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We obtain analytical expressions for the total magnetic moment and the static spin-correlation functions of
the classical Heisenberg model for ultrasmall systems of sfing vectors, that interact via isotropic,
nearest-neighbo¢n-n) exchange and that are subject to a uniform dc magnetic field of arbitrary strength.
Explicit results are presented for the dimer, equilateral triangle, square, and regular tetrahedron arrays of spins.
These systems provide a useful theoretical framework for calculating the magnetic properties of several
recently synthesized molecular magnets. The tetrahedron as well as the equilateral triangle systems, each
considered for n-n antiferromagnetic exchange, are of particular interest since they exhibit frustrated spin
ordering for sufficiently low temperatures and weak magnetic fi¢88163-182099)01538-6

[. INTRODUCTION with nearest-neighbofn-n) isotropic Heisenberg exchange,
the partition function has been evaluated only in the absence
In recent years there has been a surge of interest in thef an external magnetic fieff.For the related system, where
magnetic properties of synthesized molecular clusfezsn-  the linear chain is closed so as to form a “Heisenberg ring,”
taining relatively small numbers of paramagnetic ions. Withthe calculation of the partition function and the equilibrium
the ability to control the placement of magnetic moments ofequal-time spin-correlation function is extremely involved.
diverse species within stable molecular structures, one caBxact, unwieldy infinite series expansions of these quantities
test basic theories of magnetism and explore the design afiere successfully derivéd many years ago, but only for
novel systems that offer the prospect of usefulzero applied field. With the introduction of an external mag-
applications* A common feature of these organic-basednetic field the analytic calculation of the partition function
molecular magnets is that intermolecular magnetic interachas been an intractable problem even for small numbers of
tions are extremely weak compared to those within indi-interacting moments!
vidual molecules, i.e., a bulk sample can be described in The purpose of this paper is to provide the full magnetic
terms of independent individual molecular magnets. As ex€quation of statémolecular magnetic momenand equal-
amples of molecular magnets with ultrasmall numbers ofime spin-correlation functions, versus temperature and ap-

embedded paramagnetic ions we mention: Two dimer Sys;:_)Iied magnetic fie!d, for molecular_ magnets containing very
tems, on& of V4* (spin S=1/2) and the second consisting small numbers of interacting classical moments. In more ex-

of® FE* ions (spin S=5/2); a nearly equilateral triangular perimental terms, we calculate quantities that are directly

] A lated to the temperature and applied field-dependent mag-
array of V4*: a nearly square arrfiyof Nd®* (total spinj ' oco . ! .
=9/2); a regular tetrahedron arfagf Cr** (spin S=3/2); netization. The assumed interaction between moments is n-n

. isotropic Heisenberg exchange. In particular, we treat the
and a nonregular tetrahedron afr%grf Fe' ions. Also note-  ¢aqe of 4 dimer, and arrays of moments with the geometries
worthy is the pyrochlore antiferromagnet JM,0;, al-  f an equilateral triangle, a square, and a regular tetrahedron,
though distinct from the class of organic molecules yet sharyg mirror some of the synthetic molecular magnets cited
ing the feature that the P ions (total spinj =6) reside on  apove. The special cases of the equilateral triangle and a
a network of very weakly coupled tetrahedta. regular tetrahedron of spins that interact via n-n antiferro-

This paper has been motivated by the rapid experimentahagnetic exchange are of special interest because these
developments in the synthesis of molecular magnets witlsystem&!! exhibit frustrated order at sufficiently low tem-
ultrasmall numbers of strongly interacting moments. It isperatures and weak magnetic fields. Finally, we remark that
perhaps surprising that for high-spin moments the calculatiothe present results are needed as part of the analytical
of equlibrium magnetic properties for arbitrary temperaturesalculationd® of the time-dependenspin-correlation func-
and magnetic-field strengths presents a serious challenggons for these classical Heisenberg spin systems. The time-
One might expect that the determination of the partitiondependent spin-correlation functions are vital for deriving
function for a few-spin system would be a relatively simplethe analytical formulas for NMR and neutron-scattering mea-
task. To put this matter in perspective, it should be recalledurements.
that for a finite open chain oflassical spins that interact In Sec. Il B, after summarizing several basic, general for-
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mulas for a ring ofN equally spaced spins described by thecompare results for the equilibrium magnetization and the
classical n-n Heisenberg model, we illustrate our method fon-n spin-correlation function for increasing valuesfThe
evaluating the partition function for the casef3 spins  results rapidly approach the classical limit for increassg
(equilateral trianglein the presence of an external magnetic ~ The partition function for an arbitrary value 8fis given
field. In our calculations we exploit the fact that the Hamil- by

tonian of the system is expressible solely in terms of the total

spin vector, and this quantity is included in an extended N

phase-space integration. It is instructive to compare the clas- ZN(B,J,T)ZJ IH dQ;exd —BHN(B,J)], (3)
sical Heisenberg results with the analogous quantum system =t

with individual spinsS, and this is also provided in Sec. l1B. \whered();=sinfdéde is an element of solid angle appro-
For the sake of completeness, we also list our major resultsiate to theith spin, 8= 1/(kgT), kg is Boltzmann’s con-
for the regular tetrahedron in Sec Il C and for the dimer instant, andr is the absolute temperature of the system. Inas-
Sec IID. In Sec. Ill we focus on the rather complex case ofych as all spins are equivalent, the magnetic moment per

