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Using the nearest-neighbor Heisenberg model as a starting point, we provide a theoretical analysis on the
effects of the interplay of the dipole-dipole interactions and single-ion easy-plane anisotropy on the magnetism
of two-dimensional ferromagnets. The respective influence of the dipole-dipole interactions and single-ion
easy-plane anisotropy on the stability of the long-range magnetic order at finite temperature in two-dimensional
ferromagnets is investigated analytically, and the low-temperature spin-wave excitation spectrum, the tempera-
ture dependence of the spontaneous magnetization, and the transition temperature are calculated numerically.
[S0163-18209)09637-X]

[. INTRODUCTION the dipole-dipole interactions may play the crucial role in
determining their magnetic properti&52° Due to these rea-

There has been much interest recently in the field of magsons, in the study of magnetism in ultrathin films, a clear
netism in ultrathin films for reasons of both fundamentalunderstanding of the effects of various kinds of magnetic
physics and technical applicatioh§hese works are partly anisotropies and their interplay with dipole-dipole interac-
motivated by the possible integration of the semiconductotions is both theoretically and experimentally much desir-
microelectronic technology with magnetic elemérasd is  able. A very common form of the magnetocrystalline anisot-
simulated by the success in the growth of magnetic ultrathimopy is the single-ion anisotropy, taking usually the form of
films on top of semiconductor surfaces. Although in the pastavoring an easy magnetization axsngle-ion easy-axis an-
some theoretical work has been devoted to low-dimensionabotropy) or favoring an easy magnetization plaisegle-ion
magnetic systems, it is only in the past few years that techeasy-plane anisotropylt has since been shown in the case
nical progress has offered the possibility of comparing theoof a single-ion easy-axis anisotropy favoring an easy magne-
retical predictions with experimental measurements. This irization axis, the long-range magnetic order at finite tempera-
turn will lead to more realistic understanding of magneticture in two-dimensional ferromagnets is stabilized by an
behavior in low-dimensional magnetic systems. Initial theo-anisotropy-induced energy gap at the bottom of the spin-
retical work on the particular case of a single monolayerwave excitation spectrum which removes the two-
film, i.e., a two-dimensional system, indicated that such aimensional2D) divergence. However, in the case of single-
system cannot present any spontaneous magnetization at ifdtn easy-plane anisotropy favoring an easy magnetization
nite temperature. This was first pointed out by Bfdahd his  plane, since the spins can rotate freely in the easy plane, no
conjecture was later rigorously proved by Mermin andsuch gap should arisé¢he Goldstone theoremIn such
Wagner® whose theorem shows that any long-range mageases, the stability of the long-range magnetic order at finite
netic order at finite temperature cannot exist in an infinitetemperature in two-dimensional ferromagnets cannot be ac-
two-dimensional spin system coupled by isotropic short-counted for by the formation of energy gap at the bottom of
range exchange interactions. But recent experiments have ese spin-wave excitation spectrum, and the long-range mag-
tablished that spontaneous magnetization at finite temperaetic order at finite temperature should result from the inter-
ture does exist in ultrathin film@ncluding single monolayer play of the anisotropy and dipole-dipole interactions. While
films), and both perpendicular and in-plane spontaneouthe effects of the interplay of the single-ion easy-axis anisot-
magnetization have been observed in magnetic ultrathinopy and dipole-dipole interactions have been intensively
films(including single monolayer films~? This apparent studied by many authors in recent ye&s>’up to now there
contradiction between theoretical predictions and experimerhave been no theoretical investigations on the more subtle
tal results arises from the fact that an isotropic short-rangeffects of the interplay between the single-ion easy-plane an-
exchange-coupled Heisenberg model does not take into atsotropy and dipole-dipole interactions. Their respective in-
count all those important factors that may affect significantlyfluence on the magnetism of two-dimensional ferromagnets
the properties of a magnetic system, for example, the finitestill remains to be clarified. In this paper, using the nearest-
size of specimen® the magnetocrystalline anisotrop{;}®  neighbor Heisenberg model as a starting point, we present a
and the dipole-dipole interaction:*® Especially for mag- theoretical analysis on the effects of the interplay of the
netic ultrathin films, the magnetocrystalline anisotropy anddipole-dipole interactions and single-ion easy-plane anisot-
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ropy on the magnetism of two-dimensional ferromagnets, inneighbor pairs. Since the main purpose of this paper is to
cluding the stability of the long-range magnetic order at fi-investigate the effects of the dipolar interactions and the
nite temperature, the low-temperature spin-wave excitatiosingle-ion easy-plane anisotropy, for simplicity and clarity,
spectrum, the temperature dependence of the spontaneonisly the nearest-neighbor exchange couplings of spins will
magnetization, and the transition temperature. be taken into account in the following. The second term in
The paper is organized as follows: In Sec. I, we firstHamiltonian(1) is the single-ion anisotropy term. i{0, the
establish a self-consistent Green’s-function formalism to deanisotropy is the easy-axis type, and thexis is the easy
scribe the off-diagonal quantum mixing effects of the anisot-magnetization axis. ID >0, the anisotropy is the easy-plane
ropy in single-ion easy-plane ferromagnets with any spirtype, and they-z plane is the easy magnetization plane, this
quantum number. Due to the off-diagonal quantum mixingis the case which we will discuss in this paper. In this case,
effects of the single-ion easy-plane anisotropy, the theoretithe spins will be forced into the easy-plafthe y-z plang
cal treatment of single-ion easy-plane ferromagnets is morpy the anisotropy. By means of the identi§ S™=S(S
difficult than that of single-ion easy-axis ferromagn@&’  +1)—S?— (S92, the Hamiltonian can be rewritten as
In the case of isotropic or single-ion easy-axis ferromagnets,
it is well known that the most remarkable merit of the

