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Physical nature of critical modes in Fibonacci quasicrystals
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We report on the possibility of modulating the transport properties of critical normal modes in Fibonacci
guasicrystals by using the mass ratio as a tuning parameter. The relationship between the spatial structure and
the transport properties of these modes is studied analytically in terms of the transmission and Lyapunov
coefficients. Power spectrum analysis of the critical modes indicates a complex modulated structure in agree-
ment with previous experimental resulf§0163-18209)11337-7

The interest in the precise nature of critical stat€S) (FQO we have found a great variety afritical normal
and their role in the physics of aperiodic systems has witiodes(CNM),'" exhibiting quite different physical behav-
nessed a renewed interest in the last few years, aimed iors, which range from highly conducting extended states to
clarify the relationship between their spatial structure and"S whose transmission coefficient oscillates periodically be-
their related transport propertiés® From a mathematical tween_two extreme values, depending on the system's
point of view the nature of a state is determined by the mealength/*®
sure of the spectrum to which it belongs. Consequently, since In this paper we report on the possibility ofodulating
it has been proven that Fibonacci lattices have purely singuhe spatial structure and transport properties of CNM propa-
lar continuous spectfawe can properly state that all the 9ating through a FQC by properly selecting the masses’ val-
states are critical in these systems. However, this fact doges. The transport properties of the different states are ana-
not necessarily imply that all these CS behave in exactly th&yzed by means of closed analytical expressions for the
same way from a physical viewpoint. Lyapunov and transmission coefficients. The relationship be-

In fact, physically states can be classified according tdween the spatial structure of CNM and their related trans-
their transport properties. Thus, conducting states in crystalort properties is further explored by means of a power spec-
line systems are described by periodic Bloch functionsfrum analysis which allows us to describe the overall
whereas insulating systems exhibit exponentially decayingtructure of CNM as a superposition of two basic contribu-
functions corresponding to localized states. Within thistions involving different scale lengths.
scheme the position of CS is somewhat imprecise because, In our study we consider a harmonic chain composed of
generally speaking, CS exhibit a rather involved oscillatorytwo kinds of massesn, and mg, which are arranged ac-
behavior, displaying strong spatial fluctuations at differentcording to the Fibonacci sequence, and two kinds of springs,
scales. Kaa andK ,g=Kga, depending on the type of joined atoms.

A first step towards a better understanding of CS wadn this way, the quasiperiodic distribution of masses in the
provided by the demonstration that the amplitudes of CS in gysteminducesan aperiodic(non-Fibonacciandistribution
Fibonacci lattice do not tend to zero at infinity, but areOf spring constants in the lattice. This model is physically
bounded below through the systé&rfihis result suggests that sound since one expects that the nature of the chemical
the physical behavior of CS might be more similar to thatbonding between the different atoms will depend on the na-
corresponding to extended states than to localized ones. A&re of the atoms involved. In this sense, our FQC model is
cordingly, the possible existence ektendedCS in several both moregeneraland simpler than most of the Fibonacci
kinds of aperiodic systems has been extensivelyattices previously discussed in the literatdfte.
discussedand arguments supporting the convenience of Making use of the transfer-matrix formalism the station-
widening the very notion of extended state to include alsary equation of motion for the FQC can be cast in the form
states whichare notBloch functions have been recently put

forward ™’
The use of multifractal methods to analyze the electronic a, Knno1
states in Fibonacci lattices provided conclusive evidence on | Un+1)| K K ’ Un | Un
the diversity of different CS, depending on their location in u, ||t i ANTI =Pn Uy )’
the highly fragmented energy spectra. Thus, while states lo- 1 0
cated at the edges or the band centers of the main subbands (1)

exhibit a distinctive self-similar spatial structure, most of the

remaining states do not show any specific patfefihese

results were shortly thereafter substantiated by real-spacghereu, is the displacement of theth atom from its equi-

renormalization procedurés. librium position,K, ,-; denotes the strength of the harmonic
A similar situation can also be expected to occur for thecoupling between neighbor atoms,=K, ,_1+K i1

phonon spectrur® In fact, when studying band structure —m,w?, —m,, with n=A,B, is the corresponding mass,

effects in the thermal conductivity of Fibonacci quasicrystalsand o is the vibration frequency. Making use of periodic
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boundary conditions the allowed regions of the frequencyattice. From the knowledge of the global transfer matrix
spectrum are determined from the usual conditionelementsM;;, we can obtain the transmissiaigN, ), and
[TrIM(N,0)|=|Tr(IT}_ P <2, whereM (N, ) is the glo-  Lyapunov, I'(N,w), coefficients through the standard ex-
bal transfer matrix, andN is the number of atoms in the pressions

