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We propose a model to treat the local motion of atoms in st as a local mode. In this model, the solid
is assumed to be described by the self-consistent harmonic approximation, combined with an array of local
modes. We show that in the bcc phase the atomic local motion is highly directional and correlated, while in the
hcp phase there is no such correlation. The correlated motion in the bcc phase leads to a strong hybridization
of the local modes with th&,(110) phonon branch, which becomes much softer than that obtained through a
self-consistent harmonic calculation, in agreement with experiment. In addition, we predict a high-energy
excitation branch that is important for self-diffusion. Both the hybridization and the presence of a high-energy
branch are a consequence of the correlation, and appear only in the bcec phase. We suggest that the local modes
can play the role in mass transport usually attributed to point defeatancies Our approach offers a more
overall consistent picture than obtained using vacancies as the predominant point defect. In particular, we show
that our approach resolves the long-standing controversy regarding the contribution of point defects to the
specific heat of solid'He. [S0163-18209)13425-9

I. INTRODUCTION However, in order to obtain a realistic magnitude of the spe-
cific heat one has to choose an unphysically large bandwidth,
Atomic motion in solid*He was extensively studied over so that this approach is unsuccessful in settling the
the years, both theoretically and experimentalljhe quan- controversy’.
tum nature of the solid comes into play mainly through the In this paper, we propose a somewhat different descrip-
large amplitude of zero-point motion of the atoms in thetion of the solid, one that treats the motion of the atom inside
lattice, an effect especially evident in the solid at its lowestits potential well as a “local mode.” Local modes as exci-
density. In this paper, we shall discuss only these lowdations in anharmonic crystals were discussed previously by
density solids 21 cn? molar volum¢. Calculations of the Takeno and Siever$, and by Flynn and Stonehai®.We
phonon spectrum within the self-consistent harmonic apshow below that the other degrees of freedom are largely
proximation seem to agree fairly well with experiment in the decoupled from this local motion. As such, these modes can
hcp phasé, while in the bcc phase, only the energy of the be assumed to be additional degrees of freedom of the solid,
Tl(llo) phonon is overestimated by a factor 0? @orrec- three per atom. The excited states of these local modes can
tions resulting from the local motion of the atoms due tobe thermally activated, and seem to reproduce all the physi-
quantum effects are treated using correlated basis waveal effects usually attributed to vacancies. Moreover, we
functions! A problem that so far was not addressed withinshow that this picture has none of the inconsistencies con-
these models is that of mass transport, arising from atomigected with vacancies. The properties of the local modes are
exchange at low temperature. At higher temperatures, thidifferent in the bcc and the hcp solid phases. In the bcc
exchange is assumed to occur with thermally activated poiriehase, we show that it is energetically advantageous for the
defects, traditionally taken as vacancies. With point defectdocal motion of the different atoms to be correlated. The new
some additional complexity is to be expected, as here ong@round state has several new features, among them a soft-
deals with objects of a size similar to that of the zero-pointened transverse phonon mode and a high-energy excitation
amplitude of the atom. The existence of thermally activatedranch that opens an additional channel for atomic diffusion.
nonphonon excitations is well established experimentally byn contrast, the triangular symmetry of the hcp lattice frus-
several different technique& such as Nﬁ/ﬂi, mass trates the pOSSIbI'Ity of Iong-range ordering of the local
diffusion®°ion mobility,° and x-ray diffraction:* However, =~ modes, which therefore remain uncorrelated. In both phases
the properties of point defects deduced from these variouhe local modes are highly directional due to the anisotropic
experiments have so far led to controversial conclusions. Fdpotential seen by an atom in the crystal, a constraint that we
example, taking the experimentally determined activation enshqw leads to a small contribution to the specific heat of the
ergies at face value, the calculated density of vacancies is s#lid.
large that their contribution to the specific heat should be
comparable to that of the phonotf$ This is not borne out
by the specific-heat data. Several attempts were made to rec-
oncile this controversy by using the assumption that vacan- Calculations of the ground-state energy of bide usu-
cies in solid “He are delocalized and occupy an energyally employ variational wave functions that account for the
band*!28n this approach, the magnitude of the specificshort-range correlations between the atdrénce we want
heat is divided by the bandwidth, so that it can be maddo focus here on the nature of the local motion of the atom
small through the choice of a sufficiently large bandwidth.inside the lattice, we will take a different approach. In this
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FIG. 1. The potential well of an atom in bétle along different

directions. The energy differené between the lowest two energy  FIG. 2. The probability distribution in th€100) potential well
levels (dashed linesare (111), 59.5 K; (110, 27.6 K; (100, 10.6  (shown in the lower payt The ground-state wave function is the
K. solid line, while the dashed line is the first excited state.