Green’s-function method is its approximate validity at both H= —JE S-S+ EDE [(S)2+(57)?]

low and high temperature except in the vicinity of the critical i 1474 ! !

point*?*3 which the other approaches such as spin-wave L L

theory, mean-field approximation, and high-temperature se- -°D 24 “NDS(S+1 2
ries expansion method did not possess. But due to the off- 2 Z (S) 2 X ) @

diagonal guantum mixing effects of the single-ion easy-plane
anisotropy, the usual Green’s-function formalism that are apy hereN is the total number of spins in the system and we

plicable to isotropic or single-ion easy-axis ferromagnets, e chosen the axis to be along the direction of the spon-
cannot be applied to single-ion easy-plane ferromagnets, angdneq,s magnetization. From this form of the Hamiltonian,

signjficant mod@fications are needed. In Sec’. I, we.wiII ©S"we can see that the single-ion easy-plane anisotropy induces
tablish a modified form of the usual Green’s-function for- off-diagonal quantum mixing between thém

malism so that it can be applied to single-ion easy-plane_2>,|m>,|m+2> single-ion eigenstates d¥. Because of

fgrror‘rlzgnet::‘_. Bly maklnghcon;parl_soT W'th some :)therfprefhe complexities caused by this off-diagonal quantum mixing
vious theoretical approaches for single-lon easy-plane 1eMMosratg of the single-ion easy-plane anisotropy, the theoreti-
magnets, we will show that just like the usual Green's

. . . . . ! “cal treatment of single-ion easy-plane anisotropy is much
function formalism for isotropic or single-ion easy-axis

X . , . ) more difficult than that of single-ion easy-axis anisotropy,
ferromagnets, this modified Green’s-function formalism can,, . the description of the ground states of such spin sys-
also present an approximately valid description for smgle-lon[ems is very nontrivial. Many conventional theoretical meth-

easy—plgnehferrqma?netg at ?Otg Iovv“fmd hlg.Tl temFerﬁFur%ds that are applicable to isotropic or single-ion easy-axis
except in the critical region. In Sec. lll, we will apply this magnets cannot be applied to single-ion easy-plane magnets.

fmo:jlflefd thG rgep’s-flunctl;)r:hforglrjalllsm d'to Ilnv_eftlgatf the Ef('jFor instance, the well-known spin-Bose operator transforma-
ects ot the nterplay ot n€ dipoie-dipole Interaclions andyq,,s 1y Holstein and Primakdff and by Dysof® and

Zl_ngle-lpn elafsy-plane ar:|sotr0py on the magnetism of tWOg;5j6e\#® cannot be applied in the description of low-
Imensional ferromagnets. temperature spin-wave excitations in single-ion easy-plane
magnets’~3 Due to these complexities, the mean-field ap-

[l. GREEN'S-FUNCTION APPROACH proximation is commonly used in the calculations of the
FOR THE OFF-DIAGONAL QUANTUM MIXING thermodynamic quantities of single-ion easy-plane magnets.
EFFECTS OF SINGLE-ION EASY-PLANE ANISOTROPY However, in the mean-field approximation, both quantum

. . . . ,_and thermal fluctuation correlations have been neglected.
In this section, we establish a self-consistent Green’s

. : . . Several approaches which can improve the mean-field ap-
function formalism to describe the off-diagonal quantum roximation have been proposed: the method of matching of
mixing effects of the single-ion easy-plane anisotropy. Fo'fnatrix elementsMME) (Refs. 30—38 and the method of
clarity, we wil ”99'?Ct the dipole-_dipole intera_lct_ions f(_)r the characteristic angléCA) transformatioft* for describing the
moment. But as will _be shqwn n Sec. l.“’ It IS easier to low-temperature spin-wave excitations in easy-plane ferro-
mcIude the d.|pole-d|pole interactions in  this Green’S"magnets, the zero-temperature series expansion méthod
function formalism. o _ _ _ and the coupled-cluster meth8d®®for studying the ground-

A spin-S ferromagnet with single-ion anisotropy is dé- giate energy and the ground-state magnetization of easy-
scribed by the following Hamiltonian: plane spin-1 ferromagnets, the linked-cluster series expan-
sion method (LCE) (Refs. 39-41 for studying the
thermodynamic quantities of easy-plane spin-one ferromag-

H=-J> S-S+D> (82 (1) nets. Though there have been such approaches for easy-plane
(i : ferromagnets, there are some shortcomings in these ap-
proaches: the MME method and the CA transformation
where S, are Heisenberg spin operators with spin quantunmethod can describe the low-temperature spin-wave excita-
numberS, J is the nearest-neighbor exchange integral, theions in easy-plane ferromagnets, but these methods that
symbol(ij ) indicates that the sums are restricted to nearestbased on the transformations of spin operators into simpler
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Bose operators are valid only at low temperatufas below Considering the off-diagonal quantum mixing effects of
the Curie temperatuyethe zero-temperature series expan-the single-ion easy-plane anisotropy, unlike the case of iso-
sion method and the coupled-cluster method are appropriateopic ferromagnets or ferromagnets with easy-axis anisot-
for studying the ground-state energy and the ground-stateopy, we introduce two kinds of retarded Green'’s functions,
magnetization of easy-plane ferromagnets, but they cann@{"(i,j;t,t') andG{"(i,j;t,t’), to describe the propagation
describe the low-temperature magnetic excitations in sucbf magnetic excitations in such spin systems:

spin systems, moreover, it is difficult to extend these method

to easy-plane ferromagnets with spin greater than 1; the

linked-cluster series expansion methd@CE) is also valid ~ G{"(i,j;t,t")=((S"(1);(S] (t')N™(S] (1) 1))

only for studying the thermodynamic quantities and cannot .

