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Simulation of the zero-temperature behavior of a three-dimensional elastic medium
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We have performed numerical simulation of a three-dimensional elastic medium, with scalar displacements,
subject to quenched disorder. In the absence of topological defects this system is equivalent to a
(311)-dimensional interface subject to a periodic pinning potential. We have applied an efficient combina-
torial optimization algorithm to generate exact ground states for this interface representation. Our results
indicate that this Bragg glass is characterized by power law divergences in the structure factorS(k);Ak23.
We have found numerically consistent values of the coefficientA for two lattice discretizations of the medium,
supporting universality forA in the isotropic systems considered here. We also examine the response of the
ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop
encircling the system. The rearrangement of the ground state caused by this change is equivalent to the domain
wall of elastic deformations which span the dislocation loop. Our results indicate that these domain walls are
highly convoluted, with a fractal dimensiondf52.60(5). Wealso discuss the implications of the domain wall
energetics for the stability of the Bragg glass phase. Elastic excitations similar to these domain walls arise
when the pinning potential is slightly perturbed. As in other disordered systems, perturbations of relative
strengthd introduce a new length scaleL* ;d21/z beyond which the perturbed ground state becomes uncor-
related with the reference~unperturbed! ground state. We have performed a scaling analysis of the response of
the ground state to the perturbations and obtainz50.385(40). This value is consistent with the scaling relation
z5df /22u, whereu characterizes the scaling of the energy fluctuations of low energy excitations.
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Observation of glassy behavior in flux line arrays in hig
Tc superconductors1 calls for a thorough theoretical descrip
tion of such behavior. In this system the collective pinning
the flux line array, rather than the interactions of a single fl
line with the disorder, can dominate the physics.2 For weak
pinning, where dislocations are believed to be unimportan
large length scales,3,4 the entire flux line array can be mod
eled as a single medium subject to a pinning potential. A
lytic calculations carried out using the approximation of li
ear elasticity and including the effects of the short ran
order in this system indicate that quasi-long-range order
ists in three dimensions.4–6 The elastic medium assumptio
was justifieda posterioriand is further supported by an ap
proximate domain wall renormalization calculation.3 The
structure factor of a topologically ordered system was p
dicted by these calculations to have power law divergen
of the form S(k);k23. We will consider only the case o
scalar displacements, which also models a charge den
wave pinned by charge impurities.7

We have numerically generated ground states for an e
tic medium subject to quenched point disorder in the to
logically ordered phase. Our results for the coefficient of
divergence ofS(k) lie between the renormalization grou
and Gaussian variational method results obtained by Gia
rchi and Le Doussal.4 In addition to supporting their analysis
we are able to examine the response of the system to cha
in boundary conditions and pinning potential. By a suita
choice of the boundary conditions we can simulate the
main wall of elastic deformations induced by a dislocati
PRB 600163-1829/99/60~14!/10062~8!/$15.00
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loop.3 The energy of the domain wall dominates the rand
part of the energy cost of introducing a single topologic
defect.8 Our results on the energetics of the domain wa
thereby indirectly support the analysis carried out by Fish3

which indicated that the system is marginally stable w
respect to the introduction of dislocations. The numerica
generated domain walls were found to have a fractal dim
sion df52.60(5). At large length scales the ground state
highly sensitive to small perturbations in the disorder pot
tial, as in spin glasses and other disordered systems.9–11 Per-
turbations of relative strengthd in the disorder decorrelate
the ground state on length scalesL* ;d21/z, with z
50.385(40). We are able to relate this response to diso
perturbations to the properties of the domain walls.

We have generated exact ground states for a disc
model whose energy in the continuum limit is given by

H5E d3x
c

2
@¹u~xW !#21V„u~xW !,xW…, ~1!

