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Local modes, phonons, and mass transport in solid4He

N. Gov and E. Polturak
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

~Received 30 December 1998!

We propose a model to treat the local motion of atoms in solid4He as a local mode. In this model, the solid
is assumed to be described by the self-consistent harmonic approximation, combined with an array of local
modes. We show that in the bcc phase the atomic local motion is highly directional and correlated, while in the
hcp phase there is no such correlation. The correlated motion in the bcc phase leads to a strong hybridization
of the local modes with theT1(110) phonon branch, which becomes much softer than that obtained through a
self-consistent harmonic calculation, in agreement with experiment. In addition, we predict a high-energy
excitation branch that is important for self-diffusion. Both the hybridization and the presence of a high-energy
branch are a consequence of the correlation, and appear only in the bcc phase. We suggest that the local modes
can play the role in mass transport usually attributed to point defects~vacancies!. Our approach offers a more
overall consistent picture than obtained using vacancies as the predominant point defect. In particular, we show
that our approach resolves the long-standing controversy regarding the contribution of point defects to the
specific heat of solid4He. @S0163-1829~99!13425-8#
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I. INTRODUCTION

Atomic motion in solid4He was extensively studied ove
the years, both theoretically and experimentally.1 The quan-
tum nature of the solid comes into play mainly through t
large amplitude of zero-point motion of the atoms in t
lattice, an effect especially evident in the solid at its low
density. In this paper, we shall discuss only these lo
density solids (;21 cm3 molar volume!. Calculations of the
phonon spectrum within the self-consistent harmonic
proximation seem to agree fairly well with experiment in t
hcp phase,2 while in the bcc phase, only the energy of th
T1(110) phonon is overestimated by a factor of 2.3 Correc-
tions resulting from the local motion of the atoms due
quantum effects are treated using correlated basis w
functions.1 A problem that so far was not addressed with
these models is that of mass transport, arising from ato
exchange at low temperature. At higher temperatures,
exchange is assumed to occur with thermally activated p
defects, traditionally taken as vacancies. With point defe
some additional complexity is to be expected, as here
deals with objects of a size similar to that of the zero-po
amplitude of the atom. The existence of thermally activa
nonphonon excitations is well established experimentally
several different techniques, such as NMR,4–7 mass
diffusion,8,9 ion mobility,10 and x-ray diffraction.11 However,
the properties of point defects deduced from these var
experiments have so far led to controversial conclusions.
example, taking the experimentally determined activation
ergies at face value, the calculated density of vacancies
large that their contribution to the specific heat should
comparable to that of the phonons.12,8 This is not borne out
by the specific-heat data. Several attempts were made to
oncile this controversy by using the assumption that vac
cies in solid 4He are delocalized and occupy an ener
band.13,12,8 In this approach, the magnitude of the speci
heat is divided by the bandwidth, so that it can be ma
small through the choice of a sufficiently large bandwid
PRB 600163-1829/99/60~2!/1019~9!/$15.00
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However, in order to obtain a realistic magnitude of the s
cific heat one has to choose an unphysically large bandwi
so that this approach is unsuccessful in settling
controversy.8

In this paper, we propose a somewhat different desc
tion of the solid, one that treats the motion of the atom ins
its potential well as a ‘‘local mode.’’ Local modes as exc
tations in anharmonic crystals were discussed previously
Takeno and Sievers,14 and by Flynn and Stoneham.15 We
show below that the other degrees of freedom are larg
decoupled from this local motion. As such, these modes
be assumed to be additional degrees of freedom of the s
three per atom. The excited states of these local modes
be thermally activated, and seem to reproduce all the ph
cal effects usually attributed to vacancies. Moreover,
show that this picture has none of the inconsistencies c
nected with vacancies. The properties of the local modes
different in the bcc and the hcp solid phases. In the b
phase, we show that it is energetically advantageous for
local motion of the different atoms to be correlated. The n
ground state has several new features, among them a
ened transverse phonon mode and a high-energy excita
branch that opens an additional channel for atomic diffusi
In contrast, the triangular symmetry of the hcp lattice fru
trates the possibility of long-range ordering of the loc
modes, which therefore remain uncorrelated. In both pha
the local modes are highly directional due to the anisotro
potential seen by an atom in the crystal, a constraint that
show leads to a small contribution to the specific heat of
solid.