a square array of spins with n-n interaction in the presence afsin induced by the magnetic field is given kyn,)
the magnetic field. For this system, we derive the partition:<MZ>/N’ where

function after introducing a convenient pair of auxiliary vari-

ables to supplement the total spin vector and after integrating 19

over a further extended phase space. For comparison pur- (M) =uN(S;,)= —ﬁln Zn(B,J,T). (4)
poses, we also provide results for the square array of quan- B

tum spins, withS=1/2, ... 5/2. Finally, in Sec. IV we sum-  The susceptibility per spingg(T) = (3/JB)(m,), may be ob-

marize the present results and comment briefly on thegined using Eq(4) but it is also provided by the fluctuation
obstacles to extending the present calculations to larger afa|ation in the form

rays of spins, e.g., rings =5 spins with n-n interactions,

while noting several larger systems that can be dealt with N
successfully. Xe(T)= 1B 2 ({S1:82) = (S (5)
Il. CALCULATIONAL METHOD In the zero-field limit we have's,S;,)=(1/3)(S-S) and
A. General formulas (Si,)=0, so the zero-field susceptibility per spige(T),

In this subsection we define our notation and list several Y be written as
standard thermodynamic relations for the classical Heisen- 1
berg model of a ring oN equally spaced spins. We suppose xo(T)= = u?Bx(T), (6)
that the spins are coupled by n-n, isotropic exchange inter- 3
actions and they also interact with a uniform dc external,

magnetic fieldB. We write the Hamiltonian of the system as In terms of a reduced susceptibility(T), given by

N
N N _ o
HN(B,9)=32 §:§1-uB 2 S L) X(T)=1+]Z,2 (5:-8). 7

L = . . . = In the high-temperature limit all of the correlation functions
The direction ofB defines thez (polar axis, the spins, are > g b

classical unit vectors whose orientations are specified by thg>L" Si=2) Vanish and as expected, E@) reduces to Curie’s
polar and azimuthal angle8; and¢; , and these extend from
0 to = and O to 2r, respectively, and the cyclic boundary

condition,éNHEél, is applied. The n-n interaction between
spins can be either antiferromagnetidM), J>0, or ferro- 1. Partition function
magnetic (FM), J=—|J|<0. The Hamiltonian of Eq(1)

provides the classical counterpart to the quantum Heisenber% In this .subs_ectlon we first derive a formula fpr the parti-
model ton function, in the form of a one-dimensional integral, for

the equilateral triangle of spins. We then proceed to derive
analytic expressions for the magnetic moment per spin and
’ (2)  the n-n spin-correlation function as functionsTandB, as
well as the zero-field susceptibility.
We start by showing that with the introduction of the total

¢ spin vector,S=S,; +S,+S; the calculation of the partition
symbol will be used for quantum operat9rghis correspon- function ﬁS(dB,J',IIT)hPan readllyr/] bef achu;ved.hThe suqlc:esg B
dence is achieved by rescaling all quantum spin operators KU Method will hinge on the fact that the Hamiltonian
the factor\S(S+1). It thus follows thatl=S(S+1)Jgand  Ha(B,J) may be rewritten solely in terms &, as

the quantityu in Eq. (1) is given by u=(gug) VvS(S+1), 3
whereg is the Landeg factor for the given ion angkg is the _ Y2 _ay_ ,B.&
Bohr magneton. In subsequent sections of this paper we H3(B,J) 2(S 3)-pB-S ®

B. Equilateral triangle

nv

N N
HN<B,J>=Jsi:El a-sﬂ—guss-;

of atomic ion spinsS (expressed in units of) with n-n
exchange interactiodis. (Here and later in the text the care
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As it stands the integral in Eq(3) for N=3 is six- Z4(a,b)
dimensional. We note that the value of this integral is left
unchanged if we multiply the integrand by the three- (4m)

1 . .
3 = 2apL&A(—3a)sinh(3b) —3 expa)sinh(b)]

dimensional Diracs function, \/?exp:3a/2+ b2/(2a)]
"V2a 8ab
a2 a & d’k s a a+b —b
5(3)(5—51—52—53)=f seXHik-(S=§,-5,-)], x| 3(a+b)erf —3(a—b)erfl —
(2m) 7 %
9
—(3a+ b)erf( )+(3a b)erf( _ ) ,
and then integrate ové: Although we are now faced with a V2a V2a
twelve-dimensional integral the subsequent calculations are (14

actually very straightforward. In particular, we exploit the where erf) denotes the familiar error functidisee, for ex-
dependence dfi3(B,J) on S, rather than the individual unit ample, Chap. 7 of Ref. 26which is defined for any value of
vectors S ; the latter appear only in the argument of the the complex variable The properties of this function which
exponential of Eq.9). The integrations over each of the are useful in the present setting, including its connection
three pairs of angleg; ,¢; (i=1,2,3) are now trivially per- Wwith the confluent hypergeometric function, and its
formed. The remaining, ostensibly six-dimensional integra@symptotic properties for large real and large imaginary ar-
depends only 0§ andk, although in actual fact it is imme- 9ument, are listed in the Appendix. In writing EQL4) we

diately reducible to a one-dimensional integral of the form N@ve reached our goal of obtainiag(a,b) in a form valid
for either AFM or FM exchange interactions.