approach we would like to isolate the lowest-energy excitednent assumes that other atoms are stationary, it indicates the
state of the atom inside its potential well, and treat it as alirections along which there will be large amplitude local
local excitation of the lattice. This excited state consists of anotion in the solid. It is evident that the motion will be
local oscillatory motion of the atom along a particular direc-highly directional, with the largest amplitude along the nor-
tion and produces an oscillating electric dipole, similar to themal direction, while in the other directions the amplitude is
usual van der Waals interaction. Unlike in the case of the vamuch smaller. Allowing other atoms to move as well, so that
der Waals interaction, in which the dipolar fluctuations arethey get out of each other’s way, can only soften the poten-
random, we show that in the bcc solid these local dipoles argal well and reduce the value of the energy-level difference,
correlated and a new ground state of lower energy is createdince the potential will effectively become shallower. For
We therefore begin by investigating the potential well of anexample, a calculation that allows opposite atoms to move
atom in the bcc lattice. This can be done in the followingslightly, reduces the energy difference in the normal direc-
way: Using the standard helium pair potentigl) (Ref. )  tion to almost 6 K.
and taking the atoms as stationary we can map the potential Based on the above calculation, we shall assume that the
well near an atom along any direction in the lattice. In orderatoms have a local mode that is highly directional along one
to obtain meaningful numerical values, we scaled the potenaf the directions equivalent t100), and of energy 6—10 K.
tial v(r) so that the calculated one-dimensional potential enExperimental evidence for the existence of such a “local
ergy and kinetic energy, averaged over the different direcmode” comes from NMR measurements of the linewidth
tions, reproduce the known kinetic, potential, and total(1/T,) in bcc *He-*He mixture crystalS. The motional nar-
energy of the bcc phase{Ey,)=34 K, (V)=—40 K,  rowing of the NMR resonance line with temperature shows
(Etotay=—6 K. In Fig. 1 we plot this potential, along the thermally activated behavior with an activation energy of 7
main directiong100), (110), and(111). It is clear that in the +1 K.>* At temperatures above 1 K, the NMR line in the
directions normal to the cube’s facge., (100, (010, and  solid becomes narrower than that of the liquid, indicating
(001)] the confining potential well is very wide with a pro- that the atomic motion in the solid is faster than in the liquid.
nounced double-minimum structure. At the same time, the diffusion coefficient of the solid re-
We also plot in Fig. 2 the lowest two energy levels of amains several orders of magnitude smaller than that of the
one-dimensional Schdinger's equation for a*He atom liquid,® indicating that this rapid motion is of a local nature.
solved in each of the potential wells. The energy differencene propose to identify this rapid motion as associated with
between these two levels is lowest in the normal direction, othe excited state of an atom in the well, with an activation
the order of 10 K. The atomic displacement is described byenergy ofE,=7=+1 K.
a mixing between the lowest two energy levels in the poten- A calculation similar to that presented above will give in
tial well, which corresponds to a motion with amplitude of an harmonic solid the energy of the longitudinal phonon at
~1 A (in the normal direction Although the above treat- the edge of the Brilluoin zone. In such a calculation one



PRB 60 LOCAL MODES, PHONONS, AND MASS TRANSPORTN. .. 1021

takes the usual van der Waals interaction, which results from (@
dipolar fluctuations of random direction. The interaction is of
second order in the dipolar field ¢£}. In addition, in bcc
“He we have an excitation of the atoms that involves large
and highly directional atomic motion. This highly directional
motion of the atom results in the creation of a lo¢ascil- A A
lating) electric dipole in the direction of the motion. This
local electric dipole is created due to inertia, as the electronic
cloud can be thought of as being slightly displaced relative to
the ion. We show below that these directional electric di-
poles can become perfectly correlated to lower the total en- d
ergy, and will therefore have first-order and long-range dipo-
lar interactions (¥f). In an isotropic medium these
correlated dipoles cannot arise and there is only the isotropic
van der Waals interactions, while here we find the additional
dipolar interactions. The three orthogonal dipole moments
per atom, which arise from the relative displacement of the A
nucleus and the electronic cloud, introduce three new de-
grees of freedom per atom.