II. LOCAL MODES IN bcc 4He

Calculations of the ground-state energy of bcc4He usu-
ally employ variational wave functions that account for t
short-range correlations between the atoms.1 Since we want
to focus here on the nature of the local motion of the at
inside the lattice, we will take a different approach. In th
1019 ©1999 The American Physical Society
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1020 PRB 60N. GOV AND E. POLTURAK
approach we would like to isolate the lowest-energy exci
state of the atom inside its potential well, and treat it a
local excitation of the lattice. This excited state consists o
local oscillatory motion of the atom along a particular dire
tion and produces an oscillating electric dipole, similar to
usual van der Waals interaction. Unlike in the case of the
der Waals interaction, in which the dipolar fluctuations a
random, we show that in the bcc solid these local dipoles
correlated and a new ground state of lower energy is crea
We therefore begin by investigating the potential well of
atom in the bcc lattice. This can be done in the followi
way: Using the standard helium pair potentialy(r ) ~Ref. 1!
and taking the atoms as stationary we can map the pote
well near an atom along any direction in the lattice. In ord
to obtain meaningful numerical values, we scaled the po
tial y(r ) so that the calculated one-dimensional potential
ergy and kinetic energy, averaged over the different dir
tions, reproduce the known kinetic, potential, and to
energy of the bcc phase:1 ^Ekin&.34 K, ^V&.240 K,
^Etotal&.26 K. In Fig. 1 we plot this potential, along th
main directions~100!, ~110!, and~111!. It is clear that in the
directions normal to the cube’s faces@i.e., ~100!, ~010!, and
~001!# the confining potential well is very wide with a pro
nounced double-minimum structure.

We also plot in Fig. 2 the lowest two energy levels of
one-dimensional Schro¨dinger’s equation for a4He atom
solved in each of the potential wells. The energy differen
between these two levels is lowest in the normal direction
the order of 10 K. The atomic displacement is described
a mixing between the lowest two energy levels in the pot
tial well, which corresponds to a motion with amplitude
;1 Å ~in the normal direction!. Although the above treat

FIG. 1. The potential well of an atom in bcc4He along different
directions. The energy differenceE0 between the lowest two energ
levels ~dashed lines! are ~111!, 59.5 K; ~110!, 27.6 K; ~100!, 10.6
K.
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ment assumes that other atoms are stationary, it indicate
directions along which there will be large amplitude loc
motion in the solid. It is evident that the motion will b
highly directional, with the largest amplitude along the no
mal direction, while in the other directions the amplitude
much smaller. Allowing other atoms to move as well, so th
they get out of each other’s way, can only soften the pot
tial well and reduce the value of the energy-level differen
since the potential will effectively become shallower. F
example, a calculation that allows opposite atoms to m
slightly, reduces the energy difference in the normal dir
tion to almost 6 K.

Based on the above calculation, we shall assume that
atoms have a local mode that is highly directional along o
of the directions equivalent to~100!, and of energy 6 –10 K.
Experimental evidence for the existence of such a ‘‘lo
mode’’ comes from NMR measurements of the linewid
(1/T2) in bcc 3He-4He mixture crystals.5 The motional nar-
rowing of the NMR resonance line with temperature sho
thermally activated behavior with an activation energy of
61 K.5,4 At temperatures above 1 K, the NMR line in th
solid becomes narrower than that of the liquid, indicati
that the atomic motion in the solid is faster than in the liqu
At the same time, the diffusion coefficient of the solid r
mains several orders of magnitude smaller than that of
liquid,5 indicating that this rapid motion is of a local natur
We propose to identify this rapid motion as associated w
the excited state of an atom in the well, with an activati
energy ofE0.761 K.

