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Physical nature of critical modes in Fibonacci quasicrystals
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We report on the possibility of modulating the transport properties of critical normal modes in Fibonacci
quasicrystals by using the mass ratio as a tuning parameter. The relationship between the spatial structure and
the transport properties of these modes is studied analytically in terms of the transmission and Lyapunov
coefficients. Power spectrum analysis of the critical modes indicates a complex modulated structure in agree-
ment with previous experimental results.@S0163-1829~99!11337-7#
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The interest in the precise nature of critical states~CS!
and their role in the physics of aperiodic systems has w
nessed a renewed interest in the last few years, aime
clarify the relationship between their spatial structure a
their related transport properties.1–3 From a mathematica
point of view the nature of a state is determined by the m
sure of the spectrum to which it belongs. Consequently, s
it has been proven that Fibonacci lattices have purely sin
lar continuous spectra,4 we can properly state that all th
states are critical in these systems. However, this fact d
not necessarily imply that all these CS behave in exactly
same way from a physical viewpoint.

In fact, physically states can be classified according
their transport properties. Thus, conducting states in crys
line systems are described by periodic Bloch functio
whereas insulating systems exhibit exponentially decay
functions corresponding to localized states. Within t
scheme the position of CS is somewhat imprecise beca
generally speaking, CS exhibit a rather involved oscillato
behavior, displaying strong spatial fluctuations at differe
scales.

A first step towards a better understanding of CS w
provided by the demonstration that the amplitudes of CS
Fibonacci lattice do not tend to zero at infinity, but a
bounded below through the system.5 This result suggests tha
the physical behavior of CS might be more similar to th
corresponding to extended states than to localized ones.
cordingly, the possible existence ofextendedCS in several
kinds of aperiodic systems has been extensiv
discussed,6and arguments supporting the convenience
widening the very notion of extended state to include a
states whichare notBloch functions have been recently p
forward.1,7

The use of multifractal methods to analyze the electro
states in Fibonacci lattices provided conclusive evidence
the diversityof different CS, depending on their location
the highly fragmented energy spectra. Thus, while states
cated at the edges or the band centers of the main subb
exhibit a distinctive self-similar spatial structure, most of t
remaining states do not show any specific pattern.8 These
results were shortly thereafter substantiated by real-sp
renormalization procedures.9

A similar situation can also be expected to occur for
phonon spectrum.10 In fact, when studying band structur
effects in the thermal conductivity of Fibonacci quasicryst
PRB 600163-1829/99/60~14!/10032~5!/$15.00
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~FQC! we have found a great variety ofcritical normal
modes~CNM!,11,7 exhibiting quite different physical behav
iors, which range from highly conducting extended states
CS whose transmission coefficient oscillates periodically
tween two extreme values, depending on the syste
length.7,13

In this paper we report on the possibility ofmodulating
the spatial structure and transport properties of CNM pro
gating through a FQC by properly selecting the masses’
ues. The transport properties of the different states are
lyzed by means of closed analytical expressions for
Lyapunov and transmission coefficients. The relationship
tween the spatial structure of CNM and their related tra
port properties is further explored by means of a power sp
trum analysis which allows us to describe the over
structure of CNM as a superposition of two basic contrib
tions involving different scale lengths.

In our study we consider a harmonic chain composed
two kinds of masses,mA and mB , which are arranged ac
cording to the Fibonacci sequence, and two kinds of sprin
KAA andKAB5KBA , depending on the type of joined atom
In this way, the quasiperiodic distribution of masses in t
systeminducesan aperiodic~non-Fibonaccian! distribution
of spring constants in the lattice. This model is physica
sound since one expects that the nature of the chem
bonding between the different atoms will depend on the
ture of the atoms involved. In this sense, our FQC mode
both moregeneraland simpler than most of the Fibonacc
lattices previously discussed in the literature.14

Making use of the transfer-matrix formalism the statio
ary equation of motion for the FQC can be cast in the fo

S un11

un
D 5S an

Kn,n11
2

Kn,n21

Kn,n11

1 0
D S un

un21
D[PnS un

un21
D ,

~1!