The electric dipole due to mixing of ths) and|p) elec-
tronic levels of the*He atom. The amount of mixing can be
estimated from perturbation thedfyas

y=1s)+A|p)=Eo=(Y|E|y)— (s|Els)=A*(p|E|p)=r?

=7/2.46<10°=0.00284, \=0.0168, 1) FIG. 3. The two “antiferroelectric” arrangements of the dipoles
lying along the major axes of the bcc phase. The atoms having the
where|[s) and|p) stand for the ground state and first excited same dipole moments have the same shade. The sum of the dipole-
state of the*He atom,E stands for the nonperturbed atomic dipole interactiorEq. (3)] for a unit dipole moment ar) —0.08,

energy, A is the mixing coefficient and(p|E|p)=2.46 (b) 0.0 (A ~3).

X 10* K is the excitation energy of the first atomic excited

statel’ The estimated mixing is small and the magnitude ofuniform motion or translation of the entire lattice. This ar-

the induced dipole moment is therefore rangement is therefore unphysical, and we have to look for

symmetric arrangements with respect to the number of up/

|ul=e(y|x|p)=2er(s|x|p)=ex0.03 A, @ gown dipoles. The two arrangements shown in Fig. 3 are the

where(s|x|p)=0.9 A. The estimation of the mixing and ~ fwo “antiferroelectric” configurations along the symmetry

the d|p0|e momentﬂl serves to set an upper bound on theaxes of the CryStal with individual dipOleS oriented along the

magnitude of this effect. Since the atoms possess an oscill4001 direction, and a zero total dipole moment. For these

tory electric-dipole moment they have long-range dipole-two physical possibilities the sum in E() with a unit di-
dipole interactions. pole is given in Fig. 3. Thus, the ground state in our picture

It is possible to show that the lowest energy of a correnas the atoms executing this local oscillation in a correlated
lated dipolar array in the bcc lattice preserves the symmetrf@shion, as shown in Fig.(8 along one particular direction.
of the bce unit cell along one of the symmetry axes. In sucHndependently, similar correlated motion exists in the other
a case it can be easily shown that there will be no contributwo orthogonal direction§i.e., (100) and (010].
tion to the dipolar interaction energy from dipole moments
that are orthogonal, and the instantaneous.dipqlar in.tera.ction Il ELEMENTARY EXCITATIONS OF THE DIPOLE
E;ergy for each of the three orthogonal directions, is given GROUND STATE

The ground state of the dipoles described in the preceding

3co[ - (ro—r;)]—1 section will be affected by the excitations of the lattice,
' 3 namely phonons. In fact, our basic assumption in which the

local motion can be separated from these other degrees of
where the sum is over all the atoms in the lattigegeing the ~ freedom needs justification. The oscillatory atomic motion
instantaneous coordinate of thié atom. For oscillating di- induced by the phonons will modulate the relative phases of
poles with random phases, the average instantaneous interdbe dipoles. Let us look at the ground state of the dipoles,
tion energy summed over the lattice would be zero. How-concentrating for example on oscillations oriented along the
ever, the energy of a dipolar array can be made lower by001) direction. We now need to consider only phonons that
correlating the phases of the oscillating atoms. The loweswill modulate the local motion along this direction. In the
interaction energy arrangement of the dipoles in the bcc latbce structure, only three phonons fulfill this condition:
tice is such that they are oscillating with the same phasd.(001), T(100), andT,(110). Let us calculate the energy of
Since the direction of the dipole shows the instantaneouthe dipolar array when modulated along these three direc-
direction of the motion or displacement, such a state is just #ons. For a modulation along some directibnthe dipolar

Edipole= — | /2>,
dipole |M| &t |I‘0—I’i|3
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now calculate the dispersion relation of such an excitation by
a mean-field solution of an effective Hamiltonian.

