S11!1Sz2~Sz!2#F (n22)~Sz!&

for n.1. @The expression forF (n)(Sz) is given in Eq.~11!.#
From Eqs.~7!–~11!, we can see that in Eqs.~22! and ~23!,
both the left-hand sides and the right-hand sides are fu
tions of the two kinds of unknown variables:^(Sz)n& and
^(S2)2(Sz)n21&, (n51,2,. . . ). Noticing that for any spin
quantum numberS, the following relations are satisfied:

Pm52S
m5S ~Sz2m!uc&50, ~24!

~S2!2S12uc&50, ~25!

whereuc& is any state vector. From these relations, we h

^Pm52S
m5S ~Sz2m!&50, ~26!

^~S2!2S12~S1!2S&5^~S2!2F (2S)~Sz!&50. ~27!

From Eqs.~26! and ~27!, we can see that for anyn.2S,
^(Sz)n& can be expressed as a linear combination of^Sz&,
^(Sz)2&, . . . , ^(Sz)2S&, and^(S2)2(Sz)n21& can be expresse
as a linear combination of̂ (S2)2&, ^(S2)2Sz&, . . . ,
^(S2)2(Sz)2S21&. Therefore both in the left-hand sides an
in the right-hand sides of Eqs.~22! and ~23!, there are, in
fact, only 4S independent variables:̂Sz&, ^(Sz)2&, . . . ,
^(Sz)2S&, and ^(S2)2&, ^(S2)2Sz&, . . . , ^(S2)2(Sz)2S21&.
These 4S unknown variables can be determined complet
from the 4S simultaneous equations in Eqs.~22! and~23! by
self-consistent procedure. After these unknown variables
determined by self-consistent procedure, the Green’s fu
tions G1

(n)(k,v) and G2
(n)(k,v) can be determined com

pletely, then all the other calculations, such as the calc
tions of the spin-wave excitation spectrum, the temperatu
dependent magnetization, and the Curie temperature,
can be carried out straightforwardly.

To test the validity of this Green’s-function formalism
we first apply this Green’s-function formalism to the case
three-dimensional single-ion easy-plane ferromagnets
c-

e

y

re
c-

a-
e-
c.,

f
e-

glecting the dipole-dipole interactions~the dipole-dipole in-
teractions are negligible for three-dimensional ferroma
nets!. In this case, there are several other theoret
approaches for comparison. In Fig. 1, we have plotted
low-temperature spin-wave excitation spectrums obtained
this Green’s-function formalism and the MME method f
three-dimensional easy-plane spin-one ferromagnets. A
well known, in the description of low-temperature spin-wa
excitations, it is usually more convenient to transform t
Hamiltonian of spin operators into a Hamiltonian of simpl
Bose or Fermi operators. For example, the well-known tra
formations by Holstein and Primakoff44 and by Dyson45 and
Maleev46 are transformations of the spin operators to a se
of Bose operators. But due to the off-diagonal quantum m
ing effects of the single-ion easy-plane anisotropy, these w
known transformations cannot be applied in the descript
of spin-wave excitations in such spin systems. For instanc
naive use of the well ordered Holstein-Primakoff transform
tion to Hamiltonian~1! will violate the Goldstone theorem
and lead to imaginary values for the energies of thek;0
modes no matter how small the anisotropy constantD
is.30–33 The Dyson-Maleev transformation is also not a
equate in the presence of the single-ion easy-plane an
ropy, since it gives a non-Hermitian quadratic Hamiltoni
where the kinematic condition, which requires that for sp
S5 1

2 the magnon energies should not be affected by
anisotropy, is not satisfied even at this order. The most
propriate way for overcoming these difficulties is the meth
of matching of matrix elements~MME!.30–33 Basically, the
MME method provides a more convenient starting point
single-ion states by means of a perturbative treatment of
off-diagonal terms in the anisotropy, then a boson repres
tation of the spin operators is achieved by equating the c
responding matrix elements in the respective spaces~match-
ing of matrix elements, or MME!. This method is very