describe the low-temperature spin-wave excitations in easy- =-i0(t-t")

plane ferromagnets, it is also very difficult to extend this + — e\ et 4 y\n—1

method to easy-plane ferromagnets with any spin quantum (LS (0, (S () 1), ©
number. In addition, if the dipole-dipole interactions are in-

cluded, the applications of these methods will become muc% N P N

more complicated. To overcome these shortcomings of thes g“)(u,t,t )={(S (0§ (t ))n(sj ()™ )

theoretical methods, we establish a self-consistent Green’s- ——i0(t—t")
function formalism to describe the off-diagonal quantum
mixing effects of the single-ion easy-plane anisotropy. As x([S,’(t),(Sj’(t’))“(Sj*(t’))”*1],), (4)

will be shown in the following, like the usual Green’s-

function formalism for isotropic or single-ion easy-axis fer- _gH _gH
romagnets, this self-consistent Green's-function formalisnyVheren=1, 2, ..., 3, and(A)=Tr(e" ""A)/Tr(e""™),

can also present an approximately valid description forA(t)=e""Ae""™", [A,B]_=AB-BA. In the case of isotro-
single-ion easy-plane ferromagnets with any spin quantunRic ferromagnets or ferromagnets_ with easy-axis amsptropy
number at both low- and high-temperature except in the vilwithout the off-diagonal terms likeg")? and (S7)? in
cinity of the critical point. At low temperature, it is similar to Hamiltonian(2)], the second kind of Green’s functio@”

the method of matching of matrix elemerfddME) and can  should vanish exactly due to the conservation ofzleom-
present a correct description of the low-temperature spinPonent of the total angular momentum. The off-diagonal
wave excitations in single-ion easy-plane ferromagnets; aguantum mixing effects of the single-ion easy-plane anisot-
high temperature, it can improve the mean-field theory subtopy term breaks down this conservation condition, thus the
stantially except in the critical region. Moreover, unlike second kind of Green’s functions will be nonvanishing. To
those previous theoretical metholis?! this Green’s- derive the Green's function&{” and G4, we follow the
function formalism can be easily extended to include themethod of equation of motion. The equation of motion for
dipole-dipole interaction. G{" andG{" gives

d
GO i) = at=1) 8¢9 (89) ~ 232 (S(OSa(;(S] (V) (1))
232 (SLaDS ;S (NS WD)

1
+ 5 DUSIDS () +S (DSOS (NS ()" 1)

1
+ 5 DUSIOS (D) +ST (SIS (1)) (S ()" ), (5

_d . - - N _
|aG(Z”)(l,j;t,t’)z5(t—t’)5ij<g(2“)(8_,SZ))+2JEa (SHDS a0 (S (E))NS ()" Y),
~203 (SEL(OST (S NS (1)) H)

1
= 5D{(SHS (D) + ST (S (S (NS (1))

1
= 5D{(SIHS () +S (DS (NS ()" H), 6)
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wherei andi+ a denote two nearest-neighboring lattice sites

and y=5 >, ek? (18)

a

N|

(N/qzy— + —\N/ e+ \n—1
917 (S)=[S".(SHUSH™] in which Z is the number of the nearest neighbors and

=(2nS+n?—n)d 1)), (7)  denotes the lattice vectors between two nearest neighbors.
From Egs.(15) and(16), we get
g5"(s™,8)=[5",57]=0, 8 .
G (k.0) = sEqore—EqT (P (SN (ST, 8Y)
0(s™,89)=[5,(S)%8"]=-2(5)?%, ©) ' 2E(l9Lw—E()] i
(9 (S)IE(K) + &+ DI(SH]}
g¥"(S™.§)=[S".(S)"(S")" ] 1 e
=-[(n=1)(n=2)(S")?+2(n-1) " 2EM[wrEG] 0T (SHES S
X(87)?10 (), (n>2), (10 —(g"(SHIE(K) —e—DI(SH]}, (19
in which 1
G (k,w) =~ W{DNSZXQ(P)(SZ))

dM(s)=(S)"(S")"
=IIy_4[S(S+1)—(n—p)(n—p+1)
—(2n—2p+1)S—(SH?]. (11

—(g"(S™,SH))[E(k)— &, — DT (SH)]}

1 oo
SR feTER] (LTSN (SY)

To constitute a set of closed equations &f’ andG{", as
usual, we decouple the higher-order Green’s functions in the
right-hand sides of Eq¢5) and (6) according to the random (20)
phase approximatiofRPA):*?

+(gS(S™,S)E(K) + &+ DT(SH1},

where
SIS ()=(SHS (1), i#]. (12

E(k)= (g, +DI(S))°—(DI(S%)?, 21
However, it should be noted the above ordinary RPA decou- (k)= (e (9"~ (DI(S) (0
pling scheme is not appropriateiifj. In this case, an ap-

propriate  decoupling scheme is that of Callen andVhich is just the magnon dispersion relation.
Andersori3 From Egs.(7)—(11), (19), and (20), we can see that

G{V(k,w) andG{"(k,w) are functions of two kinds of un-
known variables: ((S)") and ((S)A(SH"Y), (n
=1,2,...). Thenonvanishing of the second kind of vari-
ables is a direct consequence of the off-diagonal quantum
mixing effects of the single-ion easy-plane anisotropy. These
two kinds of unknown variables must be determined by some
self-consistent procedures. Through the use of the Zubarev’s
equatior’’ we can get

