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We have performed numerical simulation of a three-dimensional elastic medium, with scalar displacements,
subject to quenched disorder. In the absence of topological defects this system is equivalent to a
(3+1)-dimensional interface subject to a periodic pinning potential. We have applied an efficient combina-
torial optimization algorithm to generate exact ground states for this interface representation. Our results
indicate that this Bragg glass is characterized by power law divergences in the structuréSgagtoAk 3.

We have found numerically consistent values of the coeffidieiar two lattice discretizations of the medium,
supporting universality foA in the isotropic systems considered here. We also examine the response of the
ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop
encircling the system. The rearrangement of the ground state caused by this change is equivalent to the domain
wall of elastic deformations which span the dislocation loop. Our results indicate that these domain walls are
highly convoluted, with a fractal dimensiah=2.605). Wealso discuss the implications of the domain wall
energetics for the stability of the Bragg glass phase. Elastic excitations similar to these domain walls arise
when the pinning potential is slightly perturbed. As in other disordered systems, perturbations of relative
strengthd introduce a new length scale® ~ 6~ % beyond which the perturbed ground state becomes uncor-
related with the referend@inperturbegiground state. We have performed a scaling analysis of the response of
the ground state to the perturbations and obfait®.385(40). This value is consistent with the scaling relation
{=di/2— 6, where characterizes the scaling of the energy fluctuations of low energy excitations.
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Observation of glassy behavior in flux line arrays in high-loop2 The energy of the domain wall dominates the random
T. superconductotscalls for a thorough theoretical descrip- part of the energy cost of introducing a single topological
tion of such behavior. In this system the collective pinning ofdefect® Our results on the energetics of the domain walls
the flux line array, rather than the interactions of a single fluxthereby indirectly support the analysis carried out by Fisher,
line with the disorder, can dominate the physidgor weak  Which indicated that the system is marginally stable with
pinning, where dislocations are believed to be unimportant aespect to the introduction of dislocations. The numerically
large length scale¥? the entire flux line array can be mod- generated domain walls were found to have a fractal dimen-
eled as a single medium subject to a pinning potential. Anasion d¢=2.60(5). At large length scales the ground state is
lytic calculations carried out using the approximation of lin- highly sensitive to small perturbations in the disorder poten-
ear elasticity and including the effects of the short rangdial, as in spin glasses and other disordered systemer-
order in this system indicate that quasi-long-range order exturbations of relative strength in the disorder decorrelate
ists in three dimensiorfs® The elastic medium assumption the ground state on length scalds'~s&~*, with ¢
was justifieda posterioriand is further supported by an ap- =0.385(40). We are able to relate this response to disorder
proximate domain wall renormalization calculatiorthe  perturbations to the properties of the domain walls.
structure factor of a topologically ordered system was pre- We have generated exact ground states for a discrete
dicted by these calculations to have power law divergence8lodel whose energy in the continuum limit is given by
of the form S(k)~k 3. We will consider only the case of
scalar displacements, which also models a charge density
wave pinned by charge impuritiés.

We have numerically generated ground states for an elas-
tic medium subject to quenched point disorder in the topowith distortions of the medium representeduiX), which is
logically ordered phase. Our results for the coefficient of theassumed to be slowly varying over the system. The coeffi-
divergence ofS(k) lie between the renormalization group cientc is the elastic constant. The potential felt by the me-
and Gaussian variational method results obtained by Giamakum due to the randomly placed impurities is represented by
rchi and Le DoussdlIn addition to supporting their analysis, V(u(X),X). In microscopic descriptions of an elastic system
we are able to examine the response of the system to changgsbject to weak disorder there is a length scglebelow
in boundary conditions and pinning potential. By a suitablewhich the elastic energy dominates and the medium is or-
choice of the boundary conditions we can simulate the dodered. This short-range order manifests itself here as corre-
main wall of elastic deformations induced by a dislocationlations in the disorder potential of the forWi(u,X)=V(u

