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Localization of phonons in a two-component superlattice with random-thickness layers
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A two-component superlattice film of\2 layers is considered and a dimensionally quantized spectrum of
phonons is found. The problem of localization of phonons in the superlattice with random-thickness layers is
investigated. The Landauer resistance of the transport of phonons and the correlation length is calculated
exactly. For short range disorder the numerical analyses shows that, at fregareiicythere is a delocalized
state and the correlation length indexs equal to 2[S0163-182@09)05233-9

I. INTRODUCTION continuous interest to physicists after Anderson’s remarkable
article® Originally Mott and Twos#& conjectured that all

The interest in superlattice structure in condensed mattestates are localized in one-dimensioftHD) systems for any
physics is based on the possibility of manipulation of thedegree of disorder. It was argiédhat in the case of full
physical properties of devices by changing of characteristic@ndomness all states are localized in dimensions equal to or
lattice parameters. less than 2. However, recent investigations stiow that

The growth techniques can be used to prepare Specimegglocalized states can appear in the case of correlated disor-
consisting of alternating layers of thickne$sof constituent der.

A and thickness, of constituenB. Samples can be prepared [N the early 1970s Landaurproposed that the dc con-
so thatd; andd, have any value from two or three atomic ductanceG of noninteractingspinless electrons in a disor-
spacings up to one hundred atomic spacings. The enfities dered medium in strictly one dimension is given by

and B can be materials with different acoustic, electronic,

and magnetic properties and one can consider semiconduc- e2 |72

tor, metal, insulator, and superconductor constituents, at- =57 5

tempting to change values of expectable physical variables in mh 1~
a desirable regime.

The technical advance in fabrication of superlattices mowhere|7| is the transmission amplitude. This expression is
tivated an intensive Study of various physica| properties Oﬁttractive for at least two reasons. First, as it was demon-
these systems, especially electronic and vibration spectrgtrated in Ref. 33, the disorder here can be taken into account
optical and magnetic properties, etc. The calculafidssow  exactly. Second, the dimensionless expression#(2”)G
that the spectrum of quasiperiodic systems are intermedia@f conductance is assumed to be the only relevant variable in
between periodic and random ones. a scaling theory treatment of the localization probfm.

Along with electronic properties, study of elastic waves in  In Refs. 32 and 34 the dimensionless conductance was
bulk superlattices has been a subject of interest in the pagPtained by dividing the currertof electrons by the chemi-
decades A one-dimensional theory of acoustic vibrations cal potential difference\ u between the left and right sides
in layered material was given long ago by RyfG\Elastic ~ of the sample
waves have also been investigated in semi-infinite
superlatticed®-1°

The consideration of the superlattice films instead of the
massive ones provides additional opportunities for control-
ling the elastic and electronic parameters of the superlattices.

A sufficiently complete experimental knowledge about thewhich can be expressed as the ratio of transmitted intensity
oscillator spectra of binary laminated semiconductor systemef electrons over reflected ones. The differences between
is available today’ Numerous and generally mut- Landauer conductance and the Kubo formula were analyzed
ually compatible results about the frequencies of long-in Ref. 35.

wave phonons in InAs-GaSh, Ge-GaAs are presented in the It is easy to see that we can define the Landauer conduc-
literature?* tance also for phonons, whetée represents the phonons

Together with strongly periodic superlattices the effectsnumber current, while the difference of chemical potential is
of localization and tunneling of the electrons were studied incaused by the variation of density of the matter in the left
short range disorder superlatticés® and right sides of the bunch of layers. The acoustic phonons

The problem of localization of electrons in random poten-current, or in other words the sound waves, can be created by
tial and hopping parameters in low dimensional spaces are dhe deformation of the density of the sample.

()
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The transport of phonons within the Landauer approact vy ol 4
was considered also in Ref. 36, where the quantization o e i BRI
thermal conductance was predicted.