with distortions of the medium represented byu(xW ), which is
assumed to be slowly varying over the system. The coe
cient c is the elastic constant. The potential felt by the m
dium due to the randomly placed impurities is represented
V„u(xW ),xW…. In microscopic descriptions of an elastic syste
subject to weak disorder there is a length scalejp below
which the elastic energy dominates and the medium is
dered. This short-range order manifests itself here as co
lations in the disorder potential of the formV(u,xW )5V(u
10 062 ©1999 The American Physical Society
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PRB 60 10 063SIMULATION OF THE ZERO-TEMPERATURE BEHAVIOR . . .
1a,xW), with a the intrinsic period of the medium. The perio
of the potential,a, is the lattice spacing in a flux line array o
the wavelength of a charge density wave. Although t
Hamiltonian is insufficient to describe the core of a disloc
tion loop, it can serve to describe the sheet of elastic de
mations which span the loop, since the approximation
linear elasticity breaks down only in the region near the d
location core. Comparing the ground state of Eq.~1! in a
system of sizeL subject to periodic boundary conditions
that for the same disorder realization with twisted bound
conditions in one direction@i.e., u(x,y,0)5u(x,y,L)1a# al-
lows for the identification of the domain wall which woul
be caused by a single dislocation loop encircling the syste3

The elastic Hamiltonian, Eq. ~1!, describes a
(311)-dimensional interface subject to a disorder potent
In this picture, the displacement variableu(xW ) maps to the
height of the directed interface. This interface model ha
natural discrete representation in which the configuration
the interface is specified by the set of bonds it cuts in
four-dimensional lattice.12 The bonds of this lattice are as
signed weights which directly correspond to the disorder
tential. The sum of the weights of the bonds which the int
face cuts gives the energy of the configuration correspond
to the disorder energy*d3xV(u,xW ). In these discrete model
an effective elastic constant arises from a dependence o
number of configurations on the average gradient of the
terface. Maximal flow algorithms,13 a subclass of combina
torial optimization algorithms, allow for the generation
ground states of this discrete representation of
interface.14

The lattices numerically studied here are composed
L33U nodes, whereL is the linear size of the elastic me
dium, andU is the extent of the lattice in theû direction in
which the displacement variable fluctuates. Unlike the sim
lation of elastic manifolds,14 where the bond weights ar
nonperiodic, there are long-range correlations in the diso
in the û direction. We generated random integer weigh
chosen from a uniform distribution over@0,Vmax#, indepen-
dently for each of the forward bonds in a layer of unit cells
constant height. The data we will present were obtained w
Vmax55000, but we have verified that our results on t
structure of the interface are not significantly altered forVmax
as low as 100. Throughout the following discussion, we h
normalized the energy of the system, so that the effec
range of the bond weights is in@0, 1#. This set of bond
weights on one layer is sufficient to fix the value of t
disorder on all of the bonds because we require that bo
which differ only by translations alongû have the same
weight. In order to study the universality of the coefficient
the divergence inS(kW ), we have simulated interfaces on th
simple hypercubic lattice~SHC! as well as theZ-centered
hypercubic lattice~ZHC!.15 For the SHC latticeû was cho-
sen to be along the~1111! crystallographic axis. The el
ementary bonds in this lattice are (x,y,z,u)5
6(0,&/2,1/2,1/2), 6(0,2&/2,1/2,1/2), 6(&/2,0,21/2,
1/2), 6(2&/2,0,21/2,1/2). In the ZHC lattice we consid
ered the following 12 bonds extending from each no
(x,y,z,u)5(6&/2,0,0,6&/2), (0,6&/2,0,6&/2), (0,0,
6&/2,6&/2).16 These lattices are the natural extensions
the two types of lattices used in simulations of the grou
s
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state of a two-dimensional elastic medium.17 Both types of
lattices were simulated using periodic boundary conditions
the transverse directions. In addition, in the ZHC lattice
ground state was computed for each realization of disor
with twisted boundary conditions in one direction.

We have developed a custom implementation of the pu
relabel maximal flow algorithm18 optimized for application
to the regular lattices considered here. Our modifications
the Push-Relabel algorithm reduced the memory requ
ments by nearly a factor of 10, allowing for simulation
systems composed of up to approximately 63106 nodes us-
ing less than 512MB. The primary modification involve
computing nearest neighbor relations as needed rather
storing this information. Overhangs in the interface are p
cluded by assigning a large weight to backwards arc14

Since these backwards arcs have an effectively infin
weight, they cannot be part of the minimal cut. Thus o
algorithm can operate without storing their weight, provid
that flow is always allowed to move along the backwar
arcs. These modifications increased the running time of
algorithm, but obtaining the ground state for each realizat
of disorder still took less than one hour of processor time
a single 400 MHz Pentium II CPU for the largest syste
sizes studied. The memory requirement is linear in the nu
ber of nodesN; the processor time was found to scale a
proximately asN1.3, compared with the worst case bound
N2.18