H= f @ [Vu() P+ V(u(3).9), @
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+a,%), with a the intrinsic period of the medium. The period State of a two-dimensional elastic meditfBoth types of

of the potentiala, is the lattice spacing in a flux line array or lattices were simulated using periodic boundary conditions in
the wavelength of a charge density wave. Although thighe transverse directions. In addition, in the ZHC lattice the
Hamiltonian is insufficient to describe the core of a disloca-ground state was computed for each realization of disorder
tion loop, it can serve to describe the sheet of elastic deforith twisted boundary conditions in one direction.

mations which span the loop, since the approximation of We have developed a custom implementation of the push-
linear elasticity breaks down only in the region near the diselabel maximal flow algorithiff optimized for application
location core. Comparing the ground state of EY.in a 0 the regular lattices considered here. Our modifications to
system of size subject to periodic boundary conditions to theé Push-Relabel algorithm reduced the memory require-
that for the same disorder realization with twisted boundaryMents by nearly a factor of 10, allowing for simulation of
conditions in one directiofi.e., u(x,y,0)=u(x,y,L)+a] al- systems composed of up to approximately B0 nodes us-
lows for the identification of the domain wall which would g less than 512MB. The primary modification involves

be caused by a single dislocation loop encircling the Sygtem.computing nearest neighbor relations as needed rather than
The elastic Hamiltonian, Egq. (1), describes a storing this information. Overhangs in the interface are pre-

(3+1)-dimensional interface subject to a disorder potentialCluded by assigning a large weight to backwards flfrFS_-
In this picture, the displacement variahi¢x) maps to the Since these backwards arcs have an effectively infinite
height of the directed interface. This interface model has 4/€ight, they cannot be part of the minimal cut. Thus our
natural discrete representation in which the configuration oflgorithm can operate without storing their weight, provided
the interface is specified by the set of bonds it cuts in dhat flow is always allowed to move along the backwards
four-dimensional latticé? The bonds of this lattice are as- arcs. These modifications increased the running time of the
signed weights which directly correspond to the disorder poalgorithm, but obtaining the ground state for each realization
tential. The sum of the weights of the bonds which the inter-of disorder still took less than one hour of processor time on
face cuts gives the energy of the configuration corresponding single 400 MHz Pentium Il CPU for the largest system
to the disorder energfd®xV(u,X). In these discrete models sizes studied. The memory requirement is linear in the num-
an effective elastic constant arises from a dependence of tHgr of nodesN; the processor time was found to scale ap-
number of configurations on the average gradient of the inproximately asN™3 compared with the worst case bound of
terface. Maximal flow algorithm® a subclass of combina- N2.
torial optimization algorithms, allow for the generation of = The modest computational requirements of this algorithm
ground states of this discrete representation of théiave allowed us to average the properties of the ground
interfacel* states for a variety of system sizes over a large number of
The lattices numerically studied here are composed oflisorder realizations. In addition to generating the value of
L3x U nodes, wherd is the linear size of the elastic me- the minimal energy, the algorithm produces the configuration
dium, andU is the extent of the lattice in th& direction in  of the interface. The interface can be then represented by
which the displacement variable fluctuates. Unlike the simuu(X), which is defined on the three-dimensional lattice
lation of elastic manifoldé* where the bond weights are formed by projecting the interface along thedirection®
nonperiodic, there are long-range correlations in the disorddpue to the periodicity of the disorder, the energy is invariant
in the O direction. We generated random integer weightsunder global translations of integer multipleseoin the dis-
chosen from a uniform distribution ové0 V], indepen-  placement variable(X) —u(X) + na. Considering the set of
dently for each of the forward bonds in a layer of unit cells atthe forward bonds cut at each location provides a character-
constant height. The data we will present were obtained witlization of the configuration equivalent to measuring the gra-
Vmax=5000, but we have verified that our results on thedient of the interface. This representation of the interface is
structure of the interface are not significantly alteredgg, ~ useful when comparing different ground states since it is
as low as 100. Throughout the following discussion, we havénsensitive to global shifts ai. For the SHC lattice, we have
normalized the energy of the system, so that the effectivg@enerated at least 1@ealizations of disorder for systems of
range of the bond weights is ifD, 1]. This set of bond sizelL=8,16,24,32,40,48,60,80. We chose the extent of the
weights on one layer is sufficient to fix the value of thelattice in the displacement directioi to ensure that the
disorder on all of the bonds because we require that bondgoundaries of the system do not affect the ground state. For
which differ only by translations along have the same the SHC latticeU=20 was sufficient. Our simulations for
weight. In order to study the universality of the coefficient of the ZHC lattice were more extensive, with at least 1€al-
the divergence ir8(k), we have simulated interfaces on the izations for systems, subject to both periodic and twisted
simple hypercubic latticéSHC) as well as theZ-centered Poundary conditions, of size=8, 16, 32, 48, and at least
hypercubic latticgZHC).*® For the SHC latticél was cho- 10° realizations for systems of size=64,80. The largest
sen to be along thé1111) crystallographic axis. The el- Systems here required =12 to prevent the configuration
ementary bonds in this lattice are x,§,z,u)= fr_om k_)eing affected by the boundaries of the lattice indhe
+(0V2/2,1/2,1/2), *(0,~v2/2,1/2,1/2), +(v2/2,0,~1/2, direction.
1/2), =(—v2/2,0,~1/2,1/2). In the ZHC lattice we consid- ~ We have examined the displacement correlations of the
ered the following 12 bonds extending from each nodeMminimal energy configurations by computing the disorder av-
(x,y,z,u)=(+v2/2,0,0+v2/2), (0+v2/2,0+v2/2), (0,0, eraged structure factd(k) of the displacement variables.
+v2/2,+v2/2).X® These lattices are the natural extensions ofThis allows us to more clearly distinguish the large length
the two types of lattices used in simulations of the groundscale behavior; direct measurement of the width is more dif-
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FIG. 1. Numerically calculated structure factor for a pinned system and obtained=1.0" They have also carried out a