The Hamiltonian treatment of interacting local excitations
was developed originally by Hopfieitifor the problem of
excitons in a dielectric material. The local excitations are
treated as bosons and the effective Hamiltonian describing
their behavior i§°

1
Hioe=2) [EO+X<k>](bk*bk+§

+2k X(k)(b{bT . +bygb_y), (5)

wherebl ,b, are creation/annihilation operators of the local
mode, andX(k) is the interaction matrix element given
above Eq.(4). The HamiltonianH,,. (5) that describes the

effective interaction between localized modes can be diago-
nalized using the Bogoliubov transformatig®y,= u(k)b,
+v(k)b'_,. The two functionau(k) andv (k) are given by

20 ' 2 :E(EOJF_X(") ) 2 :}(EOJ“_X(")_)
S| T(110) =2 TR T T2 e !
E/2
-4

1t 1

X(K) (K)

(6)

whereE(k), the energy spectrum of the diagonalized Hamil-
tonian is

0 0.5 1.0 nfa’

o _.
Wavevector A™'

FIG. 4. The calculated interaction matri(k) [Eq. (4)] as a _ \/+—
function of the wave vectok, for the three phonon modes that E(k) Eol Bo+2X(K)]. 0

could affect a dipolar array. The dipole moment has been normahe ground-state wave function of the local modes is given
ized to give a gapless modX(k=0)=—Ey/2. The unit-cell di-  py?!
mensions (A ):a=4.12/2,a’ =a\?2.

Uk
|\I/0>=];[ ex;{u—kblbik |vac. 8

interaction energy is given BY

We show in Fig. 4X(k) in the (110 direction using a
3cod[u-(ro—ri)]—1 g. 4X(k) (110 g

X(k)=—| 23 dipole moment| x| determined as follows: we would like,
70 Iro—ril® according to our definition of the local mode, that the energy

cost of flipping the direction on a single dipole out of the

xexg 2mik-(ro—rp)]. (4 ground state b&,. This condition is equivalent to demand-

ing that 3X(k=0)|=E,. We also see from Eq7) that in

At k=0 the interaction matrix(k) is just the dipolar energy order for the dipoles to have a gapless mode&-at0 we
(3. must haveX(k=0)= — Ey/2. Using this condition, the value

In Fig. 4 we plot the value oK(k), the energy of the of Eq=7 K (see previous sectipmletermines the size of the
dipolar array modulated by the relevant phonob§001),  dipole moment asju|=ex0.01 A. This value is indeed
T(100), andT,(110). We see that for a modulation by smaller than our previous estimation, which was an upper
L(001) andT(100) the periodicity o (k) is over a full unit ~ bound on the size of dipole mome(®.
cell that is twice the periodicity of these phonons. Since sym- From its very definition, the phase modulation in the
metric functions of periodicitiesr/a and 2/a are orthogo- (110 direction of the atomic motion with enerdy(k) [Eq.
nal, the wave functions of the phonons and of the dipole(7)] should be just th&;(110 phonon. In Fig. 5 we compare
excitations are orthogonal along these directions. The dipolthe experimental values af;(110) taken from the neutron
array cannot therefore be excited by any phonon along thesstattering with the calculatell(k). The agreement is excel-
two directions. Regarding the modulation by tlig(110) lent for allk. From Eq.(7) and Fig. 4 we find that at the edge
mode, here the periodicity 0f(k) is the same as that of the of the Brillouin zone the energi (k) of the phonon is just
T,(110) phonon, which can therefore couple to the dipolethe bare energy of the local modg,, sinceX(y2m/a)=0
array. We conlude therefore that the coupling of the localnd the dipoles have changed from the configuration of Fig.
modes to the lattice excitations is limited to a single phonor(a) to Fig. 3b). We recall that the value dE, that we used
mode, justifying our assumption that the local modes can b&as taken from NMR data. The agreement between these
treated separately to a good approximation. Thus, the onljwo independent determinations Bf,, that from NMR and
elementary excitations of the dipole array would be in thethat from neutron scattering, emphasizes the self-consistency
(110 direction, in the form of thd';(110) phonon. We shall of our description. We stress that the valuesgfis the only
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8 - - The Hamiltonian describing the local-mode and SCH-
phonon hybridization
E, — H=Ho+H.+H,, 9
() where the three components of Ef) are the SCH phonon
6 L -
. Ho=>, e(k)ajay, (10)
k

where a are Bose operators ang(k) is the SCH-phonon

< spectrum, and the local mode
o I
“ H?oczzk: Eoblbk- (11)

