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Localization of phonons in a two-component superlattice with random-thickness layers
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A two-component superlattice film of 2N layers is considered and a dimensionally quantized spectrum of
phonons is found. The problem of localization of phonons in the superlattice with random-thickness layers is
investigated. The Landauer resistance of the transport of phonons and the correlation length is calculated
exactly. For short range disorder the numerical analyses shows that, at frequencyv50, there is a delocalized
state and the correlation length indexn is equal to 2.@S0163-1829~99!05233-9#
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I. INTRODUCTION

The interest in superlattice structure in condensed ma
physics is based on the possibility of manipulation of t
physical properties of devices by changing of characteri
lattice parameters.

The growth techniques can be used to prepare specim
consisting of alternating layers of thicknessd1 of constituent
A and thicknessd2 of constituentB. Samples can be prepare
so thatd1 andd2 have any value from two or three atom
spacings up to one hundred atomic spacings. The entitieA
and B can be materials with different acoustic, electron
and magnetic properties and one can consider semicon
tor, metal, insulator, and superconductor constituents,
tempting to change values of expectable physical variable
a desirable regime.

The technical advance in fabrication of superlattices m
tivated an intensive study of various physical properties
these systems, especially electronic and vibration spe
optical and magnetic properties, etc. The calculations1,2 show
that the spectrum of quasiperiodic systems are intermed
between periodic and random ones.

Along with electronic properties, study of elastic waves
bulk superlattices has been a subject of interest in the
decades.3–14A one-dimensional theory of acoustic vibration
in layered material was given long ago by Rytov.15 Elastic
waves have also been investigated in semi-infin
superlattices.16–19

The consideration of the superlattice films instead of
massive ones provides additional opportunities for cont
ling the elastic and electronic parameters of the superlatti
A sufficiently complete experimental knowledge about t
oscillator spectra of binary laminated semiconductor syste
is available today.20 Numerous and generally mu
ually compatible results about the frequencies of lon
wave phonons in InAs-GaSb, Ge-GaAs are presented in
literature.21

Together with strongly periodic superlattices the effe
of localization and tunneling of the electrons were studied
short range disorder superlattices.22–25

The problem of localization of electrons in random pote
tial and hopping parameters in low dimensional spaces ar
PRB 600163-1829/99/60~14!/10114~8!/$15.00
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continuous interest to physicists after Anderson’s remarka
article.26 Originally Mott and Twose27 conjectured that all
states are localized in one-dimensional~1D! systems for any
degree of disorder. It was argued28 that in the case of full
randomness all states are localized in dimensions equal t
less than 2. However, recent investigations show29–31 that
delocalized states can appear in the case of correlated d
der.

In the early 1970s Landauer32 proposed that the dc con
ductanceG of noninteracting~spinless! electrons in a disor-
dered medium in strictly one dimension is given by

G5
e2

2p\

utu2

12utu2
, ~1!

where utu is the transmission amplitude. This expression
attractive for at least two reasons. First, as it was dem
strated in Ref. 33, the disorder here can be taken into acc
exactly. Second, the dimensionless expression (2p\/e2)G
of conductance is assumed to be the only relevant variab
a scaling theory treatment of the localization problem.28

In Refs. 32 and 34 the dimensionless conductance
obtained by dividing the currentI of electrons by the chemi
cal potential differenceDm between the left and right side
of the sample

2p\

2e2
G5

2p\I

2eDm
, ~2!

which can be expressed as the ratio of transmitted inten
of electrons over reflected ones. The differences betw
Landauer conductance and the Kubo formula were analy
in Ref. 35.

It is easy to see that we can define the Landauer cond
tance also for phonons, whereI /e represents the phonon
number current, while the difference of chemical potentia
caused by the variation of density of the matter in the l
and right sides of the bunch of layers. The acoustic phon
current, or in other words the sound waves, can be create
the deformation of the density of the sample.
10 114 ©1999 The American Physical Society
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PRB 60 10 115LOCALIZATION OF PHONONS IN A TWO-COMPONENT . . .
The transport of phonons within the Landauer appro
was considered also in Ref. 36, where the quantization
thermal conductance was predicted.