elastic medium, averaged over disorder realizations. Data are shov@aus‘c"an varlatlonal. CaIC,:UIanon and obtainae- 1'1', !n .
for (a) the Z-centered hypercubic lattice far=80 and 1000 real- of[h of these approximations the value of the coefficient is
izations, andb) the simple hypercubic latticé, =80, 1000 realiza- Universal. _
tions. The data have been coarse grained into bins of Ake The formBk™? of the leading order corrections &(k)
=0.025, and only every third data point is displayed. The error bar§an be obtained by a renormalization group calculation.
represent the fluctuations in the valuesS¢k) within each bin, and Upon renormalization, the periodic pinning potential
hence are a measure of the anisotropg@). For both lattices a fit ~ V(U(X),X) introduces a new term into the Hamiltonian of the
of the form kS(k)=A+Bk has been taken over the regign form f(X)-Vu(x) as whend=2% This random tilting
<0.5. The resulting least squares fits are shown as solid lines. Fdreld is short range correlated withi(X) - i (y) =g?8%(X
wave vectors in this region the anisotropy of the structure factor is—y). Unlike the case wherd=2, the strength of this field
comparable to the size of the statistical fluctuations in the value ogz undergoes only a finite renormalization fde= 3% The
S(k). The coefficient of the leading order divergent tewtk™®,  effects of this term can be determined from the effective
can be extracted from these fith;c=1.085), Asyc=1.044),  small length scale Hamiltonian

where the errors include both the statistical errors and our estimate
of the systematic errors. c
Heff:f dSXE[VU(i)]ZJrﬂ(i)-VU(i), 3
ficult to analyze due to finite size effects. The orientationally
averaged structure fact®k) has been obtained by averag- which ignores the periodic pinning potential. Solving the

ing the value ofS(K) over radial bins of sizdk=0.025, and  €duations of motion and averaging over reali_zzatio_ns of the
is presented in Fig. 1. The error bars represent the fluctudling field predicts corrections of the forrBk = with B

" f_lZ ithi h spherical shell. Th fuctuati =g“/c“ at T=0. In order to consider the effects of the pin-
vlvohri]shomséa;uv;ltl-:‘ twee:r?isoifo;;%? tﬁeest.ructifs fauc(iouraglj(()arrllse’ r?ing potential and the tilting field separately we relied on the
ally decrease with decreasing for k<0.75, these fluctua- act that the renormalization group flow ¥{u(x),x) is un-

: < affected by the presence of a nonzer®?° The results of
tions saturate at a value comparable to the statistical fluctuqhiS analysis can be confirmed by examining the stability of

tions in S(k) indicating the range ik where the system is the functional renormalization group fixed point obtained by
isotropic within the statistical fluctuations. To extract the co-Gjagmarchi and Le Doussal in as=4—d expansiorf. The
efficient of the leading order divergence we havekfiB(k)  most slowly decaying perturbation to the fixed point decays
with the form ~L "¢, implying corrections to the structure factor of the
— form ~k¢~3. This ordere calculation also predicts the form
k*S(k)=A+Bk (2 of the corrections which are observed in our simulation data.