The part describing the first-ordédipolar) coupling be-
tween the phonons and the localized modé$ is

Hc=2k [N(K)b+ m(K)a(aj+a )

—INb—wkall@atal -y, (12
%% 05 ] where, in the dipolar approximatiofand a cubic lattice
Wavevector A™ the two functions\ and u are given by \(K)=iE,

_ o {—3X(k)/2e(k)¥23 and w(k)=—Ey3X(k)/2e(k), with
FIG. 5. The experimental datéRef. 3 (solid circles for the  x (k) the dipole matrix elemer(). This is just the standard
T1(110) phonon compared with the calculatipBq. (7)] (solid  coypling Hamiltonian of an atom to a transverse photon
line). Also shown is the energy of the bare local mdgie=7 K. field, which is replaced here by the(110) SCH phonon.
The total HamiltoniarH does not involve quartic terms and

empirical input into the calculation, while the functional be- . ) ) ; ;
fan be diagonalized using the canonical transform&tion

havior is completely defined by the lattice structure and th

dipolar form of the interactions. — T T
Lo =Aa,+Bb+ _x+tDb'_
Our model indicates that only thi;(110) phonon would a1 =AF BB+ Cal+ Dby,
be different than that obtained from the self-consistent har- @,=Ba+Ab,+Da’_,+Cb'_,, (13)

monic (SCH) calculation, because it is the only excitation

that couples to the local motion. Indeed, in the experithentwhere these operators describe the two branches of the hy-
this is the only phonon branch that is not described well bybridized energy spectrum. The transformation functions
the SCH calculation. The fact that the SCH calculationA(k),B(k),C(k),D(k) can be written down explicitly? The
works rather well for other directions is consistent with ourcorresponding dispersion relation is

picture in which there are no elementary excitations of the

dipole array in these directions. (k) L 6 X(k) 14
E2(k) Eo E(k)|?’
IV. HARMONIC AND LOCAL-MODE HYBRIDIZATION - E_O

An equivalent way to describe the mutual influence be,hich describes two energy branch& and E,. The
tween the local modes and the lattice can be done by takingy jyalence of this and the treatment in the previous section
the interaction between the dipoles as resulting from an ex. '§,e to the use of the same dipole interaction max(k)

change of virtual harmonic transverse fluctuations of the Iatin both. With X(k), we can solve Eq(14) to find the two
tice. An analogous case, that of excitons in a dielectric, Wa%nergy.brancheS' ’

treated by Hopfieltf (in that case, the interaction is mediated

through the exchange of virtual photon3he two excita- E;=e(k)/2,
tions, the local mode and virtual harmonic phonon, are then
hybridized through the same dipolar interaction ma¥{x), E,=2E,. (15)

which we used in the direct interaction picture. In our case,

the natural choice for the mediating virtual phonon is the We see that the energy of the lower brarehis half of
T,1(110) phonon, as calculated by the SCH method. The usthat of the SCH phonon for ak. Comparing the SCH cal-

of the phonon calculated by the SCH method is importantgculation and the experimental results for thg(110) pho-
since this calculation is largely independent of the local dehon, we find that there is indeed a constdaindependent
grees of freedom described by the local mode. The motivaratio between them. This ratio turns out to bel.7 for all

tion for using this approach is that it allows us to obtain anmomenta, close to the predicted ratio of1®) (Fig. 6). This
additional branch of the excitation spectrum that has observsmall discrepancy is within the uncertainty of the SCH cal-
able consequences. culations and the experimental data. Despite this small dis-
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FIG. 6. The SCH calculatiofiRef. 1) (dashed ling compared
with the experimental result®Ref. 3 (solid circles for the T,(110)
phonon. Solid line is our calculated spectriiay. (7)]. Also shown 2 -1 0 1 2
is the prediction of the hybridization modetg. (15)] for the high- Distance from equilibrium (A)
energy branche,=2E,,.