The aim of the present article is twofold. First we foun
the spectrum of transversal phonons in two-component
perlattice film with boundaries with an arbitrary finite num
ber of slices. The results, obtained here, are also applic
for longitudinal waves, which moves in the transversal to
layers direction. Second, we consider random distribution
the thicknesses of the superlattice compounds and calc
the Landauer resistance32 (R/T, the inverse of the conduc
tance! of the acoustic phonons exactly. The continuo
model is used, in which the layers are considered as ma
scopic elastic bodies.

II. BOUNDARY CONDITIONS IN THE SUPERLATTICE
FILM, TRANSFER MATRIX, AND THE SPECTRUM

We follow here the notations and derivations of the bo
in Ref. 37.

Let us consider superlattice, elementary cells which c
sist of two layers of various materialsA and B with the
thicknessd1 ,d2 and modulus of rigiditym1 ,m2 ~Fig. 1!. The
number of pairs in the film isN.

We consider transversal elastic waves@div uW 50, uW (x) is
the vector of elastic displacement of the matter at the sp
point x# propagating inside a superlattice in arbitrary dire
tion. It can be shown that all results are reproducible
longitudinal waves if they propagate in the perpendicular
layers direction.

Let us choose a coordinate system such that waves
propagating in the (x,y) plane@x represents perpendicular t
layers direction, while (y,z) plane is parallel to the layer
plane#, with the wave vectors (k1 ,q1 ,0) and (k2 ,q2 ,0) in the
A andB materials correspondingly. Without loss of gener
ity one can takeux5uy50 anduz5ui , wherei numerates
the layers.

The wave equation for transversal waves is

]2ui

]t2
2ct

2Dui50, ~3!

where the velocity of soundct is defined by the density o
matterr and modulus of rigiditym as

ct
25

m

r
. ~4!

The solutions of this wave equation with frequencyv,
which fulfills transversality condition divuW 50, is the super-
position of forward- and backward-traveling waves

u2n21~x,y!5~c2n21eik1x1 c̄2n21e2 ik1x!ei (qy2wt),

u2n~x,y!5~c2neik2x1 c̄2ne2 ik2x!ei (qy2wt), n51, . . . ,N,

~5!
where forki ,i 51,2 we have

ki
21q25

v2

cit
2

. ~6!
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In formulas ~5! 2n ~correspondingly 2n21) numerates
the layers ofB ~or A) type andc1t(c2t) are the velocities of
sound in those materials.

We should now impose the boundary conditions on
displacementsu2n and u2n21. Let us consider now free
boundaries of the film, which means the use of Neuma
boundary conditions

u18~x0!5u2N8 ~x2N!50, ~7!

wherex0 andx2N are the boundary coordinates.
On the boundaryxi of the A andB layers one should use

the continuity condition for the displacements

u2n~x2n21!5u2n21~x2n21!, n51,2, . . . ,N ~8!

as well as for the forces

Fi5s ikdsk , ~9!

wheres ik is the stress tensor~see Ref. 37!.
In Eq. ~9! dsk5nkds is the normal vector to the boundar

and equal to a small area in modulo. Hence we have

s ik
1 nk5s ik

2 nk . ~10!

On the boundaries of the film the forces are equal to zer

s iknk50. ~11!

By use of the expression fors ik ~see Ref. 37! and from the
boundary conditions~7!,~8! and~10!,~11! one can easily ob-
tain the following set of equations for the displacementsu:

u2N8 ~x2N!5u18~x0!50,

m2u2n8 ~x2n21!5m1u2n218 ~x2n21!,

u2n~x2n21!5u2n21~x2n21!, n51,2, . . .N. ~12!

These equations transform into the following equations
the coefficients of the forward- and backward-traveli
waves:

FIG. 1. The two-component superlattice in the coordin
system.
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c2Neik2(d11d2)n2 c̄2Ne2 ik2(d11d2)n50

A

m2k2c2neik2[(d11d2)(n21)1d1]2m2k2c̄2ne2 ik2[d1n1d2(n21)]

5m1k1c2n21eik1[d1n1d2(n21)]2m1k1c̄2n21e2 ik1[d1n1d2(n21)]c2neik2[d1n1d2(n21)]1 c̄2ne2 ik2[d1n1d2(n21)]

5c2n21eik1[d1n1d2(n21)]1 c̄2n21e2 ik1[d1n1d2(n21)] ~13!

A

c12 c̄150.

We will solve this set of linear equations by use of the transfer matrix method.3

Let us define now

c2n5S c2n

c̄2n
D . ~14!