FIG. 1. The spin-wave excitation spectrums of 3D single-i
easy-plane spin-one ferromagnets for different values of the an
ropy constant. The solid lines represent the results of the pre
Green’s-function formalism and the dotted lines represent the
sults of the MME method. In the case ofD50, the two methods
give exactly the same results.~All parameters are given in units o
J. T/J50.1, d5D/J is shown in the figure.!
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appropriate in the case of small anisotropy, but it will b
come worse if the anisotropy is large due to its perturba
treatment of the off-diagonal terms in the anisotropy. In
present Green’s-function formalism, since the off-diago
quantum mixing effects of the single-ion easy-plane anis
ropy have been taken into account in a self-consistent w
those difficulties encountered by such as Holstein-Primak
~HP! transformation and Dyson-Maleev transformation a
overcome naturally. From the magnon dispersion relat
@see Eq.~21!#, after some simple algebra, we can eas
verify that:~i! the magnon energyE(k) is always positive for
the kÞ0 modes~no imaginary values will occur for the en
ergies of thek;0 modes!; ~ii ! E(k)→0 in the limit of k
→0 ~satisfying correctly the Goldstone theorem!; ~iii ! for

FIG. 2. ~a! The comparison between the temperature dep
dence of magnetization of 3D single-ion easy-plane spin-one fe
magnets obtained by the present Green’s-function formalism
the MME method.~b! The comparison between the temperatu
dependence of magnetization of 3D single-ion easy-plane spin
ferromagnets obtained by the present Green’s-function forma
~GRN!, the mean-field theory~MFT!, and the LCE method, respec
tively. ~The parameters are shown in the figure.!
-
e
e
l
t-
y,
ff
e
n

spin S5 1
2 the magnon energies will not be affected by t

anisotropy ~satisfying correctly the kinematic condition!.
Moreover, as is shown in Fig. 1, in the case of small anis
ropy, the results obtained by the present Green’s-func
formalism are very close to the corresponding results of
MME method, which is correct in the case of small anis
ropy, and for very small anisotropy, the results obtained
these two method will become actually the same.

In Figs. 2~a! and ~b! we have plotted the temperature d
pendences of magnetization of three-dimensional single
easy-plane spin-one ferromagnets for different values of
anisotropy constantD, obtained by this Green’s-function
formalism ~GRN!, the method of matching of matrix ele
ments~MME!, the mean-field theory~MFT!, and the linked-
cluster series expansion method~LCE!, respectively. From
Fig. 2~a! we see again that at low temperature, the results
the present Green’s-function formalism are very close to t
of the MME method, which is valid at low temperature, a
the smaller the anisotropy is, the smaller the difference
tween the corresponding results of the two methods. Bu
high temperature, the MME method will break down com
pletely. From Fig. 2~b! we can see that at high temperatur
compared with the mean-field theory, the results of
present Green’s-function formalism are very close to the c
responding results of the LCE method which provides
most accurate calculations for the thermodynamic quanti
at high temperature. The reason for this is clear. The me
field theory neglects the quantum and thermal fluctuat
correlations completely. In contrast, the present Gree
function formalism and the LCE method both include t
effects of the quantum and thermal fluctuation correlatio
The values of magnetization at high temperature and the
rie temperature can be reduced substantially from the me
field values by both quantum and thermal fluctuation cor
lations, as is shown in Fig. 2~b!. From these comparisons, w
can see that this self-consistent Green’s-function formal
can present an approximately valid description for single-
easy-plane ferromagnets at both low and high temperat
At low temperature, it is similar to the method of matchin
of matrix elements~MME! and can present a correct descri
tion of the spin-wave excitations in single-ion easy-pla
ferromagnets; at high temperature, it can improve the me
field theory substantially. But it should be noted that, due
the mean-field nature of the decoupling procedure in E
~12! and ~13!, like the mean-field theory, this Green’s
function approach cannot present a correct description of
critical behavior in the vicinity of the critical point. This is
also the shortcoming of the usual Green’s-function appro
for isotropic or single-ion easy-axis ferromagnets. Since
this paper we will not discuss the critical behavior in t
critical region, this self-consistent Green’s-function forma
ism can be applied at both low and high temperature. In S
III, we will apply this Green’s-function formalism to inves
tigate the effects of the interplay of the dipole-dipole inte
actions and single-ion easy-plane anisotropy on the mag
tism of two-dimensional ferromagnets.