Naturally, real-space measurements of the width must be
0consistent with the structure factor. We measured the disor-
der averaged squared width

over the regionk<<0.5. The leading order term dB(k)
~k ™3 indicates the quasi long-range order of the groun
state. For the ZHC lattice we obtaik3S(k)=1.Oi5)
+1.02(6k; for the SHC lattice we obtaink3S(k) w?= (02— (u)? 4)
=1.01(4)+0.46(4 k. The error estimates on the parameters ’

in these fits represent the statistical uncertainty over thevhere() denotes a spatial average over the system. These
given fit range and systematic errors arising from the choicelata, shown in Fig. 2, have been fit using the real space
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FIG. 3. Disorder averaged extremal displacement difference, . . . .
AH=Upax— Unmin as a function of system size. The statistical errors FIC_;. 4, Behawor of the coarse grained dlspla(_:ement differences.
at each size are smaller than the plot points. Over this range of sizéd u| is the difference between the average displacement of the

the behavior is logarithmic, as indicated by the solid lines which arenedium between two adjacent cubic regions of dzeaveraged
fits of the formAH=3+b In(L). The least squares values for the °Ve disorder. The statistical errors at each size are smaller than the

- . = -~ plot points; the dashed lines serve as guides to the eye. The solid
Czogf;'&'i;t of the logarithmic term arézyc=0.7&1), bsuc line represents the —o extrapolation for the coarse grained dis-

placement differences and was calculated using the long wave-
length behavior of the structure factor.

version of Eq.(2): w?=a+bIn(L)+c/L. The constant term

arises from the short wavelength fluctuations, while the secever Qx(y), a cube of sizeR centered at the poinf. We

ond and third terms arise from the 3 andk 2 terms in the measured the fluctuations in these coarse grained height vari-
structure factor, respectively. The real space coeffidieist  gpjes|Aug|2=[ug(y) - Ur(y+b)]% with b the vector be-
related to the leading order behavior 8f) by b=A/47®.  tween the centers of the cubes which touch at one corner.
This three parameter fit gives estimates for the valuea of Thjs spatial averaging procedure is similar to a real space
andB, the coefficients describing the long wavelength formrenormalization transformation. Villain and Fernandez have
of the structure factor, which are consistent with that ob-explicitly carried out a real space renormalization calculation
tained by fittingS(k) at a single system size. If the form of for 3 three-dimensional elastic medium with cubic
S(k) depended ori, then this consistency would not be symmetry® Their calculations indicate thanug|? has a fi-
maintained. Direct comparison of the structure factor foryjte |imit asR, L—c. We have directly measurédug|2 for
various system sizes also demonstrates 8(&) exhibits  the ZHC lattice(Fig. 4). The coarse grained height fluctua-
neglig/;ible system size effects, except for the change,l  tions are related to the structure factor by

=2m/L.

Other measures of the displacements provide us with ad- d3k
ditional information on the structure of the ground state. The |AUR|2:f 2m)°
disorder averaged extremal displacement differenkkl Bz
=Umax—Umin, Fig. 3, was found to grow logarithmically  ih G

with system size for both lattice types. We computed leaszuRF depends only on the leading order behavidk. 3, of