The aim of the present article is twofold. First we found
the spectrum of transversal phonons in two-component st ‘ ’ ‘ | ‘ X
perlattice film with boundaries with an arbitrary finite num- ~z
ber of slices. The results, obtained here, are also applicable . .
for longitudinal waves, which moves in the transversal to the /G- 1. The two-component superlattice in the coordinate
layers direction. Second, we consider random distribution ofyStem:
the thicknesses of the superlattice compounds and calculate
the Landauer resistart%e(R/T, the inverse of the conduc-  In formulas(5) 2n (correspondingly 2—1) numerates
tance of the acoustic phonons exactly. The continuousthe layers o8 (or A) type andcy(cy,) are the velocities of
model is used, in which the layers are considered as macrgound in those materials.

scopic elastic bodies. We should now impose the boundary conditions on the
displacementsu,, and u,,_;. Let us consider now free
Il. BOUNDARY CONDITIONS IN THE SUPERLATTICE boundaries of the film, which means the use of Neumann
FILM, TRANSFER MATRIX, AND THE SPECTRUM boundary conditions

We follow here the notations and derivations of the book

in Ref. 37. U1(Xo) = Usn(Xon) =0, (7)
Let us consider superlattice, elementary cells which con-

SiSt Of tWO |ayerS Of VariOUS materia& and B W|th the Wherexo andXZN are the boundary Coordinatesl

thicknesdd, ,d, and modulus of rigidityw, , 1, (Fig. 1). The On the boundary; of the A andB layers one should use
number of pairs in the film if\. o the continuity condition for the displacements

We consider transversal elastic wayelv u=0, u(x) is
the vector of elastic displacement of the matter at the space
point x] propagating inside a superlattice in arbitrary direc- Uon(Xon—1)=Uzn-1(Xzn-1), N=12,...N (8
tion. It can be shown that all results are reproducible for
longitudinal waves if they propagate in the perpendicular toas well as for the forces
layers direction.

Let us choose a coordinate system such that waves are
propagating in thex,y) plane[x represents perpendicular to Fi=ojds, ©)
layers direction, while y,z) plane is parallel to the layers
pland, with the wave vectorsk;,d;,0) and k,,q;,0) inthe  whereo;, is the stress tensdsee Ref. 3¥.
A andB materials correspondingly. Without loss of general-  |n Eq.(9) ds,=n,ds s the normal vector to the boundary
ity one can takei,=u,=0 andu,=u;, wherei numerates and equal to a small area in modulo. Hence we have
the layers.

The wave equation for transversal waves is

TN= Th Nk (10
P 2au =0 3
a2 On the boundaries of the film the forces are equal to zero
where the velocity of sound; is defined by the density of
matterp and modulus of rigidityu as oy n=0. (11
cf:ﬁ, (4) By use of the expression far;, (see Ref. 3yand from the
p boundary condition$7),(8) and(10),(11) one can easily ob-

The solutions of this wave equation with frequeney tain the following set of equations for the displacemants

which fulfills transversality condition div=0, is the super-
position of forward- and backward-traveling waves Usn(Xon) =U7(Xg) =0,

Uzn—1(X,Y) = (Con— 1€ 1%+ Cpp_ g K1)l (W0,
! !
MaUon(Xon—1) = palgn—1(Xon—1),

Upn(X,Y) = (Cone K2+ Cpne~keX)ellay=w  n=1 . N,
) Upn(Xon—1) =Upn_1(Xpn_1), N=1,2,...N. (12
where fork; ,i=1,2 we have amaent 2n-iifentt
w2 These equations transform into the following equations for
ki2+ q2:—2. (6) the coefficients of the forward- and backward-traveling
Cit waves:



10 116 DAVID G. SEDRAKYAN AND ARA G. SEDRAKYAN PRB 60

copelkalditdan o e=ika(drrdan_q

eikz[(d1+d2)(nfl)+d1 —ikp[din+dy(n—1)]

M2KoCopn - oKoCone
:M1k1C2n71eik1[d1n+d2(n—1)]_Mlklgsz1e—ikl[dln+d2(n—1)]Czneik2[dln+d2(n—1)]+Ezne—ik2[dln+d2(n—1)]

=y, jelaldintda =Dl e-ikyldin+dy(n=1)] (13)

Cl—C1=0.