III. EFFECTS OF INTERPLAY OF DIPOLE-DIPOLE
INTERACTIONS AND SINGLE-ION EASY-PLANE

ANISOTROPY ON TWO-DIMENSIONAL
FERROMAGNETS

In this section, we apply the Green’s-function formalis
established in Sec. II to study the effects of the interplay
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the dipole-dipole interactions and single-ion easy-plane
isotropy on the magnetism of two-dimensional ferromagn
including the stability of the long-range magnetic order
finite temperature, the spin-wave excitation spectrum,
temperature dependence of the spontaneous magnetiza
and the transition temperature. While there have been
cently many theoretical investigations on the effects of
interplay of the single-ion easy-axis anisotropy and dipo
dipole interactions on 2D ferromagnets,19–29up to now, there
have been no theoretical investigations on the effects of
interplay of the dipole-dipole interactions and single-i
easy-plane anisotropy on two-dimensional ferromagn
their respective influence on the magnetism of tw
dimensional ferromagnets still remains to be clarified.

In the presence of the dipole-dipole interactions, a tw
dimensional ferromagnet with single-ion easy-plane anis
ropy can be described by the following Hamiltonian:

H52J(̂
i j &

Si•Sj1D(
i

~Si
x!22h(

i
Si

z

1
V

2 (
i j

1

u l i2 l j u3 S Si•Sj23
@Si•~ l i2 l j !#@Sj•~ l i2 l j !#

u l i2 l j u2
D ,

~28!

where l i is the two-dimensional lattice vector in the film
plane~they-z plane!, V is the dipole-dipole interaction con
stant, D(.0) is the single-ion easy-plane anisotropy co
stant,h is proportional to the external field. As in Sec. II, fo
simplicity, only the nearest-neighbor exchange couplings
spins are taken into account. By the same procedure a
Sec. II, it can be easily verified that after including the te
of the dipole-dipole interactions, the Fourier components
the Green’s functionG1

(n) and G2
(n) defined in Eqs.~3! and

~4!, can be expressed as

G1
(n)~k,v!5

1

2E~k!@v2E~k!#
$^g1

(n)~Sz!&@E~k!1F1~k!#

1F2~k!^g2
(n)~S2,Sz!&%

1
1

2E~k!@v1E~k!#
$^g1

(n)~Sz!&@E~k!2F1~k!#

2F2~k!^g2
(n)~S2,Sz!&%, ~29!

G2
(n)~k,v!5

1

2E~k!@v2E~k!#
$^g2

(n)~S2,Sz!&

3@E~k!2F1~k!#2F2~k!^g1
(n)~Sz!&%

1
1

2E~k!@v1E~k!#
$^g2

(n)~S2,Sz!&

3@E~k!1F1~k!#1F2~k!^g1
(n)~Sz!&%,

~30!

and correspondingly, the self-consistent Eqs.~22! and ~23!
can be rewritten as
n-
s,
t
e

ion,
e-
e
-

e

s,
-

-
t-

-

f
in

f

^~S2!n~S1!n&5
1

N (
k

1

2E~k!@ebE(k)21#

3$F2~k!^g2
(n)~S2,Sz!&

1^g1
(n)~Sz!&@E~k!1F1~k!#%

2
1

N (
k

1

2E~k!@e2bE(k)21#

3$F2~k!^g2
(n)~S2,Sz!&

2^g1
(n)~Sz!&@E~k!2F1~k!#%, ~31!

^~S2!n~S1!n21S2&52
1

N (
k

1

2E~k!@ebE(k)21#

3$F2~k!^g1
(n)~Sz!&

2^g2
(n)~S2,Sz!&@E~k!2F1~k!#%

1
1

N (
k

1

2E~k!@e2bE(k)21#

3$F2~k!^g1
(n)~Sz!&

1^g2
(n)~S2,Sz!&@E~k!1F1~k!#%,

~32!

where

E~k!5A@F1~k!#22@F2~k!#2, ~33!

F1~k!5«k1
V

2
^Sz&pxx~k!1

V

2
^Sz&pyy~k!

2V^Sz&pzz~0!1h1DG^Sz&, ~34!

F2~k!5
V

2
^Sz&pxx~k!2

V

2
^Sz&pyy~k!1DG^Sz&, ~35!

«k52JZ^Sz&~12gk!, ~36!

gk5
1

Z (
a

eik–a, ~37!

in which Z is the number of the nearest neighbors,a denotes
lattice vectors between two nearest-neighbor lattice sites,
pab(k) is defined as follows:

pab~k!5(
j

1

u l i2 l j u3 S dab23
~ l i2 l j !a~ l i2 l j !b

u l i2 l j u2 Deik•( l j 2 li ),

~a,b5x,y,z!. ~38!