A calculation similar to that presented above will give
an harmonic solid the energy of the longitudinal phonon
the edge of the Brilluoin zone. In such a calculation o

FIG. 2. The probability distribution in the~100! potential well
~shown in the lower part!. The ground-state wave function is th
solid line, while the dashed line is the first excited state.
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PRB 60 1021LOCAL MODES, PHONONS, AND MASS TRANSPORT IN . . .
takes the usual van der Waals interaction, which results f
dipolar fluctuations of random direction. The interaction is
second order in the dipolar field (1/r 6). In addition, in bcc
4He we have an excitation of the atoms that involves la
and highly directional atomic motion. This highly direction
motion of the atom results in the creation of a local~oscil-
lating! electric dipole in the direction of the motion. Th
local electric dipole is created due to inertia, as the electro
cloud can be thought of as being slightly displaced relative
the ion. We show below that these directional electric
poles can become perfectly correlated to lower the total
ergy, and will therefore have first-order and long-range di
lar interactions (1/r 3). In an isotropic medium thes
correlated dipoles cannot arise and there is only the isotr
van der Waals interactions, while here we find the additio
dipolar interactions. The three orthogonal dipole mome
per atom, which arise from the relative displacement of
nucleus and the electronic cloud, introduce three new
grees of freedom per atom.

The electric dipole due to mixing of theus& and up& elec-
tronic levels of the4He atom. The amount of mixing can b
estimated from perturbation theory16 as

c5us&1lup&⇒E0.^cuEuc&2^suEus&.l2^puEup&⇒l2

.7/2.463104.0.00284, l.0.0168, ~1!

whereus& andup& stand for the ground state and first excit
state of the4He atom,E stands for the nonperturbed atom
energy, l is the mixing coefficient and̂ puEup&.2.46
3104 K is the excitation energy of the first atomic excite
state.17 The estimated mixing is small and the magnitude
the induced dipole moment is therefore

umu5e^cuxuc&.2el^suxup&.e30.03 Å , ~2!

where^suxup&.0.9 Å. The estimation of the mixingl and
the dipole momentumu serves to set an upper bound on t
magnitude of this effect. Since the atoms possess an osc
tory electric-dipole moment they have long-range dipo
dipole interactions.

It is possible to show that the lowest energy of a cor
lated dipolar array in the bcc lattice preserves the symm
of the bcc unit cell along one of the symmetry axes. In su
a case it can be easily shown that there will be no contri
tion to the dipolar interaction energy from dipole momen
that are orthogonal, and the instantaneous dipolar interac
energy for each of the three orthogonal directions, is giv
by

Edipole52umu2(
iÞ0

F3cos2@m•~r02r i !#21

ur02r i u3
G , ~3!

where the sum is over all the atoms in the lattice,r i being the
instantaneous coordinate of thei th atom. For oscillating di-
poles with random phases, the average instantaneous int
tion energy summed over the lattice would be zero. Ho
ever, the energy of a dipolar array can be made lower
correlating the phases of the oscillating atoms. The low
interaction energy arrangement of the dipoles in the bcc
tice is such that they are oscillating with the same pha
Since the direction of the dipole shows the instantane
direction of the motion or displacement, such a state is ju
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uniform motion or translation of the entire lattice. This a
rangement is therefore unphysical, and we have to look
symmetric arrangements with respect to the number of
down dipoles. The two arrangements shown in Fig. 3 are
two ‘‘antiferroelectric’’ configurations along the symmetr
axes of the crystal with individual dipoles oriented along t
~001! direction, and a zero total dipole moment. For the
two physical possibilities the sum in Eq.~3! with a unit di-
pole is given in Fig. 3. Thus, the ground state in our pictu
has the atoms executing this local oscillation in a correla
fashion, as shown in Fig. 3~a! along one particular direction
Independently, similar correlated motion exists in the oth
two orthogonal directions@i.e., ~100! and ~010!#.

III. ELEMENTARY EXCITATIONS OF THE DIPOLE
GROUND STATE

The ground state of the dipoles described in the preced
section will be affected by the excitations of the lattic
namely phonons. In fact, our basic assumption in which
local motion can be separated from these other degree
freedom needs justification. The oscillatory atomic moti
induced by the phonons will modulate the relative phases
the dipoles. Let us look at the ground state of the dipo
concentrating for example on oscillations oriented along
~001! direction. We now need to consider only phonons th
will modulate the local motion along this direction. In th
bcc structure, only three phonons fulfill this conditio
L(001), T(100), andT1(110). Let us calculate the energy o
the dipolar array when modulated along these three di
tions. For a modulation along some directionk, the dipolar

FIG. 3. The two ‘‘antiferroelectric’’ arrangements of the dipole
lying along the major axes of the bcc phase. The atoms having
same dipole moments have the same shade. The sum of the di
dipole interaction@Eq. ~3!# for a unit dipole moment are~a! 20.08,
~b! 0.0 (Å 23).
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1022 PRB 60N. GOV AND E. POLTURAK
interaction energy is given by18

X~k!52umu2(
iÞ0

F3cos2@m•~r02r i !#21

ur02r i u3
G

3exp@2p ik•~r02r i !#. ~4!