whereun is the displacement of thenth atom from its equi-
librium position,Kn,n61 denotes the strength of the harmon
coupling between neighbor atoms,an[Kn,n211Kn,n11
2mnv2, mn , with n5A,B, is the corresponding mass
and v is the vibration frequency. Making use of period
10 032 ©1999 The American Physical Society



c
io

e

rix

x-

PRB 60 10 033PHYSICAL NATURE OF CRITICAL MODES IN . . .
boundary conditions the allowed regions of the frequen
spectrum are determined from the usual condit
uTrM (N,v)u[uTr()n5N

1 Pn)u<2, whereM (N,v) is the glo-
bal transfer matrix, andN is the number of atoms in th
i-
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lattice. From the knowledge of the global transfer mat
elements,Mi j , we can obtain the transmission,t(N,v), and
Lyapunov, G(N,v), coefficients through the standard e
pressions
t~N,v!5
4 sin2k

@M122M211~M112M22!cosk#21~M111M22!
2sin2k

, ~2!
to
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G~N,v!5
1

N
ln~M11

2 1M12
2 1M21

2 1M22
2 !, ~3!

where cosk5mA/2KAA is the dispersion relation for a per
odic chain.

Now we will extend the algebraic approach, previous
introduced by us to describe the electron dynamics
quasiperiodic1,12 and fractal13 systems, in order to study th
phonon dynamics as well. This approach is based on
transfer matrix technique, where the dynamical equation~1!
is determined by the following transfer matrices

X[S 22aV 21

1 0 D , Y[S 11g21~12V!2g21

1 0 D ,

Z[S 11g2V 2g

1 0 D , W[S 22V21

1 0 D , ~4!

expressed in terms of the model parametersa[mB /mA , g
[KAA /KAB , andV[mAv2/KAB . Making use of these ma
trices, and imposing cyclic boundary conditions, we c
translate the atomic sequenceABAAB. . . describing the
topological order of the FQC to the transfer matrix seque
XZYXZYXWXZYXW. . . describing the phonon dynamic
In spite of its greater apparent complexity, we realize that
renormalizing this transfer matrix sequence according to
blocking schemeRA[ZYX and RB[WX, we get the con-
siderably simplified sequence . . .RBRARARBRA . The sub-
scripts in theR matrices are introduced to emphasize the f
that the renormalized transfer matrix sequence is also
ranged according to the Fibonacci sequence and, co
quently,the topological order present in the original FQC
preserved by the renormalization process. Let N5Fn be the
number of lattice sites, whereFn is a Fibonacci number ob
tained from the recursive lawFn5Fn211Fn22, with F1
51 andF051. It can then be shown by induction that th
renormalized sequence containsnA[Fn23 matricesRA and
nB[Fn24 matricesRB .

Now we realize that theR matrices commute for certai
frequency values. In fact, after some algebra we get

@RA ,RB#5
V

g
$2g212a@11V~g21!#%S 1 0

22aV 21D .

~5!
Aside from the trivial, limiting caseV→0, this commutator
vanishes for the frequencies given by the expression
n

e

n

e
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V* 5
a22g11

a~12g!
. ~6!

A detailed study of the phonon spectrum corresponding
these states has been given elsewhere.11,7 In this work we
will focus on the particular case given by the conditio
KAA5KAB/2.15 In this case (g51/2), expression~6! reduces
to V* 52 for any arbitrary choice of the masses mA and
mB . In other words, the commutation frequency becom
independent of the values assigned to the mass distributio
the FQC. The renormalized matricesRA andRB then adopt
the simple form

RA5S 1 0

2~a22! 1D RB5S 21 0

2~12a! 21D , ~7!

and the corresponding power matrices can be easily ev
ated by induction, so that the transfer matrix becomes

M ~N,V* ![RA
nARB

nB5~21!nBS 1 0

2~aFn222Fn21! 1D .

~8!