The modest computational requirements of this algorit
have allowed us to average the properties of the gro
states for a variety of system sizes over a large numbe
disorder realizations. In addition to generating the value
the minimal energy, the algorithm produces the configurat
of the interface. The interface can be then represented
u(xW ), which is defined on the three-dimensional latti
formed by projecting the interface along theû direction.19

Due to the periodicity of the disorder, the energy is invaria
under global translations of integer multiples ofa in the dis-
placement variableu(xW )→u(xW )1na. Considering the set o
the forward bonds cut at each location provides a charac
ization of the configuration equivalent to measuring the g
dient of the interface. This representation of the interface
useful when comparing different ground states since it
insensitive to global shifts ofu. For the SHC lattice, we have
generated at least 103 realizations of disorder for systems o
size L58,16,24,32,40,48,60,80. We chose the extent of
lattice in the displacement directionû to ensure that the
boundaries of the system do not affect the ground state.
the SHC latticeU520 was sufficient. Our simulations fo
the ZHC lattice were more extensive, with at least 104 real-
izations for systems, subject to both periodic and twis
boundary conditions, of sizeL58, 16, 32, 48, and at leas
103 realizations for systems of sizeL564,80. The largest
systems here requiredU512 to prevent the configuration
from being affected by the boundaries of the lattice in theû
direction.

We have examined the displacement correlations of
minimal energy configurations by computing the disorder

eraged structure factorS(kW ) of the displacement variables
This allows us to more clearly distinguish the large leng
scale behavior; direct measurement of the width is more
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ficult to analyze due to finite size effects. The orientationa
averaged structure factorS(k) has been obtained by avera

ing the value ofS(kW ) over radial bins of sizeDk50.025, and
is presented in Fig. 1. The error bars represent the fluc

tions ofS(kW ) within each spherical shell. These fluctuation
which measure the anisotropy of the structure factor, ge
ally decrease with decreasingk; for k,0.75, these fluctua
tions saturate at a value comparable to the statistical fluc
tions in S(kW ) indicating the range ink where the system is
isotropic within the statistical fluctuations. To extract the c
efficient of the leading order divergence we have fitk3S(k)
with the form

k3S~k!5A1Bk ~2!

over the regionk,0.5. The leading order term ofS(k)
;k23 indicates the quasi long-range order of the grou
state. For the ZHC lattice we obtaink3S(k)51.08(5)
11.02(6)k; for the SHC lattice we obtaink3S(k)
51.01(4)10.46(4)k. The error estimates on the paramete
in these fits represent the statistical uncertainty over
given fit range and systematic errors arising from the cho

FIG. 1. Numerically calculated structure factor for a pinn
elastic medium, averaged over disorder realizations. Data are sh
for ~a! the Z-centered hypercubic lattice forL580 and 1000 real-
izations, and~b! the simple hypercubic lattice,L580, 1000 realiza-
tions. The data have been coarse grained into bins of sizeDk
50.025, and only every third data point is displayed. The error b
represent the fluctuations in the values ofS(k) within each bin, and
hence are a measure of the anisotropy ofS(k). For both lattices a fit
of the form k3S(k)5A1Bk has been taken over the regionk
<0.5. The resulting least squares fits are shown as solid lines.
wave vectors in this region the anisotropy of the structure facto
comparable to the size of the statistical fluctuations in the valu
S(k). The coefficient of the leading order divergent term,Ak23,
can be extracted from these fits:AZHC51.08(5), ASHC51.01(4),
where the errors include both the statistical errors and our estim
of the systematic errors.
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of the cutoff ink. Giamarchi and Le Doussal have applied
renormalization group technique to ordere542d to this
system and obtainedA51.0.4 They have also carried out
Gaussian variational calculation and obtainedA51.1. In
both of these approximations the value of the coefficien
universal.