(o) 4 sirfk ©
,(U = !
[M 15— Mg+ (M 11— M) cosk]?+ (M 11+ M y,) 2sirPk
[
and a—2y+1
QF=——. (6)
1 2 2 2 2 (1(1_7)
I'(N,w) =G In(M1y+ M+ M3+ M), ©)

A detailed study of the phonon spectrum corresponding to

where cok=my/2K , is the dispersion relation for a peri- these states has been given elsewhefen this work we
odic chain. will focus OPS the particular case given by the condition
Now we will extend the algebraic approach, previoustKAA:* Kag/2.7In this case §=1/2), expressioi6) reduces
introduced by us to describe the electron dynamics if0 " =2 for any arbitrary choice of the masses,nand
quasiperiodit? and fractal® systems, in order to study the Me- In other words, the commutation frequency becomes
phonon dynamics as well. This approach is based on thindependent of the values assigned to the mass distribution in
transfer matrix technique, where the dynamical equation the FQC. The renormalized matricBs andRg then adopt

is determined by the following transfer matrices the simple form

2—aQ -1 1+y Y (1-Q)—y7! 1 0 [ "t 0

XE( 10 ) =l o/ Ra=lo(a=2) 1) Rl -1/ @
14y — > 0-1 and the corresponding power matrices can be easily evalu-
= Y Y — (4) ated by induction, so that the transfer matrix becomes
1 0/’ 1 0)

expressed in terms of the model parametersmg /my, 'y M(N’Q*)ERZAREB:(_:]_)”B( ! 0).
=Kan/Kag, andQ=mpw?/K,g. Making use of these ma- 2(aFy2=Fp-1) 1
trices, and imposing cyclic boundary conditions, we can €S)

translate the atomic sequencABAAB. .. describing the

topological order of the FQC to the transfer matrix sequenc? . .
o : 8). In the first place, we realize that the frequerey =2
XZY XZYXWXZYXW. . describing the phonon dynamics. belongs to the spectrum regardless of the system length,

In spite of its greater apparent complexity, we realize that by ince| TIM(N,*)]|=2 in this particular case. In the sec-

renormalizing this transfer matrix sequence according to th(cg)lnd lace. if we choose the values for the masses in such a
blocking schemeéR,=ZY X and Rg=WX, we get the con- P '

. A way that their ratio satisfies the relationshipy
siderably simplified sequence .RgRsRARgRA. The sub- oy . .
scripts in theR matrices are introduced to emphasize the fac&_ Fn1/Fn_p, we getM(N, (") =1, wherel is the iden-

that the renormalized transfer matrix sequence is also al ity matrix. Consequently, when the parametess a rational

ranged according to the Fibonacci sequence and, Consgl_pp\;gxmant Or: the golden meam:.“mnﬂxh(':”*l/':“*) ¢
quently,the topological order present in the original FQC is =(y5+1)/2, the state corresponding to the resonance fre-

preserved by the renormalization proceket N=F, be the ~duénce(” is atransparentstate witht=1. An illustrative
number of lattice sites, whef, is a Fibonacci number ob- example of this kind of state is shown in the inset of Fig. 1
tained from the recursive IaVF =F 1+F ) W|th Fl f0r a |attice W|th N=2584 anda=1597/987 The normal

n n— n—2»

=1 andF,=1. It can then be shown by induction that the mode amplitudes have been obtained by iterating the dy-

renormalized sequence contaimg=F, s matricesR, and namical equation(1l) with the initial conditionsuy=0 and
ns=F,_, matricesRg " u;=1. The extended nature of the state is clearly appreci-
=F,_ .