Due to the translational invariance, these Fourier com
nents are independent of the subscripti , andpab(k)50 for
aÞb. The lattice sums in Eq.~38! converge very slowly in
an oscillatory manner, direct and accurate computation of
lattice sums is difficult, but they can be converted into ser
which converge very rapidly using Ewald lattice summati
method.48 Following this method,paa(k) can be expressed
as
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pxx~k!5q1~ky ,kz!1q2~ky ,kz!, ~39!

pyy~k!5q1~ky ,kz!22q2~ky ,kz!, ~40!

pzz~k!5q2~ky ,kz!22q1~ky ,kz!, ~41!

in which

q1~ky ,kz!5
16

3 (
m51

`

(
n52`

` S np1
ky

2 D 2

3cos~mkz!K2S 2mUnp1
ky

2 U D , ~42!

q2~ky ,kz!5
16

3 (
m51

`

(
n52`

` S np1
kz

2 D 2

3cos~mky!K2S 2mUnp1
kz

2 U D , ~43!

whereK2(x) is the modified Bessel function of second ord
Since for large values ofx, Kn(x);e2x/Ax, these series are
very rapidly convergent, and they will be used in the nume
cal calculations. In the following, we need to consider t
analytical form of the spin-wave excitation spectrum in t
neighborhood ofk50, in this case it is more convenient t
expandpaa(k) into a series ofk in the neighborhood ofk
50. Using a method similar to that of Ref. 18, which tre
the dipole-dipole interactions within the long-wavelength a
proximation, we can get~in the limit of k→0)

pxx~k!'
8p f

3
22pk1O~k2!, ~44!

pyy~k!'2
4p f

3
1pk~12cos 2u!1O~k2!, ~45!

pzz~k!'2
4p f

3
1pk~11cos 2u!1O~k2!, ~46!

where f 51.0782~for square lattice!, u is the angle between
the wave vectork and thez axis.

As has been shown in Sec. II, both the left-hand sides
the right-hand sides in the self-consistent Eqs.~31! and~32!
are functions of 4S independent variables:̂(Sz)n& and
^(S2)2(Sz)n21&, (n51,2,. . . ,2S). By the help of Eqs.~26!
and ~27!, these 4S independent unknown variables can
determined completely from the 4S simultaneous Eqs.~31!
and~32! through self-consistent procedures. Before we so
the self-consistent Eqs.~31! and ~32! by numerical method,
we should first investigate the stability of the long-range f
romagnetic order at finite temperature in an infinite tw
dimensional lattice. Whether the long-range ferromagn
order is stable at finite temperature is determined by the
tures of the long-wavelength thermal fluctuations. In t
above Green’s-function formalism, this stability depends
the convergence of the two-dimensional integrals of wa
vector k at its lower bound in the self-consistent Eqs.~31!
and~32!. ~The summation of wave vectork can be replaced
by an integrals over wavevectork as N→`.! The conver-
gence or divergence of the integrals in Eqs.~31! and ~32! is
.

i-

t
-

d

e

-
-
ic
a-
e
n
e

determined by the spin-wave excitation spectrumE(k) in the
neighborhood ofk50. In the neighborhood ofk50, we can
expandE(k) into a series ofk. Using Eqs.~33!–~37! and
~44!–~46!, we arrive at the following conclusions:~i! If there
is no external field (h50), there will be no any energy ga
at the bottom of the spin-wave excitation spectrum, i
E(k)→0 in the limit of k→0. This is required by the Gold
stone theorem;~ii ! If there is no dipolar interactions (V
50), the spin-wave excitation spectrumE(k) has the fol-
lowing dispersion relation in the neighborhood ofk50:

E~k!5AC01C2k21O~k3!, ~47!

in which

C05h212hDG^Sz&, ~48!

C254J^Sz&@h1DG^Sz&#. ~49!

From this dispersion relation, we can see that if there is
external field (h50), the integrals in Eqs.~31! and ~32!
diverge logarithmically at its lower bound. In this case, t
self-consistent Eqs.~31! and ~32! cannot have any definite
solutions at finite temperature asN→` ~i.e., an infinite two-
dimensional lattice!. This result shows that for an infinite
two-dimensional ferromagnet, the single-ion easy-plane
isotropy alone cannot stabilize the long-range ferromagn
order at finite temperature if there are no long-range dipo
dipole interactions.~If neglecting the term of the dipole
dipole interactions in Hamiltonian~28!, the MME method
can be applied, and the same conclusion as this result ca
obtained.49 But in the presence of the dipole-dipole intera
tions, just like the Holstein-Primakoff transformation, a n
ive application of the spin-Bose operator transformation
rived by the MME method will also violate the Goldston
theorem49!; ~iii ! In the presence of the long-range dipol
dipole interactions (VÞ0), the spin-wave excitation spec
trum E(k) has the following dispersion relation in the neig
borhood ofk50:

E~k!5AC01C1k1O~k2!, ~50!

in which

C05h214p f Vh^Sz&12hDG^Sz&, ~51!