Then half of the set of equations~14! can be reformulated as follows:

A2nc2n5B2n21c2n21 , ~15!

with

A2n5S eik2„nd11(n21)d2…, 2e2 ik2„nd11(n21)d2…

eik2„nd11(n21)d2…, e2 ik2(nd11(n21)d2) D ~16!

and

B2n215S m1k1

m2k2
eik1„nd11(n21)d2…, 2

m1k1

m2k2
e2 ik1„nd11(n21)d2…

eik1„nd11(n21)d2…, e2 ik1„d1n1(n21)d2…
D . ~17!

Equation~15! can be rewritten as

c2n5A2n
21B2n21c2n21 . ~18!

Similarly, the other half of the equations~13! appears as

c2n215A2n21
21 B2n22c2n22 , ~19!

with

A2n215S eik1„(n21)d11(n21)d2…, 2e2 ik1„(n21)d11(n21)d2…

eik1„(n21)d11(n21)d2…, e2 ik1„(n21)d11(n21)d2…
D ~20!

and

B2n225S m2k2

m1k1
eik2[(n21)d11(n21)d2] , 2

m2k2

m1k1
e2 ik2[(n21)d11(n21)d2]

eik2[(n21)d11(n21)d2] , e2 ik2[(n21)d11(n21)d2]
D . ~21!

Recursion equations~18! and ~19! allow us to connectc2n with c1 in the following way:

c2n5A2n
21B2n21A2n21

21 B2n22•••A2
21B1c1 . ~22!

Let us now define the transfer matrices as

T15B2n21 A2n21
21 5S m1k1

m2k2
cosk1d1 i

m1k1

m2k2
sink1d1

i sink1d1 cosk1d1

D ~23!

and
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T25B2n A2n
215S m2k2

m1k1
cosk2d2 i

m2k2

m1k1
sink2d2

i sink2d2 cosk2d2

D . ~24!

Then Eq.~22! becomes

c2n5B2n
21TnA1c15Uc1 , ~25!

where

T5T2T15S cosk1d1 cosk2d2 i cosk1d1 sink2d2

2
m1k1

m2k2
sink1d1 sink2d2 , 1

im1k1

m2k2
sink1d1 cosk2d2

i sink1d1 cosk2d2 2
m2k2

m1k1
sink1d1 sink2d2

1
im1k1

m2k2
cosk1d1 sink2d2 1cosk1d1 cosk2d2

D . ~26!

The first equation of Eq.~13! for n5N can be written as

c̄2Nc2N50, ~27!

where

c̄2N5~eik2(Nd11Nd2), 2e2 ik2(Nd11Nd2)!. ~28!

For another boundary of the superlattice film, wheren51, we have

c15 c̄15c, ~29!

which means that

c15cS 1

1D . ~30!

From Eqs.~25! and~27! we can obtain the following equation for the spectrum of transversal phonons in the superlattic
of 2N layers:

Tr@CTN#50, ~31!

where

Cb
a5~A1c1!b~c̄2NB2N

21!a5S 0 0

2
m1k1

m2k2
0D . ~32!

To proceed further we need to calculate theN21 degree of the transfer matrix, which can be achieved simply
diagonalizingT. Obviously

TN5W21S lN, 0

0, l̄N D W, ~33!

wherel and l̄ are eigenvalues ofT, andW is the diagonalizing matrix. One easily can find the eigenvalues or the tra
matrix T as

l5e6 iQ5S cosk1d1 cosk2d22
1

2 S m1k1

m2k2
1

m2k2

m1k1
D sink1d1 sink2d2D

6 iA12S cosk1d1 cosk2d22
1

2 S m1k1

m2k2
1

m2k2

m1k1
D sink1d1 sink2d2D 2

, ~34!

where
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cosQ5cosk1d1 cosk2d22
1

2 S m1k1

m2k2

1
m2k2

m1k1
D sink1d1 sink2d2 . ~35!

Further, a simple calculations shows that Eq.~31! reduces
to

ImlN50, ~36!

which means that

Q5p
Q

N
, Q51, . . . ,N. ~37!

Finally we obtain the following equation for the spectrum
transversal phonons:

cosk1d1 cosk2d22
1

2 S m1k1

m2k2
1

m2k2

m1k1
D sink1d1 sink2d2

56 cosp
Q

N
, ~38!

where

ki
25

v2

ci
2

2q2. ~39!