squares fits of the form\H=a+bln(L) to obtainbzuc  the structure factor and the limit of the ralIL. We have
=0.76(1) andbsyc=0.7((1). Thecoefficients of the loga- numerically evaluated the right-hand side of ). in this
rithmic term differ by less than 10% for the two lattices |imit to obtain the infinite size limit presented in Fig. 4. For
studied here, suggesting that this measure of the system fiite sized systenthe subleading order corrections $¢k)
weakly, if at all, dependent on the lattice discretization of thecontribute to the coarse grained height fluctuations. These
medium. This logarithmic growth is consistent with the fol- terms |ead to the divergence ¢fug|? as R/IL—0. The
lowing picture of the ground state structure developed byjominant corrections arise from thigk 2 corrections to
Fisher!? At each length scal&=b, b? b®,... thedisplace-  g(k) seen in the structure factor data, but decay a& The
ment undergoes one shift of amounta. Furthermore the gata are consistent with convergence to a finite limit_as
sign of the displacement shift is random at each scale, lead-, «_
ing to the logarithmic growth of the squared width. When  For the ZHC lattice, we have also investigated the behav-
traversing from the minimum to the maximum the signs ofjor of the system subject to the twisted boundary conditions
the displacements are strongly correlated, leading to a cohegefined previously. For each realization of disorder we have
ent sum, and aloganthmm dependence on the system size f@bmpared the ground state energy with periodic boundary
the extremal differences results. o conditions,E,,, to that obtained with twisted boundary con-
~ We have also determined the effect of coarse graining thgjtions along one of the lattice directioris,. This allows us
displacement variable. The coarse-grained displacement {§ jnyestigate the properties of the excitations induced by the
defined as the average of change in boundary conditions. We identify the energy dif-
ferenceEpy=E;— E, with the energy of the domain wall.
1 The domain wall is identified by the set of bonds that the
Ur(Y)= —3f _d3xu(x), (5)  interface intersects in one set of boundary conditions but not
R Jogy the other. Even though the domain wall could be identified

|G(K)|2e™ PS(K), )

(K)=Ja,d* €% In the infinite volume  limit
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FIG. 5. Average energy difference between the ground state of
the system with periodic and twisted boundary conditions. The data F|G. 7. Data collapse for the distribution o&=(Epy

are well fit by Epyy=0.395(1)-. —Epw)/o(Epw), the normalized energy difference between the

. . I ' ground states of the system with twisted and periodic boundary
by examining the values Ofp(x) anduy(x), itis more effi- conditions. The points represent the observed frequencie®woér

cient to identify the domain wall by examining the sets of cutyg of size 0.2 for at least 10ealizations at each system size.
bonds for each boundary conditions. The cut bonds are pro-

jected along thé direction for each boundary condition. The gomain walls were observed in the simulations is signifi-
domain wall is then the symmetric difference between thesgantly higher than what one expects for a Gaussian distribu-
two sets of bonds. Without directly simulating a dislocationtjon with the measured mean and standard deviation at each
loop itself, we are able to investigate the properties of thesystem sizeFig. 8). This behavior also occurs for high en-
domain wall induced by the introduction of a single 100p ergy domain walls; to within the statistical uncertainty the

encircling the system. . _ distribution is symmetric about its mean value. Our data are
The energetics of these domain walls dominate the ran:

. : . . Consistent with bottEp,, and o(Epw) increasing linearly
dom part of the energy cost of introducing a dislocation 100R,ih | for Jarge systeDr\ﬁvs. Fisher’gwargument assumed this

into an elastic mediurf.The mean energy differend®ow  behavior of the domain wall energetics in his domain wall
grows linearly with the(linean size L of the domain wall  renormalization calculation indicating the marginal stability
(Fig. 5), a result consistent with the scaling of the elasticgf the Bragg glass phase.

contribution to the energy and the statistical symmetry of the  Because of the balance between the elastic energy scale
disorder potential of the continuum modeWe have also  and the scale of the energy fluctuations due to the disorder
analyzed the variance®(Epy) of the distribution of domain  potential, the domain walls are highly convoluted and ex-
wall energies(Fig. 6). No single power law fit of the form  pected to have a fractal dimensidpbetween 2 and 3. Simi-
o?(Epw) *L?’ can adequately fit our data over the range ofjar to the approach used for a two-dimensional elastic
sizes simulated. However, the data are well described by th@edium!:2* we have measured the size of the domain wall
empirically determined formo?(Epy)=0.031L%+0.24.  py counting the number of bondé, in the wall. The data for
displayed as the solid line in Fig. 6. The finite size correctionthe area of the wall as a function of system size, averaged
leads to a size dependent effective value of the exponengyer disorder, can be fit by a simple power laj,~ L,