The form Bk22 of the leading order corrections toS(k)
can be obtained by a renormalization group calculati
Upon renormalization, the periodic pinning potenti
V(u(xW ),xW ) introduces a new term into the Hamiltonian of th
form mW (xW )•¹u(xW ) as whend52.5,20 This random tilting
field is short range correlated withmW (xW )•mW (yW )5g2d3(xW
2yW ). Unlike the case whered52, the strength of this field
g2 undergoes only a finite renormalization ford53.6 The
effects of this term can be determined from the effect
small length scale Hamiltonian

He f f5E d3x
c

2
@¹u~xW !#21mW ~xW !•¹u~xW !, ~3!

which ignores the periodic pinning potential. Solving th
equations of motion and averaging over realizations of
tilting field predicts corrections of the formBk22 with B
5g2/c2 at T50. In order to consider the effects of the pin
ning potential and the tilting field separately we relied on t
fact that the renormalization group flow ofV(u(xW ),xW ) is un-
affected by the presence of a nonzerog.6,20 The results of
this analysis can be confirmed by examining the stability
the functional renormalization group fixed point obtained
Giamarchi and Le Doussal in ane542d expansion.4 The
most slowly decaying perturbation to the fixed point deca
;L2e, implying corrections to the structure factor of th
form ;ke23. This ordere calculation also predicts the form
of the corrections which are observed in our simulation da

Naturally, real-space measurements of the width mus
consistent with the structure factor. We measured the di
der averaged squared width

w25^u2&2^u&2, ~4!

where ^ & denotes a spatial average over the system. Th
data, shown in Fig. 2, have been fit using the real sp

wn
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or
is
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FIG. 2. Disorder averaged roughness of the interface repre
tation of the elastic medium. The statistical errors at each size
comparable to or smaller than the plot points. Fits of the forma
1b In(L)1c/L, which include the form of the finite size correc
tions indicated by the structure factor data, are represented by
solid lines. The coefficientb in these fits is related to the coefficien
of the divergence of the structure factor byb5A/4p2. These fits
provide values ofASHC51.03(6), AZHC51.02(1).
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PRB 60 10 065SIMULATION OF THE ZERO-TEMPERATURE BEHAVIOR . . .
version of Eq.~2!: w25a1b ln(L)1c/L. The constant term
arises from the short wavelength fluctuations, while the s
ond and third terms arise from thek23 andk22 terms in the
structure factor, respectively. The real space coefficientb is
related to the leading order behavior ofS(k) by b5A/4p2.
This three parameter fit gives estimates for the values oA
andB, the coefficients describing the long wavelength fo
of the structure factor, which are consistent with that o
tained by fittingS(k) at a single system size. If the form o
S(k) depended onL, then this consistency would not b
maintained. Direct comparison of the structure factor
various system sizes also demonstrates thatS(k) exhibits
negligible system size effects, except for the change inkmin
52p/L.

Other measures of the displacements provide us with
ditional information on the structure of the ground state. T
disorder averaged extremal displacement difference,DH
5umax2umin, Fig. 3, was found to grow logarithmically
with system size for both lattice types. We computed le
squares fits of the formDH5ã1b̃ ln(L) to obtain b̃ZHC

50.76(1) andb̃SHC50.70(1). Thecoefficients of the loga-
rithmic term differ by less than 10% for the two lattice
studied here, suggesting that this measure of the syste
weakly, if at all, dependent on the lattice discretization of
medium. This logarithmic growth is consistent with the fo
lowing picture of the ground state structure developed
Fisher.12 At each length scaleR5b, b2, b3,... thedisplace-
ment undergoes one shift of amount6a. Furthermore the
sign of the displacement shift is random at each scale, le
ing to the logarithmic growth of the squared width. Wh
traversing from the minimum to the maximum the signs
the displacements are strongly correlated, leading to a co
ent sum, and a logarithmic dependence on the system siz
the extremal differences results.

We have also determined the effect of coarse graining
displacement variable. The coarse-grained displacemen
defined as the average ofu,

uR~yW !5
1

R3 E
VR~yW !

d3x u~xW !, ~5!