At k50 the interaction matrixX(k) is just the dipolar energy
~3!.

In Fig. 4 we plot the value ofX(k), the energy of the
dipolar array modulated by the relevant phonons:L(001),
T(100), andT1(110). We see that for a modulation b
L(001) andT(100) the periodicity ofX(k) is over a full unit
cell that is twice the periodicity of these phonons. Since sy
metric functions of periodicitiesp/a and 2p/a are orthogo-
nal, the wave functions of the phonons and of the dip
excitations are orthogonal along these directions. The dip
array cannot therefore be excited by any phonon along th
two directions. Regarding the modulation by theT1(110)
mode, here the periodicity ofX(k) is the same as that of th
T1(110) phonon, which can therefore couple to the dip
array. We conlude therefore that the coupling of the lo
modes to the lattice excitations is limited to a single phon
mode, justifying our assumption that the local modes can
treated separately to a good approximation. Thus, the o
elementary excitations of the dipole array would be in
~110! direction, in the form of theT1(110) phonon. We shal

FIG. 4. The calculated interaction matrixX(k) @Eq. ~4!# as a
function of the wave vectork, for the three phonon modes tha
could affect a dipolar array. The dipole moment has been norm
ized to give a gapless mode:X(k50)52E0/2. The unit-cell di-
mensions (Å ):a54.12/2,a85aA2.
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now calculate the dispersion relation of such an excitation
a mean-field solution of an effective Hamiltonian.

The Hamiltonian treatment of interacting local excitatio
was developed originally by Hopfield19 for the problem of
excitons in a dielectric material. The local excitations a
treated as bosons and the effective Hamiltonian describ
their behavior is20

Hloc5(
k

@E01X~k!#S bk
†bk1

1

2D
1(

k
X~k!~bk

†b2k
† 1bkb2k!, ~5!

wherebk
† ,bk are creation/annihilation operators of the loc

mode, andX(k) is the interaction matrix element give
above Eq.~4!. The HamiltonianHloc ~5! that describes the
effective interaction between localized modes can be dia
nalized using the Bogoliubov transformationbk5u(k)bk
1v(k)b†

2k . The two functionsu(k) andv(k) are given by

u2~k!5
1

2 S E01X~k!

E~k!
11D , v2~k!5

1

2 S E01X~k!

E~k!
21D ,

~6!

whereE(k), the energy spectrum of the diagonalized Ham
tonian is

E~k!5AE0@E012X~k!#. ~7!

The ground-state wave function of the local modes is giv
by21

uC0&5)
k

expS vk

uk
bk

†b2k
† D uvac&. ~8!

We show in Fig. 4X(k) in the ~110! direction using a
dipole momentumu determined as follows: we would like
according to our definition of the local mode, that the ene
cost of flipping the direction on a single dipole out of th
ground state beE0. This condition is equivalent to demand
ing that 2uX(k50)u5E0. We also see from Eq.~7! that in
order for the dipoles to have a gapless mode atk→0 we
must haveX(k50)52E0/2. Using this condition, the value
of E057 K ~see previous section! determines the size of th
dipole moment as:umu.e30.01 Å. This value is indeed
smaller than our previous estimation, which was an up
bound on the size of dipole moment~2!.

From its very definition, the phase modulation in th
~110! direction of the atomic motion with energyE(k) @Eq.
~7!# should be just theT1~110! phonon. In Fig. 5 we compare
the experimental values ofT1(110) taken from the neutron
scattering with the calculatedE(k). The agreement is excel
lent for all k. From Eq.~7! and Fig. 4 we find that at the edg
of the Brillouin zone the energyE(k) of the phonon is just
the bare energy of the local mode,E0, sinceX(A2p/a)50
and the dipoles have changed from the configuration of F
3~a! to Fig. 3~b!. We recall that the value ofE0 that we used
was taken from NMR data. The agreement between th
two independent determinations ofE0, that from NMR and
that from neutron scattering, emphasizes the self-consiste
of our description. We stress that the value ofE0 is the only

l-
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PRB 60 1023LOCAL MODES, PHONONS, AND MASS TRANSPORT IN . . .
empirical input into the calculation, while the functional b
havior is completely defined by the lattice structure and
dipolar form of the interactions.