fett, characterizing the scaling of the sample to sample flucyjith the fractal dimension of the domain wadll;~2.60,
tuations in the energy of low energy excitations. Dependinghown in Fig. 9a). This fit has been taken after excluding the
on the lower limit imposed on the fit, single power-law fits smajlest system size=8. However, the form of the residu-
o?(Epw)~L?" give 0.85<6,(;<0.92 over this range of gais[see Fig. %)], indicates the presence of subleading order
sizes. The distribution of domain wall energies depends oRorrections, suggesting that this may underestimate the value
Epw and o(Epy) only through the combinatioe=(Epy  of d;. In order to verify this, we have also fit the whole
—Epw)/o(Epw), as can be seen in Fig. 7. This collapsedrange of data using the forlN,=aL%+bL% The second
distribution has more highly weighted tails than a unit nor-term arises from the effectively two-dimensional nature of
mal distribution. The frequency with which negative energythe domain walls at small length scales. This three parameter

350 ' " " ' 01 Frequericy(Epy <0) ' ©
300 L Gaussian assumption
0.08
250 ¢ Z
£ 200 | g 008
w
& 150 T 004
100 | w 0.02
50 ’ O o
0 - ' : - 0 '
0 20 40 60 80 100 0 20 40 60 80 100
L L
FIG. 6. Variance of the energy differendg,,, between the FIG. 8. Frequency with which negative energy domain walls

ground states with periodic and twisted boundary conditions. Thavere observed. The solid line represents the expected probability
fit, 0°=0.031(1L2+0.24(1)L, includes an empirically estimated given the assumption that the distribution is a Gaussian with the
correction to scaling. observed mean and standard deviation.
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z
1.05 e o FIG. 10. Boundary condition induced domain wall energy cor-
104 | relation functionG. The scaling variable is a combination of the
system sizd. and bond perturbation strengéh The typical magni-
- 103 1 A tude of these perturbations ranges fré 0.01 to 6=0.75 when
g 102 4}; measured in units of the range of thenperturbed pinning poten-
% 1.01 ¢ + i tial. Each data point represents an average over at least 500 realiza-
1 L % 4}4 t tions of disorder. The data collapse provides an estimate for the
0.99 t chaos exponerit=0.384); theerror was estimated by determining
0.08 L A the range inf where the collapse is reasonable.
5 10 50 100
L tween the ground states for these realizations of disorder we

) ) o can extract the value of the chaos exponent.
FIG. 9. Structural difference between systems with periodic and  \y/e have found that both the energetic and structural cor-
twisted boundary conditiona) displays the arebl,, of the domain 1o\ 41i0ns are governed by the same length scale. First we
wall as a function of the system size The statistical errors at each I(Ealculated the domain wall ener@éw for the two disorder

size are smaller than the plot points. The solid line represents a fi . + .
over the regiorl =10 with the formf(L)=aLd%. The least squares rea_llzatlonSV , Which can then be. used to compute the do-
main wall energy correlation functién

fit provides an estimate of the domain wall fractal dimensihn
=2.60. However, the form of the residuals for this (i), suggest " — — —
the presence of small subdominant corrections. _ (Epw— Epw)(Epw— Epw)

T =
fit gives d;=2.65; thus we conclude that our systematic er- 7(Epw) 7(Eow)
rors in estimating the fractal dimension are approximatelyThe simple scaling forn&=f(5L¢) describes our data well
0.05. (Fig. 10. We found reasonable data collapse fgr