FIG. 3. Disorder averaged extremal displacement differen
DH5umax2umin, as a function of system size. The statistical err
at each size are smaller than the plot points. Over this range of
the behavior is logarithmic, as indicated by the solid lines which

fits of the formDH5ã1b̃ ln(L). The least squares values for th

coefficient of the logarithmic term areb̃ZHC50.76(1), b̃SHC

50.70(1).
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over VR(yW ), a cube of sizeR centered at the pointyW . We
measured the fluctuations in these coarse grained height

ables uDuRu25@uR(yW )2uR(yW1bW )#2, with bW the vector be-
tween the centers of the cubes which touch at one cor
This spatial averaging procedure is similar to a real sp
renormalization transformation. Villain and Fernandez ha
explicitly carried out a real space renormalization calculat
for a three-dimensional elastic medium with cub
symmetry.6 Their calculations indicate thatuDuRu2 has a fi-
nite limit asR, L→`. We have directly measureduDuRu2 for
the ZHC lattice~Fig. 4!. The coarse grained height fluctua
tions are related to the structure factor by

uDuRu25E
BZ

d3k

~2p!3 uG~kW !u2eikW•bWS~kW !, ~6!

with G(kW )5*VR
d3x eikW•xW. In the infinite volume limit

uDuRu2 depends only on the leading order behavior,Ak23, of
the structure factor and the limit of the ratioR/L. We have
numerically evaluated the right-hand side of Eq.~6! in this
limit to obtain the infinite size limit presented in Fig. 4. Fo
finite sized systemsthe subleading order corrections toS(k)
contribute to the coarse grained height fluctuations. Th
terms lead to the divergence ofuDuRu2 as R/L→0. The
dominant corrections arise from theBk22 corrections to
S(k) seen in the structure factor data, but decay asL21. The
data are consistent with convergence to a finite limit asL
→`.

For the ZHC lattice, we have also investigated the beh
ior of the system subject to the twisted boundary conditio
defined previously. For each realization of disorder we ha
compared the ground state energy with periodic bound
conditions,Ep , to that obtained with twisted boundary con
ditions along one of the lattice directions,Et . This allows us
to investigate the properties of the excitations induced by
change in boundary conditions. We identify the energy d
ferenceEDW5Et2Ep with the energy of the domain wall
The domain wall is identified by the set of bonds that t
interface intersects in one set of boundary conditions but
the other. Even though the domain wall could be identifi

e,
s
es
e

FIG. 4. Behavior of the coarse grained displacement differen
uDuu is the difference between the average displacement of
medium between two adjacent cubic regions of sizeR, averaged
over disorder. The statistical errors at each size are smaller tha
plot points; the dashed lines serve as guides to the eye. The
line represents theL→` extrapolation for the coarse grained di
placement differences and was calculated using the long w
length behavior of the structure factor.



u
pr
e
es
on
th
p

a
o

tic
th

o
t

io
e
uc
in
ts
f

o

ed
or
gy

ifi-
ibu-
ach
-

he
are

this
all
ity

cale
rder
x-

tic
all

ged

e
-
er

alue
le

of
eter

e
a

Th
d

he
ary

lls
ility
the

10 066 PRB 60DAVID McNAMARA, A. ALAN MIDDLETON, AND CHEN ZENG
by examining the values ofup(xW ) andut(xW ), it is more effi-
cient to identify the domain wall by examining the sets of c
bonds for each boundary conditions. The cut bonds are
jected along theû direction for each boundary condition. Th
domain wall is then the symmetric difference between th
two sets of bonds. Without directly simulating a dislocati
loop itself, we are able to investigate the properties of
domain wall induced by the introduction of a single loo
encircling the system.

The energetics of these domain walls dominate the r
dom part of the energy cost of introducing a dislocation lo
into an elastic medium.8 The mean energy differenceĒDW
grows linearly with the~linear! size L of the domain wall
~Fig. 5!, a result consistent with the scaling of the elas
contribution to the energy and the statistical symmetry of
disorder potential of the continuum model.3 We have also
analyzed the variances2(EDW) of the distribution of domain
wall energies~Fig. 6!. No single power law fit of the form
s2(EDW)}L2u can adequately fit our data over the range
sizes simulated. However, the data are well described by
empirically determined forms2(EDW)50.031L210.24L
displayed as the solid line in Fig. 6. The finite size correct
leads to a size dependent effective value of the expon
ue f f , characterizing the scaling of the sample to sample fl
tuations in the energy of low energy excitations. Depend
on the lower limit imposed on the fit, single power-law fi
s2(EDW);L2u give 0.85,ue f f,0.92 over this range o
sizes. The distribution of domain wall energies depends
ĒDW and s(EDW) only through the combinatione5(EDW

2ĒDW)/s(EDW), as can be seen in Fig. 7. This collaps
distribution has more highly weighted tails than a unit n
mal distribution. The frequency with which negative ener

FIG. 5. Average energy difference between the ground stat
the system with periodic and twisted boundary conditions. The d
are well fit byEDW50.395(1)L.