Now we realize that th&® matrices commute for certain ated. At this p_oint, hoyvever, we must stress.that the spa.tial
frequency values. In fact, after some algebra we get structure of .thIS CNM is determined by two different contri-
butions, which correspond to two separate scale lengths.
QO 1 0 Thus, although at long scalégreater than, say, 100 sijes
[Ra,Rg]=—{2y—1—a[1+Q(y— 1)]}( ) the state shows a distinct periodicliRepattern, such an al-
Y 2-al) -1 ternating pattern resolves into a series of quasiperiodic oscil-
) lations at shorter length scales. The existence of both contri-
Aside from the trivial, limiting cas€)—0, this commutator butions is conveniently illustrated in the main frame of Fig.
vanishes for the frequencies given by the expression 1, where we plot the power spectrum of the CNM shown in

Two interesting consequences can be extracted from Eq.
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10" TABLE |. Systematic variation of the transmission and
—_ 10°4 1 Lyapunov coefficients with the mass ratio parametgy for the
«g on. : : resonant CNMQ* =2 corresponding to a FQC witN =2584.
£ 107 o m am t(25840%) L/2584
g 1% TR 1 1597/987 1.000000 1.44269
§ 10°4 T 2 987/610 0.999996 1.44268
§ 104 " 3 610/377 0.999990 1.44266
w5 | 4 377/233 0.999902 1.44239
E 10 5 233/144 0.999421 1.44089
QC: , | 6 144/89 0.995809 1.42971
1079 7 89/55 0.972565 1.36131
10° | 8 55/34 0.836873 1.05302
oA 9 34/21 0.428571 0.55811
0.00 010 0.20 0.5 0.40 0.50 10 2113 0.098811 0.29588
v 11 13/8 0.015619 0.19038
FIG. 1. Power spectrum of the extended CNM shown in the
inset and atomic displacements in a FQC wiNk-2584 anda, 1
=1597/987 at the resonance frequeifity=2 (inse. T(N,Q*)= N|n[2+4(a|:n_2_ Fn—1)2]' (10)

the inset. In fact, we observe two main contributions in thewhere, without any loss of generality, we have adopted the
power spectrum. In the low frequency region, a major peakeference valuem,=Kaa=1. Then assigning different,,
located atv=0.00921 {=108.5 sitey describes the over- values into Eq(9) and Eq.(10) we can study the mass ratio
all periodiclike pattern. On the other hand, Starting at abOUHependence of and I coefficients for different system
v=0.09, we observe a series of nested, subsidiary featurefngths. In Table | we summarize the results for a FQC with
characterized by thavin peakdabeled by the lettera;, b;,  N=2584, wherd. =T~ estimates the localization length of
¢i, andd; (i=1,2). Each couple of peaks groups around athe corresponding states.
frequency value given by some of the successive powers of From the results listed in Table | several conclusions can
the inverse golden mean=1/7. These features arrange ac- be drawn. In the first place, as, progressively worsens as a
cording to a self-similar pattern, which extends through ther approximant, we observe a systematigradationof the
entire high frequency region of the power spectrum upto transport properties of the resonant state, which evolves from
=0.4. This self-similar component of the power spectruman extended charactet=1, L/N>1) to a clearly local-
reveals the quasiperiodic nature of the corresponding CNMzed one {=0.1, L/N<1). In the second place, we ob-
when it is observed at shorter scales. The relative importancserve that the extended-localized transition is a relatively
of the periodiclike versus the quasiperiodiclike contributionsydden episode, taking place in a narrow window of mass
can be roughly measured by the height ratio of their relategatio values around the critical value* =ag. We have
peaks in the power spectrum, i.epp/lp=10"* Therefore, checked that this transition also occurs for other system
we are considering a CNM which behaves as an extendegengths, although the precise value ®f depends om. In
transparent state, butill preserves a significant degree of Fig. 2 we show the power spectrum and the amplitude dis-
guasiperiodic ordelin its inner structure.

Now we shall consider the following question. According 10

Eq. (8) the transparency conditiar 1 is achieved whem E 10°
=F,_1/F,_5, which corresponds to thbestrational ap- § 10° 0]
proximant tor for a given FQC of lengtiN. Let us consider £ 10+ & o
the case where we assign to the parameténe successive ™~  10°+ ]
Values Of X the Se“esamE{Fn—m/Fn_—(m+ l)}’ Wlth m g 105:_ 0 500 1000 1500 2000 2500 7 500 1000 1500 2000 2500
=1,2 ... giving progressivelyworserational approximants ig 10°9 n n
of 7. What will the spatial structure and related transport & 10:‘
properties of the corresponding critical states be? To thisz 101
end, we shall perform an analytical study of the transmissiong 100
and Lyapunov coefficients. By plugging E@) into Eq.(2) 5 19
and Eq.(3), respectively, we obtain 18_2
107~ T T T T T T T T T
1 0.0 0.1 0.2 0.3 0.4 0.5
tNQF)=— : 9 v
1+ §(aFn—2_Fn—1)2 FIG. 2. Power spectrum of the CNM shown in the left-hand