2. T=0K

K(a,b), (10 Before proceeding to extract physical results from Eq.
(10), we consider the limiting case df=0 K. For cases of
AFM exchange the energy expression, B), is minimized
where for given B when S is directed parallel t& and when its
magnitude is given b$= wB/J. The linear growth oSwith
increasing B applies for the regimeB<B., where B,
sinh(bS) =3J/u. By contrast, we hav&=3 for B>B,. For the re-
" bS 1D gime B<B, the explicit expression for the minimum energy
Eo(B,J) is given byEq(B,J)=—(3/2)J— («B)?/(2J), and
thus the equilibrium spin-correlation function is given by

3
Z3(a,b)=(4w)3ex;<§a

3 a
K(a,b)= JO dSDs(S)exp( - E32

where we introduce the dimensionless quantiiesgJ, b
= uPBB, andD3(S) denotes the integral <§l,§2>

10Ex(B,J) 1 1[uB)\?
3@ 2783
3

ok 3 (T=0 K, B<B,). (15
D3(S)=47S j (Zw)gexmk's)(T) - (12 Note that, in the zero-field limit each spin can be pictured as

being oriented with an angle of 120°= cos (—1/2)] with
respect to each of its two neighbors. This frustrated order is
Now one can readily evaluate the latter integral with themodified as the field is applied, with the spin-correlation
result function increasing quadratically witB until, when B
=B,, it reaches the value unifgpins are collinear For FM
exchange and foTf=0 K the spins are collinear for any

s?/2, 0<=S<1 value ofB.
Ds(S)= S(3-95)/4, 1<S5<3 (13 3. General T, B
0, S=3. Turning now to nonzero temperatures, we first discuss the

field dependence of the total magnetic moment of the system
for fixed temperature. This quantity is given by the standard

Note thatD4(S) is continuous at the merger poings=1,3 thermodynamic relation

but its first derivative is discontinuous at these points. As
expected for the case of three unit spins, contributions to 9
Z3(a,b) can only arise from values &in the interval (0,3); (Myy= ,u%ln Z3(a,b). (16)
henceD;(S) must necessarily vanish f&>3, and the up-

per limit in Eqg.(11) reflects this. One can evaludga,b) in Using Eqg.(10) and performing the differentiation prescribed
closed form and the final result fai;(a,b) is in Eq. (16), one finds
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FIG. 1. Field-induced total magnetic moment per spin for a ring
of N=3 classical Heisenberg spins with AFM exchange for values
of kgT/J listed in the legend. The low-field susceptibility remains

finite in the low-temperature limit as a result of frustrated magnetic - . ) .
where Jg is the exchange interaction between the quantum spins.

FIG. 3. Field-induced total magnetic moment of a ring Nf
=3 spin 1/2 particles with AFM exchange. The curves are labeled
by the numerical value of the dimensionless paramktdr/Jg,

ordering. The rapid change itM,) versusB at low temperatures is due to the
ground-state level crossing that occurs whBs=B., where
(M) _ 1/Ky(ab) ) (17)  9reBc/Is=3/2; the ground state has total spin quantum number
w bl K(ab) ’ S=1/2 (3/2) forB<(>)B,.
where

a reduced zero-field susceptibility(T) vanishes in the limit-

Ki(a,b)= j3dSQ(S)eX[{ Sz)cosr(bS), (18)  ing case of low¥ and lowB values because, as seen from
0 2 Eq. (15), the spin-correlation function approaches the value

andK(a,b) has already been defined in E41). For weak 1/2. That. is, thg low-temperature finite limit QB(T). is a .
fields the quantity in parenthesis in E(L7) is of second dlrec_t manlfestat_lon of t_he AFM order. A more detall_ed dis-
order inb and thusM,)/ u is of first order, as expected. For cussion ofyo(T) is provided in the following subsection.
arbitrary fields it is straightforward to evaluate the integrals It is of interest to compare Fig. 1 with the easily derived
in Eq. (18) and Eq.(11) using standard numerical integration corresponding figure appropriate to thé=3 spin-1/2
methods. In Fig. 1 we display our results {od,)/(3x), the  Heisenberg model of ion spins with AFM exchange interac-
magnetic moment per spin in units of, as a function of tion (Js>0). Shown in Fig. 3 is the total equilibrium mag-
uB/J for several values of, for AFM coupling. The results netic moment in units obug for the latter model versus
derived in the previous subsection foe=0 K are also in- gugB/Jg for several choices dkgT/Js. The dramatic fea-
cluded. ture in the latter figure is the very rapid change in magnetic
The corresponding results for FM coupling are given inmoment that occurs for very small changesBofor fixed,
Fig. 2. One observes that the major difference between th@w temperatures. Those rapid changes are quantum in ori-
two figures is that for AFM exchange the zero-field suscepgin, being a direct expression of the ground-state—first-
tibility xo(T) remains finite in the low-temperature limit, excited state energy level crossings as the field is increased.
whereas it diverges for FM exchange. This is a direct consemn particular, the changes WZ>, at sufficiently low tem-
quence of the fact that in the case of AFM exchange theerature are especially striking in the immediate vicinity of
the field valuegugB/Js=3/2 for which the ground state

12 e (total spinS=1/2, Ms=1/2) and the first excited stateotal
1k ] spinS=3/2, M s=3/2) become degenerate, and there is neg-
R ligible occupancy of all other states. For relatively small val-
_o8f o - ] ues of quantum spis, exact numerical results can be ob-
3 ¢ /»/ JEPEE tained using standard diagonalization methods. In Fig. 4 we
A, 06p/ /,/’ ] show the magnetic moment per spin in units @f
< oabl ! 7 ] =gugVS(S+1) versusuB/J, whereJ=5(S+1)Js, and
T L7 — ] for kgT/J=0.3 for theN=3 quantum Heisenberg rings. The
02p! s ] solid curves shown are for spirg=1/2, 1, 3/2, 2, 5/2, 7/2,
. -- ] and 11/2. The dashed curve is the corresponding result for
Okt ) the classical Heisenberg model. For increasing valueS of