Our model indicates that only theT1(110) phonon would
be different than that obtained from the self-consistent h
monic ~SCH! calculation, because it is the only excitatio
that couples to the local motion. Indeed, in the experime3

this is the only phonon branch that is not described well
the SCH calculation. The fact that the SCH calculati
works rather well for other directions is consistent with o
picture in which there are no elementary excitations of
dipole array in these directions.

IV. HARMONIC AND LOCAL-MODE HYBRIDIZATION

An equivalent way to describe the mutual influence b
tween the local modes and the lattice can be done by ta
the interaction between the dipoles as resulting from an
change of virtual harmonic transverse fluctuations of the
tice. An analogous case, that of excitons in a dielectric, w
treated by Hopfield19 ~in that case, the interaction is mediate
through the exchange of virtual photons!. The two excita-
tions, the local mode and virtual harmonic phonon, are t
hybridized through the same dipolar interaction matrixX(k),
which we used in the direct interaction picture. In our ca
the natural choice for the mediating virtual phonon is t
T1(110) phonon, as calculated by the SCH method. The
of the phonon calculated by the SCH method is importa
since this calculation is largely independent of the local
grees of freedom described by the local mode. The mot
tion for using this approach is that it allows us to obtain
additional branch of the excitation spectrum that has obs
able consequences.

FIG. 5. The experimental data~Ref. 3! ~solid circles! for the
T1(110) phonon compared with the calculation@Eq. ~7!# ~solid
line!. Also shown is the energy of the bare local modeE057 K.
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The Hamiltonian describing the local-mode and SC
phonon hybridization is19

H5H01Hloc
0 1Hc , ~9!

where the three components of Eq.~9! are the SCH phonon

H05(
k

«~k!ak
†ak , ~10!

where a are Bose operators and«(k) is the SCH-phonon
spectrum, and the local mode

Hloc
0 5(

k
E0bk

†bk . ~11!

The part describing the first-order~dipolar! coupling be-
tween the phonons and the localized modes is19

Hc5(
k

@l~k!bk1m~k!ak#~ak
†1a2k!

2@l~k!bk
†2m~k!ak

†#~ak1a†
2k!, ~12!

where, in the dipolar approximation~and a cubic lattice!
the two functions l and m are given by l(k)5 iE0

$23X(k)/2e(k)1/2% and m(k)52E03X(k)/2e(k), with
X(k) the dipole matrix element~4!. This is just the standard
coupling Hamiltonian of an atom to a transverse pho
field, which is replaced here by theT1(110) SCH phonon.
The total HamiltonianH does not involve quartic terms an
can be diagonalized using the canonical transformation19

a15Aak1Bbk1Ca†
2k1Db†

2k ,

a25Bak1Abk1Da†
2k1Cb†

2k , ~13!

where these operators describe the two branches of the
bridized energy spectrum. The transformation functio
A(k),B(k),C(k),D(k) can be written down explicitly.19 The
corresponding dispersion relation is

e2~k!

E2~k!
512

6

E0

X~k!

12S E~k!

E0
D 2 , ~14!

which describes two energy branchesE1 and E2. The
equivalence of this and the treatment in the previous sec
is due to the use of the same dipole interaction matrixX(k)
in both. With X(k), we can solve Eq.~14! to find the two
energy branches:

E15«~k!/2,

E252E0 . ~15!