SHOST(D+ST (O (D) ~2I(S)S (1), 13

1
le—ﬁ[S(SJrl)—((SZ)Z)]. (14)

Using the decoupling schemes of Eq&2) and (13), and
making the usual Fourier transformations, we obtain two

closed equations for the Fourier compone@flg)(k,w) and
G (k,w):

[@—ex—DI(S)]1G{"(k,w) ~ DI(SHGL (K, w)
=(g{"(s"), (15)
[w+ e+ DI{(SHGM(k,w) +DI(SHG{V (k,w)
=(g9"(s7,9Y), (16)
where

£ =23 Z(S)(1— ), (17

((SHM(SHM
1 dw G{V(k,w+i0") -GV (k,0—i0")

:NE.( ifzw efo—1

1 1 Z N)/c- oz
:Nzk 2E(k)[eBE(k)_1]{DF<S><92 (S vS)>

+(g{" (S E(K) + e+ DI (SH]}

12 ! DI(S™MalM(s~ &
N4 2ER[e R PT(SNE"(S.S))

—(9{(SH)E(K)—&,—DT(SH1}, (22)
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<(S—)n(S+)n—ls—> 12 T T T T T T d T
1y [ o G (k,0+i0")— G (k,0—i0") L — RN 008 ]
Ne ') 2m efo—1 R MME /\ .

1 - (n) 08 s
:_Nzk ZE(k)[eBE(k)_1]{DF<SZ><91 (S9)) I
—(g§"(s™,S9)[E(K)— &~ DI(SH]} E(k)/2Z 0y ‘j,x'z*'_’oz T
1 1 = &"” ‘ -
N2 3Efe P17 (PT(S NG (S)) TS _
(S SNER+ e+ DI(SHT, @3 ap '
in whichn=1,2, ..., 2S, and o [ ' o 1
<(S—)”(S+)”>:<q)(n)(sz)>, 0.0 0.2 0.4 0.6 0.8 1.0

k.a/n

((SHNSH"'s7)=((s)? for n=1
FIG. 1. The spin-wave excitation spectrums of 3D single-ion
easy-plane spin-one ferromagnets for different values of the anisot-
et N Tee ropy constant. The solid lines represent the results of the present
((8HNSH™'sT) Green’s-function formalism and the dotted lines represent the re-
=<(S’)2[S(S+ 1)+Sz_(sz)2]q)(n—2)(sz)> sglts of the MME method. In the case Bf=0, the_ two_methods
give exactly the same result{g\ll parameters are given in units of
for n>1.[The expression fo®("W(S?) is given in Eq.(11).]  J. T/J=0.1,d=D/J is shown in the figure.
From Egs.(7)—(11), we can see that in Eq§22) and (23),
both the left-hand sides and the right-hand sides are fundglecting the dipole-dipole interactiorithe dipole-dipole in-
tions of the two kinds of unknown variableg(S?)") and teractions are negligible for three-dimensional ferromag-
<(s*)2(32)n*1>, (n=1,2,...). Noticing that for any spin nets. In this case, there are several other theoretical

and

quantum numbes8, the following relations are satisfied: ~ approaches for comparison. In Fig. 1, we have plotted the
low-temperature spin-wave excitation spectrums obtained by

MN=% ((S*—m)| ) =0, (24)  this Green’s-function formalism and the MME method for
three-dimensional easy-plane spin-one ferromagnets. As is

(S7)%5*2|y) =0, (25)  well known, in the description of low-temperature spin-wave

] ) excitations, it is usually more convenient to transform the
where|) is any state vector. From these relations, we havgyamiltonian of spin operators into a Hamiltonian of simpler
- Bose or Fermi operators. For example, the well-known trans-
(MR=2y(S*—m))=0, (28)  formations by Holstein and Primakéffand by Dysof® and
MaleeV*® are transformations of the spin operators to a series
((S7)2572(8%)2%) =((S7)20 9 (s))=0. (27 of Bose operators. But due to the off-diagonal quantum mix-
ing effects of the single-ion easy-plane anisotropy, these well
From Egs.(26) and (27), we can see that for any>2S,  known transformations cannot be applied in the description
((S)") can be expressed as a linear combinatiof$),  of spin-wave excitations in such spin systems. For instance, a
(($)?), ..., {($)%%), and((S7)*(S)"~*) can be expressed najve use of the well ordered Holstein-Primakoff transforma-
as a_linear combination of(S7)?), ((S7)?S?), ..., tion to Hamiltonian(1) will violate the Goldstone theorem
((S7)%($)*>™1). Therefore both in the left-hand sides and and lead to imaginary values for the energies of khe0
in the right-hand sides of Eq$22) and (23), there are, i modes no matter how small the anisotropy constBnt
fact, only 45 independent variables(S’), ((S)?),..., is3-3* The Dyson-Maleev transformation is also not ad-
(($)%%), and ((S7)%), ((S7)?S), ..., ((SHASH*™ ).  equate in the presence of the single-ion easy-plane anisot-
These 4 unknown variables can be determined completelyropy, since it gives a non-Hermitian quadratic Hamiltonian
from the 4S simultaneous equations in Eq82) and(23) by  where the kinematic condition, which requires that for spin
self-consistent procedure. After these unknown variables arg=1 the magnon energies should not be affected by the
determined by self-consistent procedure, the Green’s funcanisotropy, is not satisfied even at this order. The most ap-
tions G{”(k,w) and G{”(k,w) can be determined com- propriate way for overcoming these difficulties is the method
pletely, then all the other calculations, such as the calculasf matching of matrix elementéMME).2°~33 Basically, the
tions of the spin-wave excitation spectrum, the temperatureMME method provides a more convenient starting point for
dependent magnetization, and the Curie temperature, etgingle-ion states by means of a perturbative treatment of the
can be carried out straightforwardly. off-diagonal terms in the anisotropy, then a boson represen-
To test the validity of this Green’s-function formalism, tation of the spin operators is achieved by equating the cor-
we first apply this Green’s-function formalism to the case ofresponding matrix elements in the respective spacedch-
three-dimensional single-ion easy-plane ferromagnets néng of matrix elements, or MME This method is very
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1t >t 1 3 T spin S=3 the magnon energies will not be affected by the
i anisotropy (satisfying correctly the kinematic conditipn
Moreover, as is shown in Fig. 1, in the case of small anisot-
ropy, the results obtained by the present Green’s-function
J formalism are very close to the corresponding results of the
MME method, which is correct in the case of small anisot-
ropy, and for very small anisotropy, the results obtained by
i these two method will become actually the same.