We see that this equation is coinciding with the equation
the spectrum of phonons in the bulk,15,3 but the momentums
perpendicular to the layers direction are quantized due
dimensional restriction of the film.

III. THE LANDAUER RESISTANCE OF PHONONS IN
THE SUPERLATTICE WITH RANDOM DISTRIBUTION

OF THICKNESSES OF THE LAYERS

The problem of elastic waves in superlattice is essenti
one dimensional. One-dimensional problems are espec
attractive because of their possible exact integrability. In
e
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r

to

ly
lly
e

article by Erdos and Herndon33 the problem of the transpor
of particles in the one-dimensional space for a wide class
disorders was considered in the transfer matrix approach
general results were obtained. It was proved that tran
matrix of the one-dimensional problem belongs toSL(2,R)
group and randomness can be exactly taken into accoun
such quantities as Landauer resistance.32

Some exact results for the Kronig-Penney model
the case of nondiagonal disorder by other methods w
obtained in Ref. 38.

It is easy to see from the formulas~26! for the transfer
matrix T that here we also have a representative of
SL(2,R) group. One can make a link between transfer m
trices of the Kronig-Penney model and phonons in the sup
lattice.

In this section we will consider transversal phono
propagating in the perpendicular to layers direction, i.e.q
50. Following Refs. 32, 34, and 33 let us define dimensio
less resistance as a ratio of reflection to transmission co
cients, which, by use of formula~25!, is equal to

r5
12utu2

utu2
5U12U12* 5U2

1~U1!1
2 , ~40!

whereU2
1 is the 1,2 matrix element of the evolution matrixU

U5B2N
21~T2T1!NA1 . ~41!

It is clear from this definition that the Landauer resistan
can be measured as a ratio of reflection from theSL layers
intensity of acoustic waves over transmitted intensity:

r5
I reflected

I transmitted
. ~42!

We are going to consider random distribution of thic
nesses of the layers and take the average of Landauer r
tance. For further convenience we will normalizeT1(T2)
transfer matrices on order to have a unit determinant. It w
not change Eq.~41! because the normalization factors forT1
andT2 cancel each other. Hence we will consider
T2i5S S m2k2

m1k1
D 1/2

cosk2~x2i2x2i 21! i S m2k2

m1k1
D (1/2)

sink2~x2i2x2i 21!

i S m1k1

m2k2
D 1/2

sink2~x2i2x2i 21! S m1k1

m2k2
D 1/2

cosk2~x2i2x2i 21!
D ~43!
be
s. In
for the even slices. The similar expression for odd slic
T2i 21 can be found simply by permuting variablesk andm
for 1 and 2.

Now let us analyze the direct product of the evoluti
matrices, the (U ^ U1)2,1

1,2 matrix element which defines Lan
dauer resistance. For this purpose we should calculate
the simplest constituent block of that expression, namely
direct productTi ^ Ti

1 of Ui ’s. In the article in Ref. 33 it was
demonstrated that this direct product can be represente
1% (333)5434 matrix. It happened because of the fa
s

rst
e

as
t

that Ti matrices are spinor representations of theSL(2,R);
hence the direct product of two 1/2 representations can
expanded as a sum of scalar and vector representation
the language of the group elementsTPSL(2,R) this expan-
sion looks like

~Ti !a8
a

~Ti
21!a

b85
1

2
db

ada8
b82

1

2
~sm!a8

b8L i
mn~sn!b

a , ~44!

where
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L i
mn5

1

2
Tr~Tis

mTi
21sn! ~45!

is the spin-one part of the direct product. But for Landau
resistance we need to calculateT^ T1. It is easy to see from
the formula~43! that

s1T21s15T1, ~46!

therefore, by multiplying the expression~44! in the left and
right by s1 we will have

~Ti !a8
a

~Ti
1!b

b85
1

2
~s1!b

a~s1!a8
b82

1

2
~sms1!a8

b8L i
mn~sns1!b

a .

~47!

Now the calculation of the direct productU ^ U1 is
straightforward. The product) i 51

2N Ti of Ti ’s transforms into
product ofL i

mn’s. Finally we will obtain

~U !a8
a

~U1!b
b85~B2N

21!g
a~A1

1!d8
b8F1

2
~s1!d

g~s1!g8
d8

2
1

2
~sms1!g8

d8S )
i 51

N

L2i 21L2i D mn

~sns1!d
gG

3~A1!a8
g8~B2N

21!b
1d . ~48!