inset and atomic displacements in a FQC wtk 2584 at the reso-
nance frequency)* =2 for a;=89/55 (left-hand inset and a*
and =55/34 (right-hand inset
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tributions of a CNM undergoing this transition. The CNM 10"

shown at the left-hand inset) has a high value of the Z 102

transmission coefficientt&0.97), and uniformly spreads § 10°]

through the FQCI(/N=1.36). Conversely, the transmission < 1074

coefficient of the CNM shown at the right-hand insefg) \E/ 106 L e e e
has significantly decreaset€0.84) and./N=1, indicating 5 s e e e
a sudden stretching of its spatial extent. The overall structurefg 1977

of the power spectrum is analogous to that shown in Fig. 1, 3, 104

but a closer inspection reveals some interesting differencesz 10°4

Thus we observe a shift of the periodiclike peak position g 10

towards higher frequencies describing the presence of th2 1o

long-range modulation amplitude. Conversely, the nestec 10°4

twin peak features broaden, undergoing a substantial shif . . . N .

towards the lower frequency region of the spectrum. Finally, 00 01 02 03 04 05
the ratiol gp/I p=10"2 increases by an order of magnitude,
indicating the progressive relevance of the role played by the
quasiperiodic contribution. FIG. 3. Power spectrum of the CNM shown in the inset and

It is worth noting that the spatial structure of the CNM atomic displacements in a FQC with=2584 andag=34/21 at the
shown in the left-hand inset exhibits a long-rarigbout 900 ~ "esonance frequend* =2 (insed.

siteg amplitude modulation containing a series of hlgherfre-physical behaviorof CS and the way the different spatial

quency quasiperiodic oscillations of minor amplitude. This tructures they display can affect their related transport prop-
complex spatial modulation has been previously reported aan y dispiay port prop
rties, as measured in terms of the Lyapunov and transmis-

a characteristic signature of wave propagation on quasilat:. - .
tices in a few experimental studies dealing with RayleighSIOn .coeff|C|ents.. Th's we ha\(e ShOW’.‘ by means of atransfer
surface acoustic waves propagating on the quasiperiodicall atrix renormalization techn|que'wh|ch allows us to'unve|l
corrugated surface of a piezoelectric substrate (Lij® € effect§ of short-range c_orrelatlons by groumA sites
and coherent acoustic phonons in GaAs/AlAs Fibonacc "?dAB sites into t.he matriceR, andRg, respectively. In
superlatticed? his sense, it is quite r(_agsonable to assume that the transport
Finally, we will briefly comment on the interesting behav- properties of these Pm'(.:al _normal modes are SL.JbStam.'a”y
ior of the CNM when the FQC satisfies the condition aff_ected by the quas_lpenodlc (_)rd_er of the underlymg_ lattice.
aF, ,—F, 1=1.Inthis case the amplitude distribution ex- It is also worth noting that similar results concerning the

hibits a peculiar signature, where a complex arrangement O§X|stence of extended states in Oth?f kinds Qf seIf-§|m|Iar
self-similar fluctuations of the normal mode amp”tudesstructures, such as Thue-Morse chains and hierarchical lat-

seems to benodulatedby a broad, smooth envelope cover- tices, have been recently reported in the literatdr@ Con-

ing the entire system’s length, as shown in the inset of Fig. 3sequently, we deem that the algebraic approach presented in

The overall structure of the corresponding power spectrurﬁ?ﬁe\r’vi{ﬁ drsmgf geeerixotgir;dgdsigrr?sSér:égeztfgawgais?t?;t]igir ;Z_
exhibits an intricate pattern, where a significant overlappin% P y
e

of different nested peaks occurs as a consequence of th pences, and therefore it can be a promising starting point in

progressive broadening. Notwithstanding, we can clearly ap,f—i);dsecr)ftgsgﬁgéii L;;g‘;(;(rjr%treatment of certain physical proper-

preciate the significant influence of the quasiperiodic contri-

bution over the periodiclike one, as indicated by the rela- | acknowledge M. Victoria Hermadez for a critical read-

tively high value of the ratid op/l p=0.01. ing of the manuscript. This work was supported by UCM
In summary, this work conveniently illustrates thieh under Project No. PR64/99-8510.
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