In Figs. 2a) and(b) we have plotted the temperature de-
pendences of magnetization of three-dimensional single-ion
easy-plane spin-one ferromagnets for different values of the
anisotropy constanD, obtained by this Green’s-function
formalism (GRN), the method of matching of matrix ele-
ments(MME), the mean-field theor¢yMFT), and the linked-
cluster series expansion meth@dCE), respectively. From
Fig. 2@ we see again that at low temperature, the results of
oy the present Green’s-function formalism are very close to that

8 9 of the MME method, which is valid at low temperature, and
the smaller the anisotropy is, the smaller the difference be-
tween the corresponding results of the two methods. But at
L I L S B B B S B B high temperature, the MME method will break down com-

I d=0.2 (b) 1 pletely. From Fig. 2b) we can see that at high temperature,

compared with the mean-field theory, the results of the
present Green’s-function formalism are very close to the cor-
responding results of the LCE method which provides the
J most accurate calculations for the thermodynamic quantities
at high temperature. The reason for this is clear. The mean-
field theory neglects the quantum and thermal fluctuation
- correlations completely. In contrast, the present Green’s-
function formalism and the LCE method both include the
effects of the quantum and thermal fluctuation correlations.
. The values of magnetization at high temperature and the Cu-
rie temperature can be reduced substantially from the mean-
field values by both quantum and thermal fluctuation corre-
lations, as is shown in Fig.(B). From these comparisons, we
: can see that this self-consistent Green’s-function formalism
L5 can present an approximately valid description for single-ion

M(T)

0.2

-
L. o=

0.0

o 1 2 8 4 5 6 7 8 o easy-plane ferromagnets at both low and high temperature.
At low temperature, it is similar to the method of matching
T of matrix element§MME) and can present a correct descrip-

tion of the spin-wave excitations in single-ion easy-plane

FIG. 2. (a) The comparison between the temperature depenf ts at hiah t t it . th
dence of magnetization of 3D single-ion easy-plane spin-one ferro.c 1OMagnets; at high temperature, it can improve heé mean-

magnets obtained by the present Green’s-function formalism aaneId theor);_sllébstantlally% B#t 'BShOUIdI_ be noteddthat, _du; to
the MME method.(b) The comparison between the temperaturet e mean-field nature or the decoupling procedure in Egs.

dependence of magnetization of 3D single-ion easy-plane spin-ofz) _and (13), “lr(]e the mean-field theory,dthls _Green’f-h
ferromagnets obtained by the present Green's-function formalis unction approach cannot present a correct description of the

(GRN), the mean-field theorgMFT), and the LCE method, respec- critical behavior in the vicinity of the critical point. This is
tively. ,(The parameters are shown in the figure. ' also the shortcoming of the usual Green’s-function approach

for isotropic or single-ion easy-axis ferromagnets. Since in

appropriate in the case of small anisotropy, but it will be-thiS paper we will not discuss the criticgl behavior in the
come worse if the anisotropy is large due to its perturbativ&”t'cal region, thls self-consistent Green s-function formal-
treatment of the off-diagonal terms in the anisotropy. In theSM can be applied at both I?W and high temperature. In Sec.
present Green’s-function formalism, since the off-diagonal!l: W& Will apply this Green’s-function formalism to inves-
quantum mixing effects of the single-ion easy-plane anisotligate the effects of the interplay of the dipole-dipole inter-
ropy have been taken into account in a self-consistent way3ctions and single-ion easy-plane anisotropy on the magne-
those difficulties encountered by such as Holstein-PrimakoffiST Of two-dimensional ferromagnets.

(HP) transformation and Dyson-Maleev transformation are
overcome naturally. From the magnon dispersion relation
[see EQ.(21)], after some simple algebra, we can easily
verify that: (i) the magnon energg (k) is always positive for
the k# 0 modes(no imaginary values will occur for the en-
ergies of thek~0 modes; (i) E(k)—0 in the limit of k In this section, we apply the Green’s-function formalism
—0 (satisfying correctly the Goldstone theorgniii) for  established in Sec. Il to study the effects of the interplay of

Ill. EFFECTS OF INTERPLAY OF DIPOLE-DIPOLE
INTERACTIONS AND SINGLE-ION EASY-PLANE
ANISOTROPY ON TWO-DIMENSIONAL

FERROMAGNETS
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the dipole-dipole interactions and single-ion easy-plane an-
isotropy on the magnetism of two-dimensional ferromagnets,
including the stability of the long-range magnetic order at
finite temperature, the spin-wave excitation spectrum, the

temperature dependence of the spontaneous magnetization,

and the transition temperature. While there have been re-
cently many theoretical investigations on the effects of the
interplay of the single-ion easy-axis anisotropy and dipole-
dipole interactions on 2D ferromagnéfs?°up to now, there
have been no theoretical investigations on the effects of the
interplay of the dipole-dipole interactions and single-ion
easy-plane anisotropy on two-dimensional ferromagnets,
their respective influence on the magnetism of two-
dimensional ferromagnets still remains to be clarified.