0 2 4 6 8 10

LB/ the curves rapidly converge to the classical curve, although

one notes that for lower values of temperature we need
FIG. 2. Field-induced total magnetic moment per spin for a ringhigher Vglues ofin order to achlevg a.gc.)od convergence to
of N=3 classical Heisenberg spins with FM exchange for values othe 'classmal result. I.n the classmallhmly, ie., |nd|V|dgaI spins
kgT/|J] listed in the legend. The low-field susceptibility diverges in Swith S— 2, the Heisenberg Hamiltonian can be visualized
the low-temperature limit as expected for ferromagnetic ordering. in terms of a continuous distribution of eigenvalues for any
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2 3
uB/J
FIG. 4. Field-induced magnetic moment per spin in unitsuof

=gupVS(S+1) as a function ofuB/J for a quantum ring oiN

=3 spinS particles with AFM exchange interactiod4{>0) and
for kgT/J=0.3, whereJ=S(S+1)Js. The curves shown are for

S=1/2 (lowest curve, 1, 3/2, 2, 5/2, 7/2, 11/2, and for the classical ¢
e

Heisenberg modeldashed cunje
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FIG. 5. Nearest-neighbor spin-correlation function for a ring of
N=3 classical Heisenberg spins with AFM exchange as a function
of magnetic field. The curves are labeled by the numerical value of
the dimensionless parametesT/J. For low magnetic field8 the
frustrated spin ordering persists over a rather wide-temperature in-
rval.

value of the magnetic field, and thus there is an absence @fant, being equal te- 1/4 whengugB/Js<3/2 and equal to
rapid changes in the magnetic moment of the system that 1/4 whengugB/Js>3/2. This behavior is a direct conse-

occur forS=1/2.
Returning to theN=3 classical Heisenberg ring, the n-n
spin-correlation function can be obtained using the formula

19

<S]_Sz>:_N£|n ZN(a,b), (19)
which for N=3 leads to the result
& .8y 1 1Kya,b) o0
( 1'Sz>——§+gm- (20)
The functionK,(a,b) is defined by
3 a sinh(bS)
= 2 2
K,(a,b) deSQ(S)S exp( 28 bs
(21)

guence of the ground-state—first-excited-state energy level
crossing, discussed earlier in this subsection, which occurs
for gugB/Js=3/2.

In Fig. 7 we show the dependence of the spin-correlation
function of the classicaN=3 Heisenberg ring with AFM
exchange on the variableyT/J for several values oftB/J.

We have already remarked thaf§1~§2>= 1 at T=0 if
uB/J=3. The new features are, first, the diverging slope of
the curve corresponding t@B/J=3 in the limitkgT/J—0,
and second, the merging of the family of curves for suffi-
ciently large values okgT/J.

In Fig. 8 we display, for this same quantum system, the
spin-correlation function versugT/Jg for several values of
gugB/Js. Note the qualitative difference in the low-
temperature behavior according to whetheszB/Jg is less
than or exceeds the value 3/2. For the special case

and is easily evaluated by numerical integration methods. ligugB/Js=3/2 the correlation function can be shown to be

Fig. 5 we provide our results for the spin-correlation function
as a function ofuB/J for several choices dgT/J for AFM
exchange. The details of the curve corresponding toTthe

=0 case have been discussed in the previous subsection, and

in particular we recall that foB=0 the three spins can be
pictured as lying in a common plane with an angle of 120°
between successive spins. Fok@B/J<3 the correlation
function is given by Eq(15), whereas the spins are collinear

if uB/J=3. By contrast, for any nonzero temperature the

spins become collinear only asymptotically in the laRe-
limit. We also note that the value q@iB/J for which the

three spins may be pictured as mutually orthogonal, i.e.

when (S,;-S,) vanishes, increases monotonically with in-
creasing temperature.

For the correspondin§l=3 spin-1/2 Heisenberg model
with  AFM exchange, one can readily derive the spin-
correlation function, as a function @ugB/Jg, and it is
shown in Fig. 6. For this system the common high-field limit
of the family of curves is of course given by1/4. Note that
for the casel =0 the correlation function is piecewise con-

given by

<S 1-82>

gugBA,

FIG. 6. Nearest-neighbor spin-correlation function for a ring of
N=3 Heisenberg spingindividual spinsS=1/2) with AFM ex-
change as a function of magnetic field. The curves are labeled by
the numerical value of the dimensionless paramktdi/ Jg.
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FIG. 9. Reduced zero-field susceptibility per spiT) [see Eq.
(6)] for equilateral triangle, square, and tetrahedron arrays of clas-
FIG. 7. Nearest-neighbor spin-correlation function for a ring of Sical Heisenberg spins, as a function of the dimensionless parameter
N=3 classical Heisenberg spins with AFM exchange as a functiorks T/|J| for FM and AFM exchange interaction.
of temperature. The curves are labeled by the numerical value of the
dimensionless parametgrB/J. For low temperatures, & is in-  Of particular physical interest in the zero-field limit is the

creased the frustrated spin ordering gradually gives way to alignp_n spin correlation functio(lél- S,) which can be obtained

kyTH

ment of the spins parallel to the magnetic field. from Eq.(19) and forN=3 we find the result
3 3 1 1
B < a 9
(Sr-%)=7 3+exp—3BJg)’ 2 11 L exp(—E - exp(—;a)

and in particular this function approaches the value (S1-S)=— EJF 2a .
—1/(12) in the low-temperature limit. The features shown in 2ma 3 \/E _erl 3 \ﬁ
Fig. 8 are all readily explained in terms of the ground-state— er er

first-excited state level crossing. (24)