We see that the energy of the lower branchE1 is half of
that of the SCH phonon for allk. Comparing the SCH cal-
culation and the experimental results for theT1(110) pho-
non, we find that there is indeed a constant,k-independent
ratio between them. This ratio turns out to be;1.7 for all
momenta, close to the predicted ratio of 2~15! ~Fig. 6!. This
small discrepancy is within the uncertainty of the SCH c
culations and the experimental data. Despite this small
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1024 PRB 60N. GOV AND E. POLTURAK
crepancy we find the agreement very satisfying. Our pict
of a hybridization of a dipole array with the harmonic latti
can therefore account for the main effect of the local moti
The upper branchE2, a dispersionless excitation with energ
of 14 K ~Fig. 6!, was possibly observed in an inelast
neutron-scattering experiment,22 in which a strong feature
was observed at an energy transfer of 1.4 meV. This fea
was interpreted by Glyde1 in terms of an interference effec
between phonon modes, which is not inconsistent with
hybridization picture. Another possible way to observe t
excitation would be by Raman scattering. In addition, t
energy branch is important in the process of mass diffus
and will be discussed in this context in a following sectio

We would like to point out that local modes can arise a
in classical crystals, as a result of a large anharmonicity.14 As
shown by these authors, these local modes can assume
of the roles of vacancies. There are several similarities
tween this work and ours: first, the treatment in nonpert
bative; second, in a simple cubic lattice, they also find t
there are two excitation branches. These similarities oc
despite the different basic assumptions of the classical m
and the present work, which uses the quantum propertie
the crystal as the starting point.

V. LOCAL MODES IN hcp 4He

We now turn to discuss the effects arising from the lo
motion in the hcp structure. Repeating the calculation d
in Sec. II, we plot in Fig. 7 the potential well along the ma
directions of the hcp crystal, namely,~1000!, ~0100!, and

FIG. 6. The SCH calculation~Ref. 1! ~dashed line! compared
with the experimental results~Ref. 3! ~solid circles! for theT1(110)
phonon. Solid line is our calculated spectrum@Eq. ~7!#. Also shown
is the prediction of the hybridization model@Eq. ~15!# for the high-
energy branchE252E0.
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~0001!. We also plot in Fig. 7 the lowest two energy levels
a one-dimensional Schro¨dinger’s equation solved in each o
the potential wells. The energy difference between these
levels is lowest in the~0100! direction, of the order of 16 K.
Similar to what was stated for the bcc structure, the calcu
tion indicates the direction along which there will be lar
amplitude local motion.

As in the bcc phase, evidence for the existence of a ‘‘lo
mode’’ comes from NMR measurements6,23 of the linewidth
(1/T2) with energy.14 K. We propose therefore that th
NMR experiments measure the energy of the bare lo
mode.

In contrast to the bcc phase, we do not expect the lo
electric dipoles in the hcp phase to have long-range or
This is due to the fact that there is geometric frustrat
against an ‘‘antiferroelectric’’ order in a triangular lattice
We calculated the dipolar interaction energy for seve
simple dipole arrangements preserving the net zero dip
moment, and did not find any arrangement in which t
energy was negative. Comparison of the SCH calculation
the phonons spectrum with experiment reveals that ther
an overall good agreement, with no exceptions, such
found for theT1(110) phonon in the bcc phase. Thus, w
conclude that there is no long-range order within the dip
array like in the bcc phase, and the local modes in the
solid are largely uncorrelated.

FIG. 7. The potential well of an atom in hcp4He along different
directions. The energy differenceE0 between the lowest two energ
levels ~dashed lines! are ~0100!, 16.0 K; ~1000!, 21.0 K; ~0001!,
23.0 K.
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VI. ATOMIC SELF-DIFFUSION

We have seen that in the first excited state of the atom
its potential well, the atom oscillates with a comparative
large amplitude~;1 Å!. This motion can have an effect o
the atomic exchange rate that is governed by the overla
the wave functions of neighboring atoms. At low tempe
ture, the atomic exchange, or self diffusion, occurs by t
neling and is small (D0;1029 cm2/s in the hcp phase8!.
Thermally activated diffusion is traditionally attributed to v
cancies. We would like to show that thermally excited loc
modes can produce self-diffusion at rates that compare
vorably with experimental data.