In the presence of the dipole-dipole interactions, a two- ((s7)"(s*)"~157)=

dimensional ferromagnet with single-ion easy-plane anisot-
ropy can be described by the following Hamiltonian:

=—J<E> §-§+D3 (8)*-hY &
i

Q 1 [S-(li—

IPILS-(i—1p]
TR

=5z )
(28

where |; is the two-dimensional lattice vector in the film
plane(they-z plane, Q) is the dipole-dipole interaction con-
stant,D(>0) is the single-ion easy-plane anisotropy con-
stant,h is proportional to the external field. As in Sec. Il, for
simplicity, only the nearest-neighbor exchange couplings of
spins are taken into account. By the same procedure as in
Sec. Il, it can be easily verified that after including the term
of the dipole-dipole interactions, the Fourier components of
the Green’s functiorG{" and G defined in Eqs(3) and

(4), can be expressed as
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1
<(S )n(s+ n>_

QO
Fa(k)= E<Sz>pxx(k)_
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1
Z 2E(k)[ePEW —1]

X {Fa(k)(g8"(S™,5)

+(gIM(SHIEK) +F1(K) ]}

1 1
N EK 2E(k)[e PEM —1]

X{Fa(k)(gs"(S™,59)
—(g{"(SNHIEK) —F1(K)]}, (3D

1
N E 2E(k)[ePF0—1]

X{Fa(k)(giM(S)

—(g"(S™,SH)E(K) —F1(k) 1}

1
N 2E(K)[e PFP_1]

X{Fo(k)(g{"(S)
+(g(S™,SH)E(K) +F1(K)1},

(32

E(k)=V[F1(k) ]*~[Fa(k)]?, (33
Fi(k)=et+ = <Sz>pxx(k (Sz>pyy(k)

— Q(SH)p,£0)+h+DI(SY, (34)

Q
5 (SIPy(K)+DI(SY), (39

GV (k)= 5= (1 (SNIE(K) +Fa(K)]
2EtLe=E9] £=2)2(S)(1 ), 36
+F(k)(g8(S™,59)} .
ik-a
1 s B n=g 2 e (37)
2E(k)[w+E k)]{<g S))[E(k) Fl(k)]
in which Z is the number of the nearest neighbaslenotes
—Fo(k)(g8"(S™, )}, (29 Ilattice vectors between two nearest-neighbor lattice sites, and
P.s(K) is defined as follows:
1
() . S T z Bi=1)ai=1Dg\ 021
G270~ pEira—ek] (@(S S Postl) =3 =y Sup= 32,

X[E(K)—F (k) ]—Fa(k)(gi" (SH)}

= gi"(s &
T ER[wr E(0] (92 (S S

R A M 17
[1i=1;]

(a,8=X,y,2). (38)

Due to the translational invariance, these Fourier compo-
nents are independent of the subscripandp,z(k)=0 for

X[E(K) +F1(K) ]+ Fa(k)(gi" (S},
(30)

and correspondingly, the self-consistent E@2) and (23)
can be rewritten as

a# B. The lattice sums in Eq.38) converge very slowly in

an oscillatory manner, direct and accurate computation of the
lattice sums is difficult, but they can be converted into series
which converge very rapidly using Ewald lattice summation
method?*® Following this methodp,,(k) can be expressed
as
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Pxx(K) =d1(ky k) +aa(ky k), (39 determined by the spin-wave excitation specti(k) in the
neighborhood ok=0. In the neighborhood df=0, we can

Pyy(K) =0a1(ky ,K,) —202(ky ,Kk,), (400  expandE(k) into a series ok. Using Eqgs.(33)—(37) and
(44)—(46), we arrive at the following conclusion§) If there

PzAK) =da(ky,kz) =201 (ky ,Kz), (41)  is no external field §=0), there will be no any energy gap

at the bottom of the spin-wave excitation spectrum, i.e.,

in which E(k)—0 in the limit of k—0. This is required by the Gold-

167 = Ko\ 2 stone theorem({ii) If there is no dipolar interactions(X
Qulky k)==> > [nm+2 =0), the spin-wave excitation spectrui(k) has the fol-
3 M=1n=x 2 lowing dispersion relation in the neighborhoodkof O:
k
XCos(me)Kz(zm N+ Ey‘ . (42 E(k)=\Co+Cok*+0(k?), (47)
in which
16 & k,\? _R2
Galky k) =5 %, S [nm+ Co=h?+2hDI(S?), (48
m=1n=—o
. C,=4)(S*)[h+DI'(S%)]. (49
><cos(mky)K2( 2minm+ 52 , (43 From this dispersion relation, we can see that if there is no