4. B=0 This expression can be used for either sigrapf.e., either
AFM or FM coupling. We first consider the case of AFM
coupling between n-n spins. In the low-temperature regime
(a>1), utilizing Eq. (A5) we find

In this subsection we show that in the zero-field limit we
can obtain results in closed form for the spin-correlation

function andy(T). We note that in this limit §—0) the
factor sinhbS/(bS in the integrand of Eq11) equals unity,

/ ; - 1 kgT
and one readily obtains the result (S-S (T—0)—— §+ o7 (25)
s (3|1 |27 : o - :
Zs(a,b=0)=(4m)°ex Ea s2aVa Besides providing a description of the frustrated spin order-

i

ing in the low-temperature limit, Eq25) gives quantitative
a information regarding the leading corrections for low tem-
—erf<3 E) (23

X peratures. In the case of FM coupling, the behavior of

(S,-S,) is very different in the low-temperature regime, as a
result of the fact that EqQA6) applies. The major conlusion
is that, instead of Eq.25), we obtain the result

L kT
<S1'32>(TH0)H1—W- (26)

In particular, we verify the expected behavior for FM ex-
change interaction, namely, that in the low-temperature limit
the three spins are aligned parallel to each other.

Note that forN=3 the relation of Eq(7) for the reduced

03¢ 1 2 3 4 zero-field susceptibility per spin may be written R&T)

s =1+2(S;-S,). We may then utilize E(24) so as to obtain
FIG. 8. Nearest-neighbor spin-correlation function for a ring of the explicit functional dependence afT) on T and the

N=23 Heisenberg spingindividual spinsS=1/2) with AFM ex-  resultis displayed in Fig. 9 for both AFM and FM exchange

change as a function of temperature. The curves are labeled by ttigteraction. For very low temperatures one may use Egs.
numerical value of the dimensionless paramegiggB/Js. (24), (25), and(26) to obtain
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- kgT whereS=|S,+S,+S;+S,| and whereD(S) is given b
X(T—»O)a%, 27 |S1+S,+ S5+ Sy (Sisg y
in the AFM case, whereas %(8—38), 0<S<?
- AksT
x(T—0)—3~— (28 D(S)= (30

_— S
—(4—9)2, 2<S<4
319l 5(4=9%

in the FM case. The latter formula is a special case of the

general result, self-evident from E), that y(T—0)—N
for a ring with N spins interacting with n-n FM exchange
interaction.

0, S>4.

By contrast to what we found for the three-spin ring, both

: D(S) and its first derivative are continuous at the merger
It should be noted that for the correspondihguantum oints S=2 and 4. Although in practice it is usually more

Heisenberg system (1f three spins-1/2 one finds that for AF’\gonvenient to work with the expression provided in E29),
exchange interactiory(T)=(1/4)[3—2tanh(BJ44)], and  gne can find an explicit formula fcZ(a,b) in closed form.
this quantity decreases monotonically from the value 3/4 forrpe equilibrium magnetic mome(M,)/ . versusB andT is
T=2° to the finite nonzero value, 1/4, in the low-temperaturereadily obtained by numerical integration of the integrals re-
limit, contrary to the result of Eq(27). That is, xo(T) di-  syiting from differentiating the logarithm of Eq29) with
verges proportionally to T/ for the quantum system with respect td. We have also obtaine((fslSz) as a function of
% andT. We do not provide any figures for this system, with
the exception of Fig. 9, as they are very similar to those
~ o~ given in Sec. Il B for theN=3 ring.
=0 is given by(S; - S,)= — (1/4)tanh(PIJ4). In the zero-field limit p—0) limit Eq. (29) is readily
evaluated and we obtain

evident in Fig. 3. A closely related result is that the n-n
spin-correlation function for this quantum system wHgn

C. Tetrahedron

In this subsection we list the major formulas for the tet- exp(2a)

— — 4 [

rahedron system where a single classical spin occupies each Z(a,b=0)=(4m) 8a2 {v8ma[2 erf V2a)
vertex. Each spin interacts with its three neighbors via the
same isotropic Heisenberg exchange as well as with a uni- —erf(\/8a)]+4 exp(—2a) — exp(—8a) — 3}.
form B field. Following the method described in Sec. Il A we
find that (3D

. 4 a_,\|sinh(bs) Since the four spins are completely equivalent, the zero-field
Z(a,b)=(4m)" exp(2a) jo dSD(S)exp — ES bs n-n spin-correlation functio(1§1- §2) is easily calculated us-

(29 ing the relation(S; - S,)=((S?)—4)/12 and we find that

<§ 9>__£+i+i 4 exg—2a)— exp—8a)—3 (32
152" "3 3 1 J8ma[2 erf(\2a) —erf(\/8a)]+ 4 exg —2a) — exp(—8a)— 3

This expression is valid for either sign afbut its behavior  short, the spins exhibit frustration as for thie=3 ring and
in the zero-temperature limit is very different for the two qualitatively in the same manner.