The theoretical calculation of the zero-temperature
change rate of atoms in solid helium is a long-stand
problem.24 It is extremely difficult to perform accurate theo
retical calculations of this effect due to the smallness of
exchange frequency as compared with the Debye freque
In these calculations, the atoms participating in the excha
are treated as tunneling along a one-dimensional closed p
At high densities, it is found that the effective potential ba
rier for tunneling is mainly due to the potential energy as
ciated with the elastic deformation of the crystal during t
atomic exchange. At lower densities it is more difficult
calculate the height of the tunneling barrier, but empirica
it turns out to be of the order of the kinetic energy of t
atoms~30 K–40 K!. Thus, in order to obtain a rough est
mate of the exchange rate, it is sufficient to view the probl
as that of a one-dimensional tunneling of free partic
through a square barrier. Since we are dealing with lo
density solids, the height of the barrier should be compara
with the kinetic energy of the atoms. We would like to com
pare the exchange rate of atoms in the ground state with
of atoms in the excited state of the local mode.

We begin with the hcp phase, looking at the~0100! direc-
tion, that of the largest amplitude atomic motion. We ta
the atom in the ground state with its kinetic zero-point e
ergy (Ekin.10 K! and adjust the barrier height to reprodu
the experimental rate of exchange at low temperatures.
take the width of the barrier to bea53.6 Å, i.e., the nearest
neighbor distance. We find that a barrier height of 44 K giv
a transmission probabilityG.1027, and a self-diffusion co-
efficient D0

G.(Ekin /\)a2G;1029 cm2/s, which is consis-
tent with the experimental results. The barrier height fou
in this estimation is consistent with the empirical value,
the order of the total kinetic energy of the atoms in the so
We now turn to thermally activated self-diffusion. In the fir
excited state of atoms in the well, the total energy of
atom is 24 K~10 K from the ground state1 14 K for the first
excited level of the local mode!. The barrier height remain
unchanged, but the atom can now tunnel from one of
lobes of the excited-state wave function~see Fig. 2!, which
are approximately 1 Å from its equilibrium position. Since
tunnels into an identical excited state, the effective width
the barrier is nowa53.62251.6 Å. We thus find a trans
mission probability in the excited stateG.1022, and a pref-
actor of the diffusion coefficientD0

E.(Ekin /\)a2G;1024

cm2/s. This means in our model that as atoms are therm
excited out of the ground state, the diffusion coefficie
would increase exponentially with temperature asD0

E exp
(2E0 /kT). The experimental values8 are D0

E'1024 cm2/s,
in
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and that of the activation energyE0513.9 K, which is very
close to the value ofE0514 K that we took from NMR as
describing the energy of the local mode. We therefore c
clude that exchange of atoms occupying a thermally a
vated local mode can account for self-diffusion at a rate u
ally attributed to vacancies in the hcp phase.

The rate of self-diffusion in the bcc phase is an order
magnitude larger than in the hcp phase.8 In this phase, the
direction of largest local atomic motion is~100!. Repeating
the above calculation of the tunneling rate for this case,
have the ground-state kinetic zero-point energy similar to
hcp (Ekin.10 K!, and barrier width along the~100! direction
of a54.12 Å. For a tunneling rate at low temperatures th
would be higher by an order of magnitude compared with
hcp phase we need a barrier height of;30 K, which is again
close to the total kinetic energy of the atom in the grou
state (;34 K!.1 In order to look at thermally activated sel
diffusion, the model used above for the hcp phase is inap
cable, since the energy of the excited stateE252E0
.14 K ~15! is associated with more than one atom. In ord
to understand the physical nature of this excitation we p
nb(r ) ~Fig. 8!, the spatial extent of the density of atom
excited by this branch of the local modes in the~110! direc-
tion. This is the Fourier transform of thek-space density of
the localized modes in the upper branch~13!:

nb~k!5^bk
†bk&25uC~k!u2. ~16!

What is seen in Fig. 8 is that the functionnb(r ) extends
over two unit cells in real space, in the~110! direction. Since
the energy is twice the energy of the bare local mode, it
be interpreted qualitatively as two atoms excited in adjac

FIG. 8. The normalized Fourier transform of thek-space density
of the local-mode occupation in the high-energy branchE2 @Eq.
~16!#, along the~110! direction.
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1026 PRB 60N. GOV AND E. POLTURAK
unit cells, each having an energyE057 K. This corresponds
to a ‘‘flip’’ of the dipole moment of these two atoms. In Fig
9 we show that with this excitation, there are four ato
oscillating in such a way, as to reduce the potential bar
for the exchange of atoms 1 and 2. This type of atom
exchange resembles phonon-assisted tunneling, where
correlated ‘‘breathing’’ motion of the four atoms is local
equivalent to a phonon excitation at the edge of the Brillo
zone. This type of self-diffusion was considered in the pas15

and was recently found to be consistent with experimen
bcc 4He ~Ref. 9! as the dominant mass-transport chann
with an activation energy of 14.8 K.8,9 Thus, although quan
titative calculations of the rate of difusion are outside t
scope of this paper, both the mechanism and the activa
energy are in accord with experiment.