external field bi=0), the integrals in Eqs(31) and (32
whereK,(x) is the modified Bessel function of second order.diverge logarithmically at its lower bound. In this case, the
Since for |arge values of, Kn(x)Ne_X/\/;, these series are self-consistent qu31) and (32) cannot have any definite
very rapidly convergent, and they will be used in the numeri-solutions at finite temperature ds— (i.e., an infinite two-
cal calculations. In the following, we need to consider thedimensional lattice This result shows that for an infinite
analytical form of the spin-wave excitation spectrum in thetwo-dimensional ferromagnet, the single-ion easy-plane an-
neighborhood ok=0, in this case it is more convenient to isotropy alone cannot stabilize the long-range ferromagnetic
expandp,,(k) into a series ok in the neighborhood ok order at finite temperature if t_here are no Iong-range_ dipole-
=0. Using a method similar to that of Ref. 18, which treatdipole interactions(If neglecting the term of the dipole-
the dipole-dipole interactions within the long-wavelength ap-dipole interactions in Hamiltoniai28), the MME method
proximation, we can gefin the limit of k— 0) can be applied, and the same conclusion as this result can be
obtained® But in the presence of the dipole-dipole interac-
tions, just like the Holstein-Primakoff transformation, a na-
ive application of the spin-Bose operator transformation de-
rived by the MME method will also violate the Goldstone
A7 f theoren?®); (iii) In the presence of the long-range dipole-
Pyy(K)~— ——+7k(1-cos 2)+0(k?), (45  dipole interactions @ +0), the spin-wave excitation spec-
trum E(k) has the following dispersion relation in the neigh-
borhood ofk=0:

8rf
Py K) =~ = —2mk+0(k?), (44)

4qf
pzz(k)w—Terk(lJrcos 20)+0(k?),  (46)

E(k)=Cy+Ck+0O(K?), (50)
wheref=1.0782(for square latticg 6 is the angle between in which
the wave vectok and thez axis.
As has been shown in Sec. II, both the left-hand sides and Co=h?+4mfQh(S*)+2hDI (S, (51
the right-hand sides in the self-consistent E@4) and (32)
are functions of & independent variables{($%)") and C,=[h+47fQ(S")+2DI(S)]

(SH2(SH" 1), (n=1,2,...,2S). By the help of Eqs(26) Apa B .
;nd (27), thes>e & independent unknown variables can be X m(S)(1~cos ) =27 ON(S). (52)
determined completely from theAsimultaneous Eq<31) From this dispersion relation, we can see that even if there is
and(32) through self-consistent procedures. Before we solvano external field =0 and henceC,=0), the integrals in
the self-consistent Eq$31) and (32) by numerical method, Egs.(31) and(32) are convergent at its lower bound. In this
we should first investigate the stability of the long-range fer-case, the self-consistent E¢81) and(32) have stable solu-
romagnetic order at finite temperature in an infinite two-tions asN—o«. This suggests that the long-range dipole-
dimensional lattice. Whether the long-range ferromagneticlipole interactions may itself stabilize the long-range mag-
order is stable at finite temperature is determined by the feaaetic order in an infinite two-dimensional lattice at finite
tures of the long-wavelength thermal fluctuations. In thetemperature. Therefore, for two-dimensional single-ion easy-
above Green’s-function formalism, this stability depends orplane ferromagnets, the long-range dipole-dipole interactions
the convergence of the two-dimensional integrals of waveplay the crucial role in stabilizing the long-range magnetic
vectork at its lower bound in the self-consistent E¢31) order at finite temperature. This is significantly different
and(32). (The summation of wave vectdrcan be replaced from the case of two-dimensional easy-axis ferromagnets, in
by an integrals over wavevect@ras N—.) The conver- which the long-range magnetic order at finite temperature is
gence or divergence of the integrals in E(&l) and(32) is  stabilized by an anisotropy-induced energy gap at the bottom
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E(k)/2JZ o6 M(T)

0.4

0.2
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Kya/n
FIG. 3. The spin-wave excitation spectrums of 2D single-ion 1.0 | -
easy-plane spin-one ferromagnetéll parameters are given in (b)
units ofJ. @w=0/J=0.005,T/J=0.1,d=D/J is shown in the fig-
ure) 0.8 4
of the spin-wave excitation spectrums and the effects of the
dipole-dipole interactions are negligible compared with the 06 0/J=0.006
effects of the easy-axis anisotropyy) In the presence of
' . M(T)
external field 6#0), there is always an energy gap at the 0al |
bottom of the spin-wave excitation spectrum: '
o2k Q1J=0.001~—— 1
E(0)=vh?+47fQh(S?+2hDI(S?). (53
00 " 1 " 1 " ] 1 i M
0.0 05 1.0 15 2.0 25

This energy gap will increase greatly the stability of the
long-range ferromagnetic order at finite temperature, and T/
therefore two-dimensional easy-plane ferromagnets will have

very sensitive dependence on the external field in the neigh- £, 4. (a) The temperature dependence of the spontaneous
borhood ofh=0. magnetization of 2D single-ion easy-plane spin-one ferromagnets
We have discussed the stability of the long-range ferrofor different values of the anisotropy constant. The parameters:
magnetic order at finite temperature in an infinite two-=/J=0.005,d=D/J is shown in the figure(b) The temperature
dimensional ferromagnet with single-ion easy-plane anisotdependence of the spontaneous magnetization for different values
ropy and have investigated the convergence of the twoef the dipole-dipole interaction constant. The parametis0.2,
dimensional integrals of wave vecthrin the self-consistent is shown in the figure.
Egs.(31) and(32). We can see that the dipole-dipole inter-

actions play a dominant role in stabilizing the long-ranges \ye can see that the interplay of the dipole-dipole interac-

mrigemestilgnglr?grrroitw;g;g vtv?t?ps?%tlgrieor:ne:sny g}gggea;ﬁ%'ttions and single-ion easy-plane anisotropy does not induce
o o any ener th ttom of th in-wave excitation
ropy. Once the convergence of the integrals in E§%) and any energy gap at the bottom of the sp ave excitatio