FIG. 7. The potential well of an atom in héple along different

. s . directions. The energy differen&g, between the lowest two energy
crepancy we find the agreement very satisfying. Our p|ctur(?eveIS (dashed Iine)s?i)r/e (010015?6.0 K: (1000, 21.0 K: (0001,

of a hybridization of a dipole array with the harmonic lattice 230 K
can therefore account for the main effect of the local motion.” ™
The upper branck,, a dispersionless excitation with energy
of 14 K (Fig. 6), was possibly observed in an inelastic (0001. We also plot in Fig. 7 the lowest two energy levels of
neutron-scattering experimefftin which a strong feature @ one-dimensional Schiinger’s equation solved in each of
was observed at an energy transfer of 1.4 meV. This featurthe potential wells. The energy difference between these two
was interpreted by Glyden terms of an interference effect levels is lowest in th€0100 direction, of the order of 16 K.
between phonon modes, which is not inconsistent with ouSimilar to what was stated for the bcc structure, the calcula-
hybridization picture. Another possible way to observe thistion indicates the direction along which there will be large
excitation would be by Raman scattering. In addition, thisamplitude local motion.
energy branch is important in the process of mass diffusion, As in the bce phase, evidence for the existence of a “local
and will be discussed in this context in a following section. mode” comes from NMR measuremehte of the linewidth

We would like to point out that local modes can arise also(1/T,) with energy=14 K. We propose therefore that the

in classical crystals, as a result of a large anharmonitis ~ NMR experiments measure the energy of the bare local
shown by these authors, these local modes can assume mafyde.

of the roles of vacancies. There are several similarities be- |n contrast to the bcc phase, we do not expect the local
tween this work and ours: first, the treatment in nonperturelectric dipoles in the hcp phase to have long-range order.
bative; second, in a simple cubic lattice, they also find thatThis is due to the fact that there is geometric frustration
there are two excitation branches. These similarities occuggainst an “antiferroelectric” order in a triangular lattice.

despite the different basic assumptions of the classical mod&l/e calculated the dipolar interaction energy for several
and the present work, which uses the quantum properties &imple dipole arrangements preserving the net zero dipole

the crystal as the starting point. moment, and did not find any arrangement in which this
energy was negative. Comparison of the SCH calculation of
V. LOCAL MODES IN hcp *He the phonons spectrum with experiment reveals that there is

an overall good agreement, with no exceptions, such as
We now turn to discuss the effects arising from the localfound for theT,;(110) phonon in the bcc phase. Thus, we
motion in the hcp structure. Repeating the calculation doneonclude that there is no long-range order within the dipole
in Sec. Il, we plot in Fig. 7 the potential well along the main array like in the bcc phase, and the local modes in the hcp
directions of the hcp crystal, namely1000, (0100, and solid are largely uncorrelated.
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VI. ATOMIC SELF-DIFFUSION '

We have seen that in the first excited state of the atom in
its potential well, the atom oscillates with a comparatively
large amplitudg~1 A). This motion can have an effect on
the atomic exchange rate that is governed by the overlap of<
the wave functions of neighboring atoms. At low tempera-
ture, the atomic exchange, or self diffusion, occurs by tun- °
neling and is small D,~10"° cn?/s in the hcp phade
Thermally activated diffusion is traditionally attributed to va-
cancies. We would like to show that thermally excited local
modes can produce self-diffusion at rates that compare fa-
vorably with experimental data.