FIG. 6. Variance of the energy differenceEDW between the
ground states with periodic and twisted boundary conditions.
fit, s250.031(1)L210.24(1)L, includes an empirically estimate
correction to scaling.
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domain walls were observed in the simulations is sign
cantly higher than what one expects for a Gaussian distr
tion with the measured mean and standard deviation at e
system size~Fig. 8!. This behavior also occurs for high en
ergy domain walls; to within the statistical uncertainty t
distribution is symmetric about its mean value. Our data
consistent with bothĒDW and s(EDW) increasing linearly
with L for large systems. Fisher’s argument assumed
behavior of the domain wall energetics in his domain w
renormalization calculation indicating the marginal stabil
of the Bragg glass phase.3

Because of the balance between the elastic energy s
and the scale of the energy fluctuations due to the diso
potential, the domain walls are highly convoluted and e
pected to have a fractal dimensiondf between 2 and 3. Simi-
lar to the approach used for a two-dimensional elas
medium,11,21 we have measured the size of the domain w
by counting the number of bondsNb in the wall. The data for
the area of the wall as a function of system size, avera
over disorder, can be fit by a simple power law,Nb;Ldf ,
with the fractal dimension of the domain walldf'2.60,
shown in Fig. 9~a!. This fit has been taken after excluding th
smallest system sizeL58. However, the form of the residu
als @see Fig. 9~b!#, indicates the presence of subleading ord
corrections, suggesting that this may underestimate the v
of df . In order to verify this, we have also fit the who
range of data using the formNb5aLdf1bL2. The second
term arises from the effectively two-dimensional nature
the domain walls at small length scales. This three param

of
ta

e

FIG. 7. Data collapse for the distribution ofe5(EDW

2ĒDW)/s(EDW), the normalized energy difference between t
ground states of the system with twisted and periodic bound
conditions. The points represent the observed frequencies ofe over
bins of size 0.2 for at least 104 realizations at each system size.

FIG. 8. Frequency with which negative energy domain wa
were observed. The solid line represents the expected probab
given the assumption that the distribution is a Gaussian with
observed mean and standard deviation.
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fit gives df52.65; thus we conclude that our systematic
rors in estimating the fractal dimension are approximat
0.05.

In order to investigate other low energy excitations of t
system, we have examined the sensitivity of the ground s
to perturbations in the disorder potential. Similar stud
have been carried out for disordered systems such as
glasses,9 (111)-dimensional directed polymers in rando
media,10 and two-dimensional elastic media.11 In all of these
disorder dominated systems, perturbations of rela
strengthd in the disorder potential introduce a length sca
L* ;d21/z, z5df /22u, beyond which the ground state b
comes uncorrelated with the reference ground state. The
ponentz characterizing the sensitivity of the ground state
referred to as the chaos exponent. These studies have
done by comparing the ground state for two correla
choices of the disorder potential. In our simulations, we h
obtained the ground states for the two pinning potent
V6(u(xW ),xW )5b(u(xW ),xW )6d(u(xW ),xW ), with both terms peri-
odic in the û direction. The constant part of the potenti
b(u(xW ),xW ) was an integer chosen uniformly from@1000,
2000#. The term which generates differences between
realizations, d„u(xW ),xW…, was chosen uniformly from
@2dmax/2,dmax/2#. The parameterd5dmax/2000 character-
izes the relative strength of the perturbations. This presc
tion was chosen to ensure that for a fixed value ofd the
distribution of the bond weights is the same for both reali
tions of disorder. Our simulations include values ofd rang-
ing from 0.01 to 0.75, with at least 500 independent reali
tions of disorder at eachd and L. By performing scaling
analysis of both the energetic and structural correlations

FIG. 9. Structural difference between systems with periodic
twisted boundary conditions.~a! displays the areaNb of the domain
wall as a function of the system sizeL. The statistical errors at eac
size are smaller than the plot points. The solid line represents
over the regionL>10 with the formf (L)5aLdf. The least squares
fit provides an estimate of the domain wall fractal dimensiondf

52.60. However, the form of the residuals for this fit,~b!, suggest
the presence of small subdominant corrections.
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tween the ground states for these realizations of disorder
can extract the value of the chaos exponent.