cases. Concentrating our attention on the AFM case we find

that in the zero-temperature limit

D. Dimer
(S;-SHT—0)—— 1 + kB_T (33 For the sake of completeness we summarize a few results
3 4 for the ring of N=2 spins(dimerg whose interaction is de-

We observe that af=0 the four AFM coupled spins in the scribed by the Hamiltoniahl ,(B,J) that is specifically writ-
tetrahedron can be pictured as oriented in such a way as fgn as

give zero total spin and with an angle equal to Cos

(—1/3) between any pair of spins. The reduced zero-field . L.

susceptibility can be computed for any temperature using the Ho(B,J)=J"S;- S~ uB- (S, +S,), (34)
relation y(T)=1+3(S,-S,) as well as Eq(32). We find

that in the low-temperature limg(T—0)—3kgT/(4J) for  whereJ’ =2J. Again following the method of Sec. I1 B, we
AFM coupling, while for FM exchange((T—0)—4. In  find that the partition function is given by
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Z,(a,b)=(4m)?exp2 fzdS S 53 SihbS) il
2(a,b)=(4m)" exp(2a) . D(S)exp(—aS)—p=—, ) &Rzl [ da—b
(35) Zz(a,b)=(47T) exp(Za)T E li \/E
andD,(S) is given by
da+b b
S/2, 0<S<2 —erf| —— +2er<<—> . (37)
4a 4a
D,(S)=1 S/4, S=2 (36) Vaa Vaa
0, S>2.
Evaluating Eq.(35) one finds the following relatively com- The total equilibrium magnetic mome¢it1,) induced by the
pact result magnetic field is given by
|
) bz) (4a—b)? (4a+b)?
Mp_b 1 1 “PHTaa) " e | a8
nw o 2a b Jza ) ( b )+ 4a—b f4a+b
er er —er
V4a J4a V4a
|
Since the zero-field partition function is the same for both 4 a sinh(bS)
AFM and FM cases and is given by Z4(a,b)=(477)4f0 dSD4(S,a)exp< - 552 ~bs
Z,(a,b=0)=(4  SINN28) 39 “
2(8,6=0)=(4m) 2a ' (39 whereD,(S,a) is the double integral, given, for0S<4, by

the zero-field spin correlation function is given k8, - S,) S a ,
= —L(2a), whereL (x) = coth)—1/x is the Langevin func- D4(S,a)= gj fR(S)dSadSOex 5(Sat+Sh)
tion. In the low-temperature regime one finds that

. (42

o where the integration is to be performed over the polygonal
(S1-S)(T—0)—+1 region labeledR(S), which is shown in Fig. 10. It is easily

for AEM and EM h fively. The reduced shown that this region is the locus of all points that fulfill the
or an exchange, respectively. the reduce Zero_pair of inequalities|§a—§b|<S<Sa+Sb, for values 0

field susceptibility follows directly asy(T)=1+(S;-S,) =S.,S,=2. It should be noted thaR(S) is a triangular

=1-L(2a) for both the AFM and FM cases. region if 2<S<4. The functionD 4(S,a) is identically zero
for S=4. Also note thaD4(S,a) is a function of two inde-
. SQUARE pendent variables, in contrast to tNe=3 ring system, where

. . the partition function was expressiljleee Eqs(10)—(12)] in
A. Partition function terms of a functionD;(S) of a single variable. We have
Evaluation of the partition function, E¢3), by analytical
methods constitutes a serious challenge for a square array of
spins that interact via n-n exchange. However, we have

found that this calculation does become tractable upon intro-
ducing the pair of auxiliary variableS,=S;+S;, $,=S,

+ §4 as well as the total spin vect&= §a+ §b In terms of
these variables the Hamiltoniaih,(B,J) may be written as

J .
Ha(B,))= (S~ S~ )~uB-S. (40)

Sa

Following the same approach as in Sec. Il, we introduce each
of these three auxiliary vectors by multiplying the integrand
of Eq. (3) by an appropiate three-dimensional Dir&dunc- FIG. 10. For the evaluation of the functi@y(S,a) of Eq.(42),
tion and then integrate over that vector. Once again an int&he domain of integratioR(S) consists of the interior of the poly-
gral representation akin to E() is introduced for each of gon ABCDE for the interval 6sS<2 and the interior of the tri-
the ¢ functions. One readily finds the following formula for angle A’BCDE’ for the interval 2<S<4. For S=4, D,(S,a) is
the partition function, identically zero.

S 1 2
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found that it is possible to express the functibn(S,a) 1 Y,(a)

explicitly in terms of confluent hypergeometric functions of Xo(T)= EMZ Za@b=0) (46)

assorted variables. The expression is somewhat lengthy and e

it is available from the authors. One can thus easily obtairEvaluation ofZ,(a,b=0) is quite straightforward with the

numerical values oD,(S,a) of arbitrarily high accuracy. result being

Numerical evaluation of the one-dimensional integral in Eq.