The theoretical calculation of the zero-temperature ex-
change rate of atoms in solid helium is a long-standing
problem?* It is extremely difficult to perform accurate theo-
retical calculations of this effect due to the smallness of the
exchange frequency as compared with the Debye frequency
In these calculations, the atoms participating in the exchange
are treated as tunneling along a one-dimensional closed path
At high densities, it is found that the effective potential bar-
rier for tunneling is mainly due to the potential energy asso-
ciated with the elastic deformation of the crystal during the ~0.05 .
atomic exchange. At lower densities it is more difficult to 0 , 5 o, 10
calculate the height of the tunneling barrier, but empirically Distance along the (110) direction (A)
it turns out to be of the order of the kinetic energy of the  F|G. 8. The normalized Fourier transform of tkepace density
atoms(30 K-40 K). Thus, in order to obtain a rough esti- of the local-mode occupation in the high-energy braigh[Eq.
mate of the exchange rate, it is sufficient to view the problem16)], along the(110) direction.
as that of a one-dimensional tunneling of free particles
through a square barrier. Since we are dealing with lowand that of the activation enerds,=13.9 K, which is very
density solids, the height of the barrier should be comparablg|ose to the value oE,=14 K that we took from NMR as
with the kinetic energy of the atoms. We would like to com- describing the energy of the local mode. We therefore con-
pare the exchange rate of atoms in the ground state with thglude that exchange of atoms occupying a thermally acti-
of atoms in the excited state of the local mode. vated local mode can account for self-diffusion at a rate usu-

We begin with the hcp phase, looking at #4100 direc-  ally attributed to vacancies in the hcp phase.
tion, that of the largest amplitude atomic motion. We take The rate of self-diffusion in the bcc phase is an order of
the atom in the ground state with its kinetic zero-point en-magnitude larger than in the hcp phé&si this phase, the
ergy (Exin=10 K) and adjust the barrier height to reproduce direction of largest local atomic motion {400). Repeating
the experimental rate of exchange at low temperatures. Wghe above calculation of the tunneling rate for this case, we
take the width of the barrier to e=3.6 A, i.e., the nearest- have the ground-state kinetic zero-point energy similar to the
neighbor distance. We find that a barrier height of 44 K giveshcp (E,;,=10 K), and barrier width along the 00) direction
a transmission probabilitf =107, and a self-diffusion co- of a=4.12 A. For a tunneling rate at low temperatures that
efficient DS = (Eyi /)T ~10"° cm?/s, which is consis-  would be higher by an order of magnitude compared with the
tent with the experimental results. The barrier height founchcp phase we need a barrier height-e30 K, which is again
in this estimation is consistent with the empirical value, ofclose to the total kinetic energy of the atom in the ground
the order of the total kinetic energy of the atoms in the solidstate (34 K).! In order to look at thermally activated self-
We now turn to thermally activated self-diffusion. In the first diffusion, the model used above for the hcp phase is inappli-
excited state of atoms in the well, the total energy of thecable, since the energy of the excited stdfe=2E,
atom is 24 K(10 K from the ground state- 14 K for the first =14 K (15) is associated with more than one atom. In order
excited level of the local modeThe barrier height remains to understand the physical nature of this excitation we plot
unchanged, but the atom can now tunnel from one of they (r) (Fig. 8), the spatial extent of the density of atoms
lobes of the excited-state wave functi@ee Fig. 2 which  excited by this branch of the local modes in {140 direc-
are approximately 1 A from its equilibrium position. Since it tion. This is the Fourier transform of tHespace density of
tunnels into an identical excited state, the effective width ofihe localized modes in the upper brar(d):
the barrier is nowva=3.6—2=1.6 A. We thus find a trans-
mission probability in the excited stafe=10"2, and a pref- nb(k):(blbk)f |C(k)|2. (16)
actor of the diffusion coefficienD§=(E,/#%)a’l'~10"*
cm?/s. This means in our model that as atoms are thermally \What is seen in Fig. 8 is that the functiop(r) extends
excited out of the ground state, the diffusion coefficientover two unit cells in real space, in tli#10) direction. Since
would increase exponentially with temperature R§exp  the energy is twice the energy of the bare local mode, it can
(—Eo/KT). The experimental valuBsare D5~10“ cm?/s,  be interpreted qualitatively as two atoms excited in adjacent

malized local-mode occupation density (A

<3
-4
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In the hcp lattice there is no long-range order of the local

dipoles so that the local-mode contribution should be calcu-
lated using the bare ener@gy=7 K. This should give us a

3 ﬁ nonphonon contribution similar to that in the bcc phase, but
the experimental resuftsndicate a much lower value. This