Two interesting consequences can be extracted from
~8!. In the first place, we realize that the frequencyV* 52
belongs to the spectrum regardless of the system len
sinceuTr@M (N,V* )#u52 in this particular case. In the sec
ond place, if we choose the values for the masses in su
way that their ratio satisfies the relationshipa
5Fn21 /Fn22, we getM (N,V* )56I , whereI is the iden-
tity matrix. Consequently, when the parametera is a rational
approximant of the golden meant5 limn→`(Fn21 /Fn22)
5(A511)/2, the state corresponding to the resonance
quenceV* is a transparentstate witht51. An illustrative
example of this kind of state is shown in the inset of Fig
for a lattice with N52584 anda51597/987. The norma
mode amplitudes have been obtained by iterating the
namical equation~1! with the initial conditionsu050 and
u151. The extended nature of the state is clearly appre
ated. At this point, however, we must stress that the spa
structure of this CNM is determined by two different cont
butions, which correspond to two separate scale leng
Thus, although at long scales~greater than, say, 100 sites!
the state shows a distinct periodiclike16 pattern, such an al-
ternating pattern resolves into a series of quasiperiodic os
lations at shorter length scales. The existence of both co
butions is conveniently illustrated in the main frame of F
1, where we plot the power spectrum of the CNM shown
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the inset. In fact, we observe two main contributions in
power spectrum. In the low frequency region, a major pe
located atn50.00921 (l.108.5 sites!, describes the over
all periodiclike pattern. On the other hand, starting at ab
n50.09, we observe a series of nested, subsidiary featu
characterized by thetwin peakslabeled by the lettersai , bi ,
ci , anddi ( i 51,2). Each couple of peaks groups around
frequency value given by some of the successive power
the inverse golden means51/t. These features arrange a
cording to a self-similar pattern, which extends through
entire high frequency region of the power spectrum up ton
.0.4. This self-similar component of the power spectru
reveals the quasiperiodic nature of the corresponding C
when it is observed at shorter scales. The relative importa
of the periodiclike versus the quasiperiodiclike contributi
can be roughly measured by the height ratio of their rela
peaks in the power spectrum, i.e.,I QP /I P.1024. Therefore,
we are considering a CNM which behaves as an exten
transparent state, butstill preserves a significant degree o
quasiperiodic orderin its inner structure.

Now we shall consider the following question. Accordin
Eq. ~8! the transparency conditiont51 is achieved whena
5Fn21 /Fn22, which corresponds to thebest rational ap-
proximant tot for a given FQC of lengthN. Let us consider
the case where we assign to the parametera the successive
values of the seriesam[$Fn2m /Fn2(m11)%, with m
51,2 . . . giving progressivelyworserational approximants
of t. What will the spatial structure and related transp
properties of the corresponding critical states be? To
end, we shall perform an analytical study of the transmiss
and Lyapunov coefficients. By plugging Eq.~8! into Eq. ~2!
and Eq.~3!, respectively, we obtain

t~N,V* !5
1

11
4

3
~aFn222Fn21!2

, ~9!

and

FIG. 1. Power spectrum of the extended CNM shown in
inset and atomic displacements in a FQC withN52584 anda1

51597/987 at the resonance frequencyV* 52 ~inset!.
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G~N,V* !5
1

N
ln@214~aFn222Fn21!2#, ~10!

where, without any loss of generality, we have adopted
reference valuesmA5KAA[1. Then assigning differentam
values into Eq.~9! and Eq.~10! we can study the mass rati
dependence oft and G coefficients for different system
lengths. In Table I we summarize the results for a FQC w
N52584, whereL5G21 estimates the localization length o
the corresponding states.

From the results listed in Table I several conclusions c
be drawn. In the first place, asam progressively worsens as
t approximant, we observe a systematicdegradationof the
transport properties of the resonant state, which evolves f
an extended character (t.1, L/N.1) to a clearly local-
ized one (t.0.1, L/N,1). In the second place, we ob
serve that the extended-localized transition is a relativ
sudden episode, taking place in a narrow window of m
ratio values around the critical valuea* 5a8. We have
checked that this transition also occurs for other syst
lengths, although the precise value ofa* depends onN. In
Fig. 2 we show the power spectrum and the amplitude d

e

TABLE I. Systematic variation of the transmission an
Lyapunov coefficients with the mass ratio parameteram for the
resonant CNMV* 52 corresponding to a FQC withN52584.