We have found that both the energetic and structural c
relations are governed by the same length scale. First
calculated the domain wall energyEDW

6 for the two disorder
realizationsV6, which can then be used to compute the d
main wall energy correlation function9

G5
~EDW

1 2EDW
1 !~EDW

2 2EDW
2 !

s~EDW
1 !s~EDW

2 !
. ~7!

The simple scaling formG5 f (dLz) describes our data wel
~Fig. 10!. We found reasonable data collapse forz
50.38(4), taking into account the statistical errors. Th
value of the chaos exponent can be related to the dom
wall fractal dimension and the energy fluctuation expon
by a simple scaling argument as in the case of spin glass9

The perturbations introduce a random change in the ene
of the domain wall of orderdLdf /2 because the perturbation
are uncorrelated with the location of the domain wall. T
typical fluctuations in the domain wall energy scale asLu.
When these energy scales become comparable, at a le
scaleL* ;d21/z, the domain wall energies become uncorr
lated. When using the effective value of the energy fluct
tion exponent,ueff'0.9, this scaling relation holds to within
5% accuracy.

We can understand the structural deformations induced
the bond perturbations by reasoning similar to that for d
main wall correlations. Here we consider the differences
the ground states of the system~with periodic boundary con-
ditions! due to the changes in the pinning potential. Aga
the ratio of the energy change due to the random pertu
tions, and that of the fluctuations in the energy landsca
dLdf /2/Lu, determines the behavior of the system. In
sponse to Zhang’s simulation of directed polymers in ra
dom media, Feigel’man and Vinokur had argued that
probability of a positional excitation grows linearly withdLz

for small values of the perturbation strength.10 Following
their argument, we expect the probability of a change in
displacement variable at a single location to grow linea
with dLz. Unlike the case for the directed polymer, the ma

d

fit

FIG. 10. Boundary condition induced domain wall energy c
relation functionG. The scaling variable is a combination of th
system sizeL and bond perturbation strengthd. The typical magni-
tude of these perturbations ranges fromd50.01 tod50.75 when
measured in units of the range of the~unperturbed! pinning poten-
tial. Each data point represents an average over at least 500 re
tions of disorder. The data collapse provides an estimate for
chaos exponentz50.38(4); theerror was estimated by determinin
the range inz where the collapse is reasonable.
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nitude of the differences is bounded for periodic pinni
since excitations withuDuu.a probe the same energy land
scape as those withuDuu,a. Thus, the spatially and disorde
averaged mean squared displacement differencex
5^@u1(xW )2u2(xW )#2&;dLz for small perturbations. Fo
large values ofd the ground states are completely decor
lated, and we expect thatx; ln(L). We have found that the
data for x collapse according to the scaling formx
5 f (dLz), with z50.39(2)~Fig. 11!. Our data are consisten
with the results obtained by the scaling argument in b
limiting cases. Before computingx, we made the transfor
mation u1→u11na, wheren is the integer which maxi-
mizes the number of locations at whichu1(xW )2u2(xW )50
for each realization. This transformation minimizesx over
the discrete set of global translations which leave the ene
of the medium invariant. Our scaling ansatz is significan
different from that proposed for the two-dimensional elas
medium x5d1/z f (L)11. This form cannot adequately co
lapse our data over the range of parameters we have s
lated.