We will solve this set of linear equations by use of the transfer matrix method.
Let us define now

Con
boan=|— |- (14)
Con
Then half of the set of equatiori$4) can be reformulated as follows:
Aonthon=Bon_ 1201, (15
with
glkedi+(n=1)dy)  _ g=iky(ndy+(n—1)d)
A2n:<eik2(ndl+(n—l)dz) e~ ika(ndy +(n-1)dy) ) (16)
and
'“1_kleik1(nd1+(n—1)d2) _ Ml_he—ikl(ndﬁ(n—l)dz)
Bon_1=| m2K2 ' HaKo . 17
gika(ndi+(1-1)dy)  giky(@dyn+ (n—1)dy)
Equation(15) can be rewritten as
Yan=Asn Ban_ 1201 (18)
Similarly, the other half of the equatioris3) appears as
Yan-1=Azn-1Bon—2¥an-2, (19
with
eikl((n—l)dl+(n—1)d2), — e~ ika((n=1)d; +(n—1)dp)
Agn_1= gik1((n—1)d; +(n—1)dy) e~ iki(n—1)d;+(n—1)dy) (20
and
B2K2 orn-vayrmenag R ik 10+ (- 1y
By o= H1Ki maky . (21

eikz[(n—l)d1+(n—l)d2]' e—ikz[(n—l)dl+(n—l)d2]
Recursion equationd8) and(19) allow us to connecty,, with ¢, in the following way:

Yon=AonBon_ 1Az 1Bon_o- - A "By (22)

Let us now define the transfer matrices as

1Ky 21

1.
cosk,;d; i——sink;d
T1=BZH_1A2_nl_1= HoKy T ks t

i sink;d; cosk,d;

(23

and



PRB 60 LOCALIZATION OF PHONONS IN A TWO-COMPONEN . . . 10 117

k k
1 wcoskzdz iwsinkzdz
T,=Bon Ayt=| miks Haky (29
i sink,d, cosk,d,
Then Eq.(22) becomes
Yon=Bon T"Ayy=U s, (25
where
cosk,d; cosk,d, i cosk,d; sink,d,
maky . ik
- sink,d; sink,d,, + sink,d, cosk,d
M2k2 141 242 /-L2k2 141 242
T=T,T,= Kk (26)
i sink,d; cosk,d, - “Z—kzsin kyd; sink,d,
MKy
ik
+ a lcoskldlsinkzd2 +cosk,d, cosk,d,
HoKy
The first equation of Eq13) for n=N can be written as
Yonban=0, 27
where
Yoy = (elkeNdENdy)  _ =ikp(Ndy +Ndp)) (28)
For another boundary of the superlattice film, wherel, we have
C1=El=c, (29)
which means that
! 30
Y1=c 1) (30

From Egs.(25) and(27) we can obtain the following equation for the spectrum of transversal phonons in the superlattice film
of 2N layers:

T CTV]=0, (31)
where
0 0

Cs= (All//l)B(ZZNB;h})a: 2Mlkl
MoKz

(32)

To proceed further we need to calculate tNe-1 degree of the transfer matrix, which can be achieved simply by
diagonalizingT. Obviously

- AN, 0
TN=W o M W, (33

where\ and\ are eigenvalues of, andW is the diagonalizing matrix. One easily can find the eigenvalues or the transfer
matrix T as

i 1 paky  poks
)\=e+'®=<cosk d, cosk,d ——(
o 22 toKy  pakg

5 )sinkldl sinkzdz)

1( ik k 2
i \/1—(cosk1d1cosk2d2—§<zlk1+szz)sinkldlsinkzdz) , (34)
2R2 1”1

where
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1 piky article by Erdos and Hernddhthe problem of the transport
cos® =cosk;d; COSkzdz—E( of particles in the one-dimensional space for a wide class of
disorders was considered in the transfer matrix approach and
_ _ general results were obtained. It was proved that transfer
sink;d; sinkad;. (35 matrix of the one-dimensional problem belongs3b(2,R)
group and randomness can be exactly taken into account for
Further, a simple calculations shows that BB1) reduces  such quantities as Landauer resistatfce.