Substituting this expression, together with the expressi
for B2N

21 and A1 @from Eqs.~21! and ~20! correspondingly#,
into Eq. ~40!, after some simple algebra for Landauer res
tancer we will have

r5
1

2 S m1k1

m2k2
D F211~LN!11

1

2 S m1k1

m2k2
1

m2k2

m1k1
D

1 i ~LN!12
1

2 S m1k1

m2k2
2

m2k2

m1k1
D G , ~49!

where (LN)11 @correspondingly (LN)12# is the 11(12) matrix
element of the matrixL5L1L2, which is a product ofL ’s
of the I and II slices.

The average over any type of random distributions of
parameters of the model can be calculated now exactly.
consider random distribution of thicknesses of the slic
keeping boundaries fixedx050,x2N5L. We see from for-
mula ~46! that Ti depends only on the thickness of the sli
xi2xi 21. The only restriction we have is the condition tha

(
i 51

2N

Dxi5L. ~50!

Therefore, the average of theLN, with the probability
distributiong(y)@*0

`g(y)dy51#, is defined in the following
way:
r

s

-

e
e

s,

K )
i 51

N

L2i 21L2i L
5E

0

`

dy1•••dy2Ng~y1!•••g~y2N!

3dS (
j 51

2N

yj2L D)
i 51

N

L2i 21~y2i 21!L2i~y2i !

5E
2`

`

dpe2 ipL
„^L1~p!&^L2~p!&…N, ~51!

where

^L1,2~p!&5E
0

`

dyeipyg~y!L1,2~y!. ~52!

The average Landauer resistance is now equal to

^r&5
1

2 S m1k1

m2k2
D H 211

1

2 S m1k1

m2k2

1
m2k2

m1k1
D E

2`

`

dpeipL
†~^L1~p!&^L2~p!&…N#11

1
1

2 S m1k1

m2k2
2

m2k2

m1k1
D E

2`

`

dpeipL
†~^L1~p!&

3^L2~p!&…N#12J . ~53!

It is obvious that in a case of homogeneous media~two com-
ponents of the superlattice are coinciding! we restore the
expression for the Landauer resistance of electrons, obta
in Ref. 33.

For a large sample size (N@1), as it was argued in Refs
32 and 39, the resistance should behave asegN, where
Lyapunov exponentg provides the phonons correlatio
length. By use of Eq.~53! and the definition of Lyapunov
exponentg5 limN2.`ln(r/N) we can find an exact expres
sion for correlation length

j215 lnl, ~54!

where l is the closest to one eigenvalue of the mat
^L1(p)&^L2(p)&. Whether excitations are localized or n
depends on the behavior ofj. If at some frequencies corre
lation length becomes infinite, we have a delocalized s
and the expression~54! shows that the answer depends
the average value ofLmn. For further analysis let us conside
the simplest case of the distribution, namely when th
is equal probability for slices to have a thickness up todi
~i51,2!

g~y!5H 1

di
, 0,y,di ,

0, otherwise.

~55!

We have taken AlxGa12xAs and GaAs as components of th
superlattice with the parameters20
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m15~3.2520.09x!1011 dyn/cm2,

m253.251011 dyn/cm2,

r15~5.317621.6x! g/cm3, r255.3176 g/cm3,

d15303~5.653210.0078x! Å, d251035.6532 Å
~56!

and consider waves propagating in the perpendicular to
layers direction (qW 50).

For large enoughN the asymptotics ofr, and therefore
the correlation lengthj, are defined by the closest to un
eigenvalues of̂L1&^L2&. If it is l, then

j~v!;1/lnl~v!. ~57!

Numerical calculations by use of Mathematica show t
l(v50)51, hencej→`.

This result is easy to understand;v50 means that we
have constant displacementuW , which simply is the shift of
the entire sample. Though this limiting value is not ve
interesting, the correlation length indexn from j;v2n is an
important quantity, that defines the universality class of
model. In a case of correlated disorder some other delo
ized states can appear and there is a necessity to compa
indexes around them. Obviouslyn can be defined as a slop
i

c

the

at

y

he
al-

r the

of the plot of lnlnl(v) versus lnv and, as presented in Fig
2, appeared to be 2. All other states are localized.
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FIG. 2. The logarithm of the correlation length versus the log
rithm of the energy nearv50. The slope of the curve defines th
correlation length index.
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