In order to investigate other low energy excitations of this=0.394), taking into account the statistical errors. The
system, we have examined the sensitivity of the ground statealue of the chaos exponent can be related to the domain
to perturbations in the disorder potential. Similar studieswall fractal dimension and the energy fluctuation exponent
have been carried out for disordered systems such as spity a simple scaling argument as in the case of spin gldsses.
glasses, (1+1)-dimensional directed polymers in random The perturbations introduce a random change in the energy
medial® and two-dimensional elastic medialn all of these  of the domain wall of ordebL %’? because the perturbations
disorder dominated systems, perturbations of relativeare uncorrelated with the location of the domain wall. The
strengthé in the disorder potential introduce a length scaletypical fluctuations in the domain wall energy scalelds
L*~6 % ¢=d/2— 6, beyond which the ground state be- When these energy scales become comparable, at a length
comes uncorrelated with the reference ground state. The escaleL* ~ 5~ Y%, the domain wall energies become uncorre-
ponent{ characterizing the sensitivity of the ground state islated. When using the effective value of the energy fluctua-
referred to as the chaos exponent. These studies have betn exponentf.~0.9, this scaling relation holds to within
done by comparing the ground state for two correlatedc% accuracy.
choices of the disorder potential. In our simulations, we have We can understand the structural deformations induced by
obtained the ground states for the two pinning potentialthe bond perturbations by reasoning similar to that for do-
V= (u(x),X)=b(u(x),X) *d(u(x),X), with both terms peri- main wall correlations. Here we consider the differences in
odic in the 0 direction. The constant part of the potential the ground states of the systémith periodic boundary con-
b(u(x),X) was an integer chosen uniformly frofi000, ditions) due to the changes in the pinning potential. Again,
2000. The term which generates differences between th¢he ratio of the energy change due to the random perturba-
realizations, d(u(X),X), was chosen uniformly from tions, and that of the fluctuations in the energy landscape,
[ —dimad2dma’/2]. The paramete=d,,,/2000 character- SL%'%/LY determines the behavior of the system. In re-
izes the relative strength of the perturbations. This prescripsponse to Zhang's simulation of directed polymers in ran-
tion was chosen to ensure that for a fixed valuesahe  dom media, Feige'man and Vinokur had argued that the
distribution of the bond weights is the same for both realiza{robability of a positional excitation grows linearly wii.¢
tions of disorder. Our simulations include valuesdfang-  for small values of the perturbation streng®hFollowing
ing from 0.01 to 0.75, with at least 500 independent realizatheir argument, we expect the probability of a change in the
tions of disorder at eacld and L. By performing scaling displacement variable at a single location to grow linearly
analysis of both the energetic and structural correlations bewith SL¢. Unlike the case for the directed polymer, the mag-

)



10 068 DAVID McNAMARA, A. ALAN MIDDLETON, AND CHEN ZENG
06 s —5— 100 16 ®
0.5 t=3§ S——— ] |E=32
=48 St =6
0.4 | L=64 3, ot Ly~ xéf
= 03 k) X
£=0.39 ? 102
0.2 1073
0.1 «F el
1074 '
o b ¥ - 0.01 0.1 1
0.01 0.1 1 10 AL

LS
FIG. 12. Scaling of the surface area of the singly connected

FIG. 11. Configurational differences induced by perturbing thecomponents of deformations induced by perturbations of relative
disorder potential randomly at each location with relative strengthstrength §=0.05 in the disorder potential. The data collapse for
8. The response functiory=V 'S u*(X)—u~(X)]% is the spa-  d;=2.65, with an uncertainty of0.1. As a guide to the eye, the
tially averaged squared displacement difference between the refeg; =2.65 power law behavior of the average surface aseas a
ence and perturbed ground states. The data have the scaling fofimction of the cluster's radiusR, is indicated by the solid line.
x=f(6L%), with {=0.392). Because each realization of disorder generates numerous clusters of

) ) ) . various sizes, the statistical errors for the average surface area are
nitude of the differences is bounded for periodic pinningsmaller than the plot points.

since excitations withAu|>a probe the same energy land-
scape as those wifiAu| <a. Thus, the spatially and disorder
averaged mean squared displacement differenge
=([u™(X)—u~(X)]%)~6L¢ for small perturbations. For
large values ofé the ground states are completely decorre-
lated, and we expect that~In(L). We have found that the