2 2 is due to the energy of the local mode being different in each

direction of the lattice; the highest contribution to the spe-

1 (110) cific heat would come from the excitation of local modes
_—

along the directions where the excitation energy is lowest
(i.e., atEy). Because of the restricted solid angle in which
2 2 these modes are active, the fraction of phase space occupied
by them would be correspondingly small, and their contribu-
t W tion to the specific heat would be much reduced compared
with that obtained previously. In these previous estimations,
the point defect was assumed to occupy phase space uni-
formly, thus yielding a large contribution. To obtain a quan-
titative estimate of the above effect we calculate the ratio
FIG. 9. Schematic picture of an excitation of the high-energypetween the contribution to the specific heat from directional
branch Z,, as two adjacent local modes along &0 direction.  |ocal modes and the total experimental specific heat of the
The f!lled circles represent atom_s that execute the breathing motlorplcpze solid phase. We used the energies calculated above for
allowing atoms 1 and Zopen circlej to exchange places more o oycitation energies along the principal directions of the
easily. hcp lattice(Fig. 7), and a simple linear interpolation for the
excitation energies in the intermediate orientations. The
maximum contribution is less than 1% of the total specific
heat, in agreement with the experimental results.

unit cells, each having an enerfy=7 K. This corresponds
to a “flip” of the dipole moment of these two atoms. In Fig.
9 we show that with this excitation, there are four atoms
oscillating in such a way, as to reduce th_e potential barri_er VIIl. CONCLUSION

for the exchange of atoms 1 and 2. This type of atomic

exchange resembles phonon-assisted tunneling, where the In this work we have proposed a new approach to treat the
correlated “breathing” motion of the four atoms is locally local behavior of*He atoms in the bce and hep solid phases.
equivalent to a phonon excitation at the edge of the BrillouinWe treat the excitations of atoms inside their potential well
zone. This type of self-diffusion was considered in the past, as local modes. The anisotropy of the potential renders these
and was recently found to be consistent with experiment irmodes highly directional. Due to the symmetry of the bcc
bce “He (Ref. 9 as the dominant mass-transport channelphase we propose that the local mode is hybridized with the
with an activation energy of 14.8 &° Thus, although quan- harmonic density fluctuationéSCH). The hybridization is
titative calculations of the rate of difusion are outside thedescribed by the dipole-dipole interaction and the spectrum
scope of this paper, both the mechanism and the activatiodf the hybridizedT,(110) phonon is calculated. An addi-

energy are in accord with experiment. tional excitation branch is identified, and it is this branch that
seems to control the anomalously large self-diffusion in the

VIl. CONTRIBUTION OF LOCAL MODES bce solid. In the hep phase, the symmetry does not allow for

TO THE SPECIFIC HEAT correlations of these local modes. Consequently, there is no

hybridization with the phonons, and the thermally activated

One of the controversial issues with vacancies in solidself-diffusion in this phase is controlled by the energy of the
“He is that based on the measured values of the activatiopare local mode.
energy, their estimated contribution to the specific heat is The directionality of the local modes means that their
comparable to that of the phonot? Yet, the experimental  contribution to the specific heat of the solid is negligible. We
evidence shows a much reduced contribufidhet us con-  therefore demonstrated that the local-mode approach can de-
sider the contribution of the local modes presented here tgcribe experimental data coming from neutron scattering,
the specific heat. NMR, and diffusion experiments within one physical model,

In the bcc lattice we found that the bare local mode withwhile at the same time resolving a long-standing discrepancy
energyEy=7 K is now changed by the interactions into a concerning the specific-heat contribution of point defects.
phonon and a new localized-mode of twice its bare energyThe physical picture of our proposed local mode is very dif-
The nonphonon contribution should therefore be due to theerent from the classical picture of a vacancy. We therefore
new branch atE,=2E,~14 K, resulting in a much re- see no reason to consider point defects in sélité as va-
duced contribution to the specific heat, in good quantitativecancies, as they can be consistently treated as natural excita-
agreement with the experimental data, taking the contributions of the solid lattice, without having to physically remove

tion to the specific heat from a two-level system as atoms from it.
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