Ko

| Mo
m1Kq

to Some exact results for the Kronig-Penney model in
N the case of nondiagonal disorder by other methods were
Im\~=0, (36)  obtained in Ref. 38.

It is easy to see from the formuld86) for the transfer

which means that ) i
matrix T that here we also have a representative of the

Q SL(2,R) group. One can make a link between transfer ma-
O=my Q=1...N (37 trices of the Kronig-Penney model and phonons in the super-
lattice.
Finally we obtain the following equation for the spectrum of  |n this section we will consider transversal phonons
transversal phonons: propagating in the perpendicular to layers direction, te.,
1 K K =0. Following Refs. 32, 34, and 33 let us define dimension-
coskldlcoskzdz——<'ul 1, M2 Z)Sinkldlsinkzdz Ie_ss resistgnce as a ratio of reflectic_m to transmission coeffi-
2\ poky  piky cients, which, by use of formulé25), is equal to
Q 1 | 2
=+ — — 7.|
_COS’7TN, (38) p:W:U12UE’[‘2:U%(U+)§1 (40)
where 1. . :
whereU; is the 1,2 matrix element of the evolution mattix
2
k=2 —q2 (39) U=Bo(T,T) A, (4D
C?

' It is clear from this definition that the Landauer resistance
We see that this equation is coinciding with the equation forcan be measured as a ratio of reflection from $ielayers
the spectrum of phonons in the bdfic but the momentums intensity of acoustic waves over transmitted intensity:
perpendicular to the layers direction are quantized due to
dimensional restriction of the film. _ | refiected (42)

I transmitted.
IIl. THE LANDAUER RESISTANCE OF PHONONS IN
THE SUPERLATTICE WITH RANDOM DISTRIBUTION
OF THICKNESSES OF THE LAYERS

We are going to consider random distribution of thick-
nesses of the layers and take the average of Landauer resis-
tance. For further convenience we will normaliZg(T,)

The problem of elastic waves in superlattice is essentiallyransfer matrices on order to have a unit determinant. It will
one dimensional. One-dimensional problems are especiallyot change Eq41) because the normalization factors fior
attractive because of their possible exact integrability. In theand T, cancel each other. Hence we will consider

Mzkz 12 . Mzkz 12 .
(Mlkl) COSKp(Xpi—Xpj—1) | 11Ky SiNKa(Xai —Xi—1)

Tai= . Mlkl 1/2. ,U~1k1 V2 (43)
[ 1Ky Sinky(Xgi —Xai—1) s COSK(Xo; — Xzi - 1)

for the even slices. The similar expression for odd sliceghat T; matrices are spinor representations of 8ig2,R);

T, -1 can be found simply by permuting variablesind .~ hence the direct product of two 1/2 representations can be

for 1 and 2. expanded as a sum of scalar and vector representations. In
Now let us analyze the direct product of the evolutionthe language of the group elemefits SL(2,R) this expan-

matrices, the (¢ ®U+)§€ matrix element which defines Lan- sion looks like

dauer resistance. For this purpose we should calculate first

the simplest constituent block of that expression, namely the

direct produc;® T, of U;’s. In the article in Ref. 33 it was

demonstrated that this direct product can be represented as

16 (3X3)=4x4 matrix. It happened because of the factwhere

;1

’ 1 !
(T (TEDE =5 8500, = 5 (a5 A (05, (44
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1 N
v utT—1 v 45 II A
A“i =—|I’(|ia' i (T) ( ) <i=1 A2i—1 2i>

is the spin-one part of the direct product. But for Landauer
resistance we need to calculd@e T*. It is easy to see from
the formula(43) that

:fo dys---dyong(Y1) - 9(Yan)