scaling also breaks down for clusters wi< 8, where lat-

tice effects make the surface effectively two-dimensional
(Fig. 13. The equality of the fractal dimension of the bound-
ary condition induced domain walls and bond perturbation
) : induced deformations can be justified by a simple argument.
data f?r X collapse accor_dmg to the scaling fo_rna For small values of the disorder perturbation parameter, the
=f(6L*), with {=0.39(2) (Fig. 11). Our data are consistent . ster houndaries lie in regions where there is a small en-
with the results obtained by the scaling argument in bothyq ost to deforming the medium. If one considers only a
limiting cases. Before computing, we made the transfor- - ga)1 yolume containing a portion of the cluster boundary,
mationu” —u"+na, wheren is the integer which maxi- o siryctural difference is the same as would be caused by
mizes the number of locations at whiehi (X) —u”(X)=0  he change from periodic to twisted boundary conditions on
for each realization. This transformation minimizeover 5t volume. Thus both the deformations induced by small
the discrete set of global translations which leave the enerd¥hanges in the disorder potential and those caused by a
of the medium invariant. Our scaling ansatz is significantlychange in boundary conditions should be characterized by
different froml}ghat plr?posgd for the two-dimensional elastiCihe same fractal dimension. Despite the fact that the scaling
medium x=6"*f(L)™". This form cannot adequately col- egime is inaccessible due to the limits on the size of systems
lapse our data over the range of parameters we have simdy,gied, our data are consistent with the conclusion that the
lated. fractal dimension of the clusters which compose the defor-

Implicit in this discussion is the assumption that both theations is the same as that of the boundary condition in-
perturbation induced deformations and the boundary condig,ced domain walls.

tion induced domain walls are characterized by the same \yg have performed extensive numerical simulations of a

fractal dimension. Even for relatively small perturbations in\,qqel three-dimensional elastic medium subject to quenched

the disorder, the deformations are typically composed of gisorder with scalar discrete displacements. Our results for
set of disconnected clusters. We have directly measured

these clusters’ fractal dimension. The size of a cluRes

defined as the average of the sides of the bounding box 10° =16 o P
which encloses the cluster and is measured in units of the 10t Leap x o A
lattice spacing. Our algorithm identifies the sets of nodes on 103 | L=64 o /
which u*(X)—u~(X)#0 after performing the translation o

which minimizesy. The surface area of a clustsris the 07 >

number of nodes with neighbors not in the cluster. We have 10 //

collapsed the data fo6=0.05 using the finite size scaling 1 el

form s=L9%f(R/L) (Fig. 12. We expect that the scaling 1 5 10 30 50
function f(R/L) should have the fornf~(R/L)% in the R

regionR/L<1,R>1, but this regime is not clearly visible in £ 13 Relationship between the surface area and the size of
Fig. 12 due to lattice and finite size effects. Despite this, th§ma| connected clusters of deformation induced by small changes
best collapse of the data, for 6:&/L<1.0, provides an in the disorder potential. F&R<8 their surfaces are approximately
estimated;=2.65(10) which is consistent with the estimate two dimensional and independent of the system size, as indicated
for the domain wall fractal dimension. Similar analysis atpy the solid line representing= R2. This behavior does not persist
other values of§ provide equivalent values for the cluster to larger clusters. In order to illustrate the crossover, the large clus-
fractal dimension. The anomalous dataRék ~1 arise from  ter behaviors~R?%%is represented by the dotted line. The statisti-
the rare clusters which span the system in all directions. Thisal errors for each data point are smaller than the plot points.
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the structure in the Bragg glass phase indicate that the struof the section for large sizes. This balance is a crucial ele-
ture factor has divergences of the for@fk)~Ak 3. Our  ment of the analysis carried out by Fisher indicating the mar-
results for the coefficienA fall between the approximate ginal stability of the Bragg glass phase to the introduction of
valuesA=1.0 andA=1.1, obtained via a renormalization dislocations’ We are also able to measure the spatial struc-
group and a replica approatiThe observed energetics of ture of these domain walls and obtain their fractal dimension
the boundary condition induced domain walls indirectly sup-d;=2.60(5). We have observed that random changes in the
port arguments for the stability of the Bragg glass phasedisorder potential of relative strengtd decorrelate the
These domain walls correspond to the elastic deformationground state on length scales larger than~ 6~ with ¢

due to the introduction of a single dislocation loop winding =0.385(40). The properties of the domain walls and this
around the system. Our data are consistent with the hypottsensitivity to disorder perturbations can be related to each
esis that the mean energy and the energy fluctuations of @ther by the scaling relatiofi=d;/2— 6, where@ character-
section of domain wall both scale linearly with the linear sizeizes the fluctuations in the low energy excitations.
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