VII. CONTRIBUTION OF LOCAL MODES
TO THE SPECIFIC HEAT

One of the controversial issues with vacancies in so
4He is that based on the measured values of the activa
energy, their estimated contribution to the specific hea
comparable to that of the phonons.12,8 Yet, the experimenta
evidence shows a much reduced contribution.25 Let us con-
sider the contribution of the local modes presented her
the specific heat.

In the bcc lattice we found that the bare local mode w
energyE0.7 K is now changed by the interactions into
phonon and a new localized-mode of twice its bare ene
The nonphonon contribution should therefore be due to
new branch atE252E0;14 K, resulting in a much re-
duced contribution to the specific heat, in good quantitat
agreement with the experimental data, taking the contri
tion to the specific heat from a two-level system as

Cexcess5R~E2/T!2exp~2E2/T! , ~17!

whereR is the ideal gas constant. AtT51.6 K this gives
Cexcess.400 mJ/mole K, which is close to the estimated e
cess specific heat8 of 450640 ~mJ/mole K!.

FIG. 9. Schematic picture of an excitation of the high-ene
branch 2E0, as two adjacent local modes along the~110! direction.
The filled circles represent atoms that execute the breathing mo
allowing atoms 1 and 2~open circles! to exchange places mor
easily.
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In the hcp lattice there is no long-range order of the lo
dipoles so that the local-mode contribution should be cal
lated using the bare energyE0.7 K. This should give us a
nonphonon contribution similar to that in the bcc phase,
the experimental results8 indicate a much lower value. Thi
is due to the energy of the local mode being different in ea
direction of the lattice; the highest contribution to the sp
cific heat would come from the excitation of local mod
along the directions where the excitation energy is low
~i.e., at E0!. Because of the restricted solid angle in whi
these modes are active, the fraction of phase space occu
by them would be correspondingly small, and their contrib
tion to the specific heat would be much reduced compa
with that obtained previously. In these previous estimatio
the point defect was assumed to occupy phase space
formly, thus yielding a large contribution. To obtain a qua
titative estimate of the above effect we calculate the ra
between the contribution to the specific heat from directio
local modes and the total experimental specific heat of
hcp26 solid phase. We used the energies calculated above
the excitation energies along the principal directions of
hcp lattice~Fig. 7!, and a simple linear interpolation for th
excitation energies in the intermediate orientations. T
maximum contribution is less than 1% of the total spec
heat, in agreement with the experimental results.

VIII. CONCLUSION

In this work we have proposed a new approach to treat
local behavior of4He atoms in the bcc and hcp solid phase
We treat the excitations of atoms inside their potential w
as local modes. The anisotropy of the potential renders th
modes highly directional. Due to the symmetry of the b
phase we propose that the local mode is hybridized with
harmonic density fluctuations~SCH!. The hybridization is
described by the dipole-dipole interaction and the spectr
of the hybridizedT1(110) phonon is calculated. An add
tional excitation branch is identified, and it is this branch th
seems to control the anomalously large self-diffusion in
bcc solid. In the hcp phase, the symmetry does not allow
correlations of these local modes. Consequently, there is
hybridization with the phonons, and the thermally activat
self-diffusion in this phase is controlled by the energy of t
bare local mode.

The directionality of the local modes means that th
contribution to the specific heat of the solid is negligible. W
therefore demonstrated that the local-mode approach can
scribe experimental data coming from neutron scatteri
NMR, and diffusion experiments within one physical mod
while at the same time resolving a long-standing discrepa
concerning the specific-heat contribution of point defec
The physical picture of our proposed local mode is very d
ferent from the classical picture of a vacancy. We theref
see no reason to consider point defects in solid4He as va-
cancies, as they can be consistently treated as natural ex
tions of the solid lattice, without having to physically remov
atoms from it.
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