C15@h14p f V^Sz&12DG^Sz&#

3pV^Sz&~12cos 2u!22pVh^Sz&. ~52!

From this dispersion relation, we can see that even if ther
no external field (h50 and henceC050), the integrals in
Eqs.~31! and~32! are convergent at its lower bound. In th
case, the self-consistent Eqs.~31! and~32! have stable solu-
tions asN→`. This suggests that the long-range dipo
dipole interactions may itself stabilize the long-range ma
netic order in an infinite two-dimensional lattice at fini
temperature. Therefore, for two-dimensional single-ion ea
plane ferromagnets, the long-range dipole-dipole interacti
play the crucial role in stabilizing the long-range magne
order at finite temperature. This is significantly differe
from the case of two-dimensional easy-axis ferromagnets
which the long-range magnetic order at finite temperatur
stabilized by an anisotropy-induced energy gap at the bot
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of the spin-wave excitation spectrums and the effects of
dipole-dipole interactions are negligible compared with
effects of the easy-axis anisotropy;~iv! In the presence o
external field (hÞ0), there is always an energy gap at t
bottom of the spin-wave excitation spectrum:

E~0!5Ah214p f Vh^Sz&12hDG^Sz&. ~53!

This energy gap will increase greatly the stability of t
long-range ferromagnetic order at finite temperature,
therefore two-dimensional easy-plane ferromagnets will h
very sensitive dependence on the external field in the ne
borhood ofh50.

We have discussed the stability of the long-range fer
magnetic order at finite temperature in an infinite tw
dimensional ferromagnet with single-ion easy-plane anis
ropy and have investigated the convergence of the t
dimensional integrals of wave vectork in the self-consisten
Eqs. ~31! and ~32!. We can see that the dipole-dipole inte
actions play a dominant role in stabilizing the long-ran
magnetic order at finite temperature in an infinite tw
dimensional ferromagnet with single-ion easy-plane anis
ropy. Once the convergence of the integrals in Eqs.~31! and
~32! has been established, the numerical calculation can
performed safely. Some numerical results are shown in F
3–5. In Fig. 3 we have plotted the low-temperature sp
wave excitation spectrums of two-dimensional single-
easy-plane spin-one ferromagnets for different values of
anisotropy constantD. In Fig. 4~a! and ~b! we have plotted
the temperature dependences of the spontaneous magn
tion for different values of the anisotropy constantD and the
dipole-dipole interaction constantV, respectively. In Figs.
5~a! and ~b!, we have shown the relations between the tr
sition temperature and the anisotropy constantD and the
dipole-dipole interaction constantV, respectively. From Fig.

FIG. 3. The spin-wave excitation spectrums of 2D single-
easy-plane spin-one ferromagnets.~All parameters are given in
units of J. v5V/J50.005,T/J50.1, d5D/J is shown in the fig-
ure.!
e
e
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3 we can see that the interplay of the dipole-dipole inter
tions and single-ion easy-plane anisotropy does not ind
any energy gap at the bottom of the spin-wave excitat
spectrum, but the single-ion easy-plane anisotropy
modify the spin-wave energies for thekÞ0 modes signifi-
cantly. ~From Fig. 3 we can see that the increase of
anisotropy will increase the spin-wave energies for thek
Þ0 modes.! The numerical calculations also show that t
dipole-dipole interactions have little influence on the sp
wave energies of thekÞ0 modes, but as has been discuss
above, the dipole-dipole interactions can modify significan
the magnon dispersion relation in the neighborhood ok
50 @see Eqs.~50!–~52!#, and this modification plays the
crucial role in the stabilization of the long-range magne
order at finite temperature. From Fig. 4~a! we can see that the