(41) thus reduces to being a very modest and straightforward F(4a)

task. One can generate all thermodynamic quantities of in- Z4,(a,b=0)=(4m)* 7 47

terest by differentiating the logarithm of the integral in Eq. 4a

.(41) with respect to the variablesandb, thereby producing where the functiolf F(z) is defined as

integrals of a similar form, and thus calculable by numerical

methods to any desired level of precision. 1 coshuz)—1
F(z)=f0duf=F(—z). (48

B.T=0 K

At T=0 K and for AFM exchange interaction the energy This function is analytic in the entire finite complexplane
expression, Eq40), is minimized for giverB whenS,=2,  and thus its Taylor expansion in powersohas an infinite
S,=2, and wherS is directed parallel t& and with mag- radius of convergence. The Taylor expansion follows imme-
nitude S= wB/J. This linear growth ofS with increasings  diately upon substituting that of the function cas)(in Eg.
applies for the regimB<B,, whereB.=4J/ . By contrast, (48) and integrating term by term, with the result being
we haveS=4 for B>B,. For the regiméB<B, the explicit - o
form of the minimum energy is given biy(B,J)=—4J Fo=3 z
—(uB)?/(2J), and thus the equilibrium spin-correlation =1 (2n)(2n)!°
function is given by

(49

Also important for the present study are the leading two
S o 1 9Ey(B,J) 1[uB\? terms of the asymptotic expansion Bfz) for large real
=2 =—1l+g positive or negative values af given by

(S%)=77733 8
1 1
+ H—’_O T2
In particular, in the zero-field limit each spin can be pictured 2l
as being antiparallel with respect to each of its two neigh-g can easily be confirmed by starting from E48) and
bors. As the field is applied, the spin-correlation functionjntegrating several times by parts.
increases quadratically witB and reaches the value unity  giarting from the above result f@,(a,b=0) and using

(spins are collinearas B is increased to or is allowed to gq (19), we find that the zero-field n-n spin-correlation func-
exceed the valud.. As explained, this system does not ijopy s given by

exhibit frustration for FM exchange and for= 0 K the spins
are collinear for any value d. o 1
(S1-S)= 2a

J

(T=0 K, B<B,). (43 " 1exp2)

2 1 \ (50

coshda)—1

1= 2F(4a)

(51)

C. General T, weak magnetic fields

In this subsection we give the formulas for the zero-field 0 . .
susceptibility and the n-n as well as the next-nearest-
neighbor(n-n-n) spin-correlation functions for arbitrary tem-
peratures in the weak magnetic field limit. The derivation of
these quantities requires the functional form ©f(a,b)
through second order in the magnetic field. We will not
present any specific results for magnetic fields of arbitrary
strength because the mathematical analysis becomes quite
complex and the results provide little new insight.

Referring back to Eqg.(41) and expanding the field-
dependent term sinb§/(bS to second order i, one has

<8,°S>/[S(5+1)]

2 3
Z4(a,b)=2Z4(a,b=0)+b?Y,(a)+O(b%), (44) k, T/

where FIG. 11. Normalized nearest-neighbor spin-correlation function
for a ring of N=4 quantum Heisenberg spir&=1/2,1,3/2,2,5/2
1 4 a with AFM exchange interaction as a function kfT/J where J
Yy(a)= 6(477)4f dSSD(S, a)ex;{ - 552) . (45  =g(S+1)Js for zero magnetic field. The dashed curve is the result
0 for the classical Heisenberg model. At zero temperature the normal-

It thus follows that the zero-field susceptibility per spin isized spin-correlation function(S;-S,)/[S(S+1)] is given by
given by —(25+1)/(2S+2).
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Note that(S;-S,) is an odd function ofa, so that for the from [see Eq. (7)] the relation y(T)=1+2(S;-S,)+
same value ofJ| and for the same temperature the value of<§l. §3> along with Eqgs.(46) and (51).

this quantity for FM exchange has the opposite sign of the
corresponding quantity for AFM exchange.

It is of interest to compare this result with the correspond-
ing N=4 quantum Heisenberg ring of sp#ions with n-n In this paper we have studied in detail the properties of
AFM exchange interactiods>0. In Fig. 11 we show the several classical Heisenberg magnetic systems consisting of
2 small numbers of spins coupled by n-n isotropic exchange
interaction and that interact with a uniform external magnetic
éield. By using a method that introduces auxiliary spin vari-
g}bles into the defining expression for the partition function,
Wwe obtained the exact analytical formulas for the magnetic
moment induced by the external magnetic field for arbitrary
temperaturdi.e., the complete magnetic equation of state
as well as the field and temperature dependence of the n-n

o 3 KkeT spin—corrglation fgnction. The systems considered were small
(S1-SHT—0)— =+ ( 1—— _) (52) arrays of interacting spins, and specifically dimer, equilateral
4 | triangle, square, and regular tetrahedron geometries. For all
of these systems we succeeded in expressing the partition
function, the total magnetic moment, and the spin-correlation
function as one-dimensional integrals, a representation that is
particularly convenient for the purpose of extracting highly
accurate numerical values, figures, etc. The special cases of
5 3 the equilateral triangle and the regular tetrahedron exhibit
(S;-SNT—0)—— = ——. (53)  magnetic frustration for AFM exchange interaction, and we
3 kgT were able to obtain a complete description of the evolution
of the frustration as a function of temperature and field. In
the special case of the equilateral triangle geometry, we gave
detailed comparisons between our results for classical spins
1 and the corresponding quantum system of individual spins
Y, (a)= §(477)“G(4a), (54 S=1/2,1,32... . Thereader can correctly anticipate that as
the individual spin quantum numbé& increases, the rapid
changes at low temperatures of magnetic moment versus ap-
plied magnetic field rapidly wash out. The rapid changes that
4 > occur for the case o6=1/2 are a direct consequence of
—F(X)+ —[1— exp(—X)] ground-state level crossings. For increasBifpe eigenvalue
X X spectrum proliferates, becoming continous in the lage
limit, and the magnetic moment is a slowly varying function
of applied field.