N

2N
6 j§=:1 Yi— L) I[Il Agi—1(Yai—1)A2i(Yai)

o T o =T, (46)
therefore, by multiplying the expressi@¢a4) in the left and = fx dpe PE(A (P A(PINY, (51)
right by o4 we will have m
where
@ +\8’ 1 @ B’ 1 B’ )2% v o
(T) (T g 25(01)ﬁ(01)a,—5(0“01)a/Ai (o¥o1)g- o
(47) (A1 AP))= fo dyePg(y)A1AY). (52)
Now the calculation of the direct produdi®@U™ is The average Landauer resistance is now equal to
straightforward. The produdIZNlT of T;’s transforms into
product of A*"’s. Finally we will obtain <p>_ - 1Ky i E(f“lkl
2\ poky 2\ poksy
@ ’ _ a ’ 1 ! M
()5 (Uf =<BZN1>7<AI>ﬁ,[Ewgwni, ? 2) f dpeP L((AL(P))( AP
1 " 1 ks poka) (= -
— 5 (%) (H Agi- 1A2|) (O'V(Tl)g} E(E_m Jlmdpe'pL[«Al(p))
Y ip—1\+é
(Ao (Bat)s ™ 48 ><<A2<p>>>N]12]. (53

Substltutlng this expression, together with the expressiong js obvious that in a case of homogeneous métfi@ com-
for Boy andA; [from Egs.(21) and (20) correspondingl ~ ponents of the superlattice are coincidinge restore the
into Eq. (40), after some simple algebra for Landauer resis-expression for the Landauer resistance of electrons, obtained

tancep we will have in Ref. 33.
For a large sample sizéNé>1), as it was argued in Refs.
1( puiky il (ke | poks 32 and 39, the resistance should behaveedy, where
pP=3 ks —1+(A") Mzk2+m Lyapunov exponenty provides the phonons correlation

length. By use of Eq(53) and the definition of Lyapunov
ik woko exponenty=Ilimy_-.In(p/N) we can find an exact expres-
+i(AN*S (Mzkz ,U-1k1” (49 sion for correlation length

7l=
where AN)* [correspondingly 4V)*?] is the 11(12) matrix &=, 4

element of the matrixA =A;A,, which is a product of\’s  where \ is the closest to one eigenvalue of the matrix
of thel andll slices. (A1(p))(A2(p)). Whether excitations are localized or not
The average over any type of random distributions of thejepends on the behavior éf If at some frequencies corre-
parameters of the model can be calculated now exactly. Writion length becomes infinite, we have a delocalized state
consider random distribution of thicknesses of the slicesand the expressiotb64) shows that the answer depends on
keeping boundaries fixed,=0x,y=L. We see from for-  the average value of*”. For further analysis let us consider
mula (46) that T; depends only on the thickness of the slicethe simplest case of the distribution, namely when there
X;j—X;j_1. The only restriction we have is the condition that is equal probability for slices to have a thickness updto
(i=1,2

> Ax=L. (50) 1 '
= ay={a OV (55

N . 0, otherwise.
Therefore, the average of th&"™, with the probability

distributiong(y)[ [ 59(y)dy=11], is defined in the following We have taken AlGa _,As and GaAs as components of the
way: superlattice with the parameté?s
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w1=(3.25-0.0%)10' dyn/cnt,

InlnA(w)
u,=3.25101 dyn/cn?, /

p1=(5.3176-1.6x) glen?, p,=5.3176 g/cm, 18
d,;=30x(5.6532+0.007&%) A, d,=10x5.6532 A
(56)

and consider waves propagating in the perpendicular to the 3 > - - e
layers direction 6=0).

For large enoughN the asymptotics op, and therefore
the correlation lengtlt, are defined by the closest to unity
eigenvalues of A )(A,). If itis \, then

-20

FIG. 2. The logarithm of the correlation length versus the loga-
rithm of the energy neaw=0. The slope of the curve defines the

correlation length index.
Ew)~1In\(w). (57

Numerical calculations by use of Mathematica show thabf the plot of Inln\(w) versus I and, as presented in Fig.

AMw=0)=1, hencef—. 2, appeared to be 2. All other states are localized.
This result is easy to understand=0 means that we

have constant displacemelﬁt which simply is the shift of

the entire sample. Though this limiting value is not very ACKNOWLEDGMENTS
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