(32) has been established, the numerical calculation can bseoec_trum, buF the smgle-pn easy-plane amsotr.op.y- can
odify the spin-wave energies for thet0 modes signifi-

performed safely. Some numerical results are shown in Figé].1

3-5. In Fig. 3 we have plotted the low-temperature Spin_cantly. (From Fig. 3 we can see that the increase of the

wave excitation spectrums of two-dimensional single-ion@nisotropy will increase the spin-wave energies for kne
easy-plane spin-one ferromagnets for different values of th&0 modes. The numerical calculations also show that the
anisotropy constarD. In Fig. 4a) and (b) we have plotted dipole-dipole interactions have little influence on the spin-
the temperature dependences of the spontaneous magneti¥¢ve energies of the#0 modes, but as has been discussed
tion for different values of the anisotropy const@ntnd the ~ above, the dipole-dipole interactions can modify significantly
dipole-dipole interaction consta?, respectively. In Figs. the magnon dispersion relation in the neighborhoodk of
5(a) and (b), we have shown the relations between the tran=0 [see Eqs.(50)—(52)], and this modification plays the
sition temperature and the anisotropy constBntand the crucial role in the stabilization of the long-range magnetic
dipole-dipole interaction constafy, respectively. From Fig. order at finite temperature. From Figajlwe can see that the
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2.0 d T J T v T T constant decreasing or the dipole-dipole interaction constant
decreasing, indicating that the magnetic order at finite tem-
perature will become less and less stable as the anisotropy
decreasing or the dipole-dipole interactions decreasing. In
order to give a more quantitative idea of the above theoreti-
cal results, it may be helpful to make some contact with the
realistic systems. Some experimental observations have
found that, in some fc€001) Co ultrathin films, the sponta-
neous magnetization lies in the film plane, and the in-plane
spontaneous magnetizations can exist up to temperature as
large as above 500 K’ In the above theory, if we choose the
values of the model parameters to fit the transition tempera-
ture T, of 3D easy-plane ferromagnets described by the
Hamiltonian(1) to be about the magnitude of the Curie tem-
perature of the bulk Co, then for the corresponding 2D easy-
plane ferromagnets described by the Hamilton{a8), the
transition temperaturé, do can be as large as above 500 K
d in the presence of the dipole-dipole interactions, i.e., in the
above theory, the dipolar interactions do can be responsible
for the stabilization of the long-range ferromagnetic order up
to a temperature of above 500 K. Of course, there may be
some significant differences between the nearest-neighbor
Heisenberg model used in the above theory and the realistic
systems, but we think that the above qualitative features of
the effects of the dipolar interactions and the easy-plane an-
isotropy should still remain if more realistic models are used
in the calculations. This will be investigated in more detail in
the future.

In conclusion, using the nearest-neighbor Heisenberg
model as a starting point, we have provided a theoretical
analysis on the effects of the interplay of the dipole-dipole
interactions and single-ion easy-plane anisotropy on the
magnetism of two-dimensional ferromagnets. The respective
influence of the dipole-dipole interactions and single-ion
easy-plane anisotropy on the stability of the long-range mag-
netic order at finite temperature in two-dimensional ferro-
@ magnets is investigated analytically. The results show that

FIG. 5. (a) The relation between the transition temperature andOr two-dimensional ferromagnets with single-ion easy-plane
the anisotropy constant for 2D single-ion easy-plane spin-one fer@Nisotropy, the single-ion easy-plane anisotropy alone cannot
romagnets. The parametes=/J=0.006. (b) The relation be- stabilize the long-range magnetic order at finite temperature,
tween the transition temperature and the dipole-dipole interactiomnd the dipole-dipole interactions play the crucial role in
constant. The parametei®7J=0.2. stabilizing the long-range magnetic order at finite tempera-
increase of the anisotropy will decrease the ground-statture' The low temperature spin-wave excitation spectrum;,

s X i . the temperature dependence of the spontaneous magnetiza-
magnetization but increase the stability of the magnetic order.

at high temperature. The reason is that the larger the anisofo™: and the transition temperature, have been calculated
umerically. Though the above theory is based on the

ropy constant is, the stronger the quantum mixing betweef g _ . :
the |m—2), |m), |m+2) single-ion eigenstates &, thus nearest-neighbor Heisenberg model as a starting point, the

the smaller the ground-state magnetization is. But as i§1€oretical method established in this paper can also be ap-
shown in Fig. 3, the increase of the anisotropy will alsoPlied to some more realistic model systems. At the end, it
increase the magnon energies of k€0 modes, thus reduce Should pomted out th_at, due to the mean—ﬁel_d nature of the
the thermal fluctuations and increase the stability of the magdecoupling scheme in Eqg12) and (13), this Green'’s-
netic order at high temperature. From Figby} we can see function formalism cannot present a correct description of
that the increase of the dipole-dipole interactions will alsothe critical behavior in such magnetic systems. If one wants
increase the stability of the magnetic order at high temperato investigate the critical behavior in such magnetic systems,
ture, but the ground-state magnetization is almost indeperéne must resort to other theoretical approaches such as the
dent of the dipole-dipole interaction constaft i.e., the linked-cluster series expansion meth@CE).**~*! In addi-
guantum mixing effects of the dipole-dipole interactions aretion, if the anisotropy constari? is very large(the anisot-
negligible. From Figs. &) and(b), we can see that the tran- ropy dominates over the exchange interactions, or approxi-
sition temperature decreases monotonically as the anisotropyatelyD/zJ~1), the RPA decoupling scheme in Eq42)

TN

TN

1.6 | E

0.001 0.004 0.007 0.010 0.013 0.016
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and(13) will break down due to the strong quantum mixing
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