Despite the smallness of the systems we have considered,
this study is timely for, as discussed in the Introduction,
Substitution of Egs(54) and (55 into Eq. (46) provides there is considerable experimental activity at present devoted
xo(T). The result that one obtains in the high-temperaturgo the synthesis and physical analysis of large organic mol-
limit reduces to Curie’s law. For very low temperatures theecules in which are embedded a very small number of para-
limiting form of the reduced susceptibility x(T) magnetilc ionsl, for di:ners and arra)zjs with Ithe georr?eéries of
— -0 i i = an equilateral triangle, square, and regular tetrahedron. A
—(3/2)Y4(a)/Z4(a,b—O') 'S glvgn be(T_)Oz_)kBT/(ZJ) very common choice'® of paramagnetic ion is Bé which
for AFM exchange interactions, and by(T—0)—4

... has spinS=5/2 and for which the present results are directly
._5kBT/(2.|J|). for FM gxchange. The reduced susceptibility applicable, except for sufficiently low temperatures. There
is shown in Fig. 9 for rings wittN=3,4 and for the tetrahe-

. re even indicatiortS that a classical Heisenberg model pro-
dron. We have already commented that in the case of I:'\Eides a very satisfactory description of a ring of eight Cr

eXChange the Iovx_/-temperature limit S.hOU|d equal the m.’mb%ns, (ion spin 3/2), again except at low temperatures. To
of spins of the given system. What is perhaps surprising I%ompare theory with the results of experimental NMR and
that as the temperature is increased, already§dv|J|~1 neutron-scattering studies of these molecular magnets it will

the results for the two ring systems have merged. _For th'ﬁe necessary to utilize expressions for the general space-time
temperature and above, the correlations between spins refle[% : ; ;

the fact that each spin of the ring interacts with only twoy,
nearegt-nelghbors. For thg tetrahedron array each spin InteHe present results provide some of the vital ingredients for
acts with three nearest-neighbors and this is reflected in thﬁ"lose derivations

larger value ofy(T). Finally, we note that the n-n-n spin-  what are the prospects for succeeding in generalizing the

correlation function (§1- §3) follows directly  present work to larger arrays of interacting Heisenberg spins,

IV. SUMMARY

n-n spin correlation functiokS; - S,)/[ S(S+1)] as a func-
tion of kgT/J, whereJ=S(S+1)Jg for the quantum spin
valuesS=1/2,1,3/2,2, and 5/2. Once again we observe th
rapid convergence of quantum results to that of the classic
Heisenberg model for increasing valuesSf

Using Eq.(50) it follows that for very low temperatures
(Ja]>1) we have

to leading order in the small quantity;T/|J|, where the
upper (lower) sign applies to the case of FNAFM) ex-
change. Finally, using Eq(49) the leading behavior of

(S,-S,) for the high-temperature regime is given by

The evaluation of the functioiY,(a) is very tedious. We
find as our final result

where the new functio(x) is given by

8
G(X) = ;

—%[cosf{x)—l]—ll. (55
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including more complicated geometries? The trick of intro-any complex variable this function is defined by
ducing two new auxiliary spin vectors, as we did in Sec. llI

for the ring of four spins, does not seem to be open to gen- 2 [z )

eralization for rings with five or more spins and n-n interac- erf(z)= \/——f dte™". (A1)
tions. However, for specialized geometries and interactions, 70

generalizations of the present methods are indeed possibigote that erf-z)= —erf(z) and its Taylor expansion,
One example is that of a tetrahedron where three of the four

spins interact with each other with one common value of the (= 1)ng2n+t
coupling constant that in turn differs from that coupling the erf(z)= — > I IR (A2)
three spins to the fourth spin. The complex known as Fe4 is V=0 n'(2n+1)

well described® by such a model. For AFM exchange it
turns out that the magnetic frustration of this system is a ver
intricate function of temperature, magnetic field, and the ra-

}(;onverges for all finite. The relation

tio of the two coupling constant8.A second example is that erf(z) = EM 13 _Zz) _ Eexp( — M ( 1§ Zz)
of an arbitrary numbeN of spins that interact with all others Jm \2'2° J 27 )
via a common isotropic exchange constant. This is the iso- (A3)

tropic classical Heisenberg analogue of the well-known
Kittel-Shore modef* which involves interacting Ising spins. Proves to be very helpful, where

A third example is that of an array of six spins positioned at - N
the vertices of a regular octahedron. It turns®6tibat this M(ab,z)=S (@)nZ (Ad)
system also exhibits very interesting frustration effects. T n=o (b)yn!’

Whereas in the past these and other small systems might

have been considered as appropriate “recreational” projectgenotes the confluent hypergeometric functisee Chap. 13
for mathematical physicists, because of the dramatic rece®f Ref. 18, (a)o=1, and @),=a(a+1)(@a+2)---(a+n
advances in synthesis chemistry these models are currentlyl) for n=1. With the aid of Eq(A3), one can establish

of considerable experimental importance. the following two asymptotic formulas that are of impor-
tance in the main text for investigating the low-temperature
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APPENDIX A f(ix) | equZ) 1+ +0 ! (A6)

erf(ix)~ — — —1,
NE 2x2 x*

For convenience we list here several formulas for the er-
ror function erf@) that are germane to the present work. Forwherei=/—1.
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