Implicit in this discussion is the assumption that both t
perturbation induced deformations and the boundary co
tion induced domain walls are characterized by the sa
fractal dimension. Even for relatively small perturbations
the disorder, the deformations are typically composed o
set of disconnected clusters. We have directly measu
these clusters’ fractal dimension. The size of a clusterR is
defined as the average of the sides of the bounding
which encloses the cluster and is measured in units of
lattice spacing. Our algorithm identifies the sets of nodes
which u1(xW )2u2(xW )Þ0 after performing the translatio
which minimizesx. The surface area of a clusters is the
number of nodes with neighbors not in the cluster. We h
collapsed the data ford50.05 using the finite size scalin
form s5Ldf f (R/L) ~Fig. 12!. We expect that the scalin
function f (R/L) should have the formf ;(R/L)df in the
regionR/L!1, R@1, but this regime is not clearly visible in
Fig. 12 due to lattice and finite size effects. Despite this,
best collapse of the data, for 0.5,R/L,1.0, provides an
estimatedf52.65(10) which is consistent with the estima
for the domain wall fractal dimension. Similar analysis
other values ofd provide equivalent values for the clust
fractal dimension. The anomalous data atR/L'1 arise from
the rare clusters which span the system in all directions. T

FIG. 11. Configurational differences induced by perturbing
disorder potential randomly at each location with relative stren
d. The response function,x5V21SxW@u1(xW )2u2(xW )#2, is the spa-
tially averaged squared displacement difference between the r
ence and perturbed ground states. The data have the scaling
x5 f (dLz), with z50.39(2).
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scaling also breaks down for clusters withR,8, where lat-
tice effects make the surface effectively two-dimensio
~Fig. 13!. The equality of the fractal dimension of the boun
ary condition induced domain walls and bond perturbat
induced deformations can be justified by a simple argum
For small values of the disorder perturbation parameter,
cluster boundaries lie in regions where there is a small
ergy cost to deforming the medium. If one considers onl
small volume containing a portion of the cluster bounda
the structural difference is the same as would be caused
the change from periodic to twisted boundary conditions
that volume. Thus both the deformations induced by sm
changes in the disorder potential and those caused b
change in boundary conditions should be characterized
the same fractal dimension. Despite the fact that the sca
regime is inaccessible due to the limits on the size of syste
studied, our data are consistent with the conclusion that
fractal dimension of the clusters which compose the de
mations is the same as that of the boundary condition
duced domain walls.

We have performed extensive numerical simulations o
model three-dimensional elastic medium subject to quenc
disorder with scalar discrete displacements. Our results

e
h

er-
rm

FIG. 12. Scaling of the surface area of the singly connec
components of deformations induced by perturbations of rela
strengthd50.05 in the disorder potential. The data collapse
df52.65, with an uncertainty of60.1. As a guide to the eye, th
df52.65 power law behavior of the average surface area,s, as a
function of the cluster’s radius,R, is indicated by the solid line.
Because each realization of disorder generates numerous clust
various sizes, the statistical errors for the average surface are
smaller than the plot points.

FIG. 13. Relationship between the surface area and the siz
small connected clusters of deformation induced by small chan
in the disorder potential. ForR,8 their surfaces are approximate
two dimensional and independent of the system size, as indic
by the solid line representings5R2. This behavior does not persis
to larger clusters. In order to illustrate the crossover, the large c
ter behaviors;R2.65 is represented by the dotted line. The statis
cal errors for each data point are smaller than the plot points.
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the structure in the Bragg glass phase indicate that the s
ture factor has divergences of the formS(k);Ak23. Our
results for the coefficientA fall between the approximat
valuesA51.0 andA51.1, obtained via a renormalizatio
group and a replica approach.4 The observed energetics o
the boundary condition induced domain walls indirectly su
port arguments for the stability of the Bragg glass pha
These domain walls correspond to the elastic deformat
due to the introduction of a single dislocation loop windi
around the system. Our data are consistent with the hyp
esis that the mean energy and the energy fluctuations
section of domain wall both scale linearly with the linear s
dis
c-

-
e.
s

h-
a

of the section for large sizes. This balance is a crucial e
ment of the analysis carried out by Fisher indicating the m
ginal stability of the Bragg glass phase to the introduction
dislocations.3 We are also able to measure the spatial str
ture of these domain walls and obtain their fractal dimens
df52.60(5). Wehave observed that random changes in
disorder potential of relative strengthd decorrelate the
ground state on length scales larger thanL* ;d21/z with z
50.385(40). The properties of the domain walls and t
sensitivity to disorder perturbations can be related to e
other by the scaling relationz5df /22u, whereu character-
izes the fluctuations in the low energy excitations.
l
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