m am t(2584,V* ) L/2584

1 1597/987 1.000000 1.44269
2 987/610 0.999996 1.44268
3 610/377 0.999990 1.44266
4 377/233 0.999902 1.44239
5 233/144 0.999421 1.44089
6 144/89 0.995809 1.42971
7 89/55 0.972565 1.36131
8 55/34 0.836873 1.05302
9 34/21 0.428571 0.55811

10 21/13 0.098811 0.29588
11 13/8 0.015619 0.19038

FIG. 2. Power spectrum of the CNM shown in the left-ha
inset and atomic displacements in a FQC withN52584 at the reso-
nance frequencyV* 52 for a7589/55 ~left-hand inset! and a*
555/34 ~right-hand inset!.
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tributions of a CNM undergoing this transition. The CNM
shown at the left-hand inset (a7) has a high value of the
transmission coefficient (t.0.97), and uniformly spreads
through the FQC (L/N.1.36). Conversely, the transmissio
coefficient of the CNM shown at the right-hand inset (a8)
has significantly decreased (t.0.84) andL/N.1, indicating
a sudden stretching of its spatial extent. The overall struct
of the power spectrum is analogous to that shown in Fig.
but a closer inspection reveals some interesting differenc
Thus we observe a shift of the periodiclike peak positi
towards higher frequencies describing the presence of
long-range modulation amplitude. Conversely, the nes
twin peak features broaden, undergoing a substantial s
towards the lower frequency region of the spectrum. Fina
the ratioI QP /I P.1023 increases by an order of magnitud
indicating the progressive relevance of the role played by
quasiperiodic contribution.

It is worth noting that the spatial structure of the CNM
shown in the left-hand inset exhibits a long-range~about 900
sites! amplitude modulation containing a series of higher fr
quency quasiperiodic oscillations of minor amplitude. Th
complex spatial modulation has been previously reported
a characteristic signature of wave propagation on quasi
tices in a few experimental studies dealing with Raylei
surface acoustic waves propagating on the quasiperiodic
corrugated surface of a piezoelectric substrate (LiNbO3),17

and coherent acoustic phonons in GaAs/AlAs Fibona
superlattices.18

Finally, we will briefly comment on the interesting behav
ior of the CNM when the FQC satisfies the conditio
aFn222Fn2151. In this case the amplitude distribution ex
hibits a peculiar signature, where a complex arrangemen
self-similar fluctuations of the normal mode amplitude
seems to bemodulatedby a broad, smooth envelope cove
ing the entire system’s length, as shown in the inset of Fig
The overall structure of the corresponding power spectr
exhibits an intricate pattern, where a significant overlapp
of different nested peaks occurs as a consequence of t
progressive broadening. Notwithstanding, we can clearly
preciate the significant influence of the quasiperiodic con
bution over the periodiclike one, as indicated by the re
tively high value of the ratioI QP /I P.0.01.

In summary, this work conveniently illustrates therich
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physical behaviorof CS and the way the different spatia
structures they display can affect their related transport pr
erties, as measured in terms of the Lyapunov and trans
sion coefficients. This we have shown by means of a tran
matrix renormalization technique which allows us to unv
the effects of short-range correlations by groupingABA sites
and AB sites into the matricesRA and RB , respectively. In
this sense, it is quite reasonable to assume that the tran
properties of these critical normal modes are substanti
affected by the quasiperiodic order of the underlying latti
It is also worth noting that similar results concerning t
existence of extended states in other kinds of self-sim
structures, such as Thue-Morse chains and hierarchical
tices, have been recently reported in the literature.19,20 Con-
sequently, we deem that the algebraic approach present
this work may be extended in a straightforward manner
other kinds of aperiodic systems based on substitution
quences, and therefore it can be a promising starting poin
order to attain a unified treatment of certain physical prop
ties of aperiodic systems.21

I acknowledge M. Victoria Herna´ndez for a critical read-
ing of the manuscript. This work was supported by UC
under Project No. PR64/99-8510.

FIG. 3. Power spectrum of the CNM shown in the inset a
atomic displacements in a FQC withN52584 anda9534/21 at the
resonance frequencyV* 52 ~inset!.
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