FIG. 4. ~a! The temperature dependence of the spontane
magnetization of 2D single-ion easy-plane spin-one ferromag
for different values of the anisotropy constant. The parametersv
5V/J50.005,d5D/J is shown in the figure.~b! The temperature
dependence of the spontaneous magnetization for different va
of the dipole-dipole interaction constant. The parameters:d50.2,v
is shown in the figure.
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increase of the anisotropy will decrease the ground-s
magnetization but increase the stability of the magnetic or
at high temperature. The reason is that the larger the an
ropy constant is, the stronger the quantum mixing betw
the um22&, um&, um12& single-ion eigenstates ofSz, thus
the smaller the ground-state magnetization is. But as
shown in Fig. 3, the increase of the anisotropy will al
increase the magnon energies of thekÞ0 modes, thus reduc
the thermal fluctuations and increase the stability of the m
netic order at high temperature. From Fig. 4~b!, we can see
that the increase of the dipole-dipole interactions will a
increase the stability of the magnetic order at high tempe
ture, but the ground-state magnetization is almost indep
dent of the dipole-dipole interaction constantV, i.e., the
quantum mixing effects of the dipole-dipole interactions a
negligible. From Figs. 5~a! and~b!, we can see that the tran
sition temperature decreases monotonically as the anisot

FIG. 5. ~a! The relation between the transition temperature a
the anisotropy constant for 2D single-ion easy-plane spin-one
romagnets. The parameters:v5V/J50.006. ~b! The relation be-
tween the transition temperature and the dipole-dipole interac
constant. The parameters:D/J50.2.
te
er
ot-
n

is

g-

a-
n-

e

py

constant decreasing or the dipole-dipole interaction cons
decreasing, indicating that the magnetic order at finite te
perature will become less and less stable as the anisot
decreasing or the dipole-dipole interactions decreasing
order to give a more quantitative idea of the above theor
cal results, it may be helpful to make some contact with
realistic systems. Some experimental observations h
found that, in some fcc~001! Co ultrathin films, the sponta
neous magnetization lies in the film plane, and the in-pla
spontaneous magnetizations can exist up to temperatur
large as above 500 K.6,7 In the above theory, if we choose th
values of the model parameters to fit the transition tempe
ture Tc of 3D easy-plane ferromagnets described by
Hamiltonian~1! to be about the magnitude of the Curie tem
perature of the bulk Co, then for the corresponding 2D ea
plane ferromagnets described by the Hamiltonian~28!, the
transition temperatureTc do can be as large as above 500
in the presence of the dipole-dipole interactions, i.e., in
above theory, the dipolar interactions do can be respons
for the stabilization of the long-range ferromagnetic order
to a temperature of above 500 K. Of course, there may
some significant differences between the nearest-neigh
Heisenberg model used in the above theory and the real
systems, but we think that the above qualitative features
the effects of the dipolar interactions and the easy-plane
isotropy should still remain if more realistic models are us
in the calculations. This will be investigated in more detail
the future.

In conclusion, using the nearest-neighbor Heisenb
model as a starting point, we have provided a theoret
analysis on the effects of the interplay of the dipole-dipo
interactions and single-ion easy-plane anisotropy on
magnetism of two-dimensional ferromagnets. The respec
influence of the dipole-dipole interactions and single-i
easy-plane anisotropy on the stability of the long-range m
netic order at finite temperature in two-dimensional fer
magnets is investigated analytically. The results show t
for two-dimensional ferromagnets with single-ion easy-pla
anisotropy, the single-ion easy-plane anisotropy alone can
stabilize the long-range magnetic order at finite temperat
and the dipole-dipole interactions play the crucial role
stabilizing the long-range magnetic order at finite tempe
ture. The low temperature spin-wave excitation spectru
the temperature dependence of the spontaneous magn
tion, and the transition temperature, have been calcula
numerically. Though the above theory is based on
nearest-neighbor Heisenberg model as a starting point,
theoretical method established in this paper can also be
plied to some more realistic model systems. At the end
should pointed out that, due to the mean-field nature of
decoupling scheme in Eqs.~12! and ~13!, this Green’s-
function formalism cannot present a correct description
the critical behavior in such magnetic systems. If one wa
to investigate the critical behavior in such magnetic syste
one must resort to other theoretical approaches such as
linked-cluster series expansion method~LCE!.39–41 In addi-
tion, if the anisotropy constantD is very large~the anisot-
ropy dominates over the exchange interactions, or appr
matelyD/zJ;1!, the RPA decoupling scheme in Eqs.~12!
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and~13! will break down due to the strong quantum mixin
between single-ion energy levels induced by the single-
easy-plane anisotropy, and hence the present Gree
function formalism will become inappropriate~the same is
also true for some other theoretical methods!. In such cases
more powerful decoupling schemes should be searched
ia

hy
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