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In recent years there have been many measurements of the scaling-law equation of state
for different materials, and the "scaling function" so obtained has generally been fit by an
empirical equation involving the selection of several adjustable parameters. We propose a
method for calculating, directly from high-temperature series expansions, the function hQ)
that determines the scali.ng-law equation of state H =M hQ}. Previously, h(x) has been calcu-
lated only for the S= 2 Ising model, but the method is not generalizable to the case of the
Heisenberg model. because it relies upon the use of low-temperature expansions as well, and
these are not known for the Heisenberg model. First we calculate h(x) for the Ising model
(bcc, fcc, and simple cubic lattices) in order to assess the utility and credibility of our
method. Our Ising model h(x) agrees well with the previous calculation that used both high-
and low-temperature expansions. Next we calculate hb;) in its entire region of definition for
the S=2 Heisenberg model {fcc and bcc lattices) and the S= ~ Heisenberg models {fcclattice),
where S denotes the spin quantum number. The accuracy of our resulting expressions is
limited by the finite number of known terms in the corresponding high-temperature series
expansions, but it is generally of the order of a few percent. In Paper II the scaling functions
calculated here are compared with experiment and with the predictions of the universality
hypothesis.

I. INTRODUCTION AND OUTLINE OF PRESENT WORX

The static scaling hypothesis predicts the fol-
lowing form for the equation of state near the criti-
cal point:

where II, &, and M denote, respectively, the singu-
lar parts of the magnetic field divided by AT, /p
(p, being the magnetic moment per spin), the re-

duced temperature (T —T,)/T„and the magnetiza-
tion divided by its saturation value as T-0 or 0

The critical-point exponents 5 and 18 are de-
fined by the asymptotic relations H- M' when & =0,
and M- (—&)8 when H=O. The relation (1.1) is as-
sumed to be valid in the one-phase region close
to the critical point, which implies that the thermo-
dynamic variables & and M should be sma/l quan-
tities. The form of the function h(x) is not speci-
fied by the static scaling hypothesis, although it
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has certain well-defined characteristics, some of
which are outlined in Appendix A.

Experimental investigations on ferromagnetic
conductors, ' insulators, ' semiconductors, ' and
alloys~' confirmed the assumption of Eq. (1.1)
that the "scaled field" H/M' appears to be some
function of only the "scaled temperature" »/M' ~.

We call this function h(x) the scaling function.
Given that Eq. (1.1) appears to be experimental-

ly verified, it is of interest to obtain a theoretical
expression for the scaling function h(x). The first
proposals~'8'~ for the function h(x) were strictly
phenomenological with numerous "adjustable pa-
rameters" chosen such as to afford a plausible fit
to the experimental data. Somewhat more theoret-
ically motivated were the parametric representa-
tions of the equation of state, ' ' and other refor-
mulations of the basic scaling hypothesis that have
recently been put forward. " However, these in-
troduce new unspecified functions and parameters,
and thus diminish possibilities of some kind of ap-
proximate calculation.

The first theoretical calculation of the scaling
function h(x) was carried out for the simplest of
model systems, the Ising model, by Gaunt and

Domb. " Their calculation utilized information
provided by high-temperature and lose-temperature
series expansions. Since for most other model
Hamiltonians (e.g. , the Heisenberg model), low-
temperature series are impractical to obtain, any

attempt to furnish a straightforward generalization
of the Gaunt-Domb technique would appear to be
futile.

It is the purpose of this work to present a method
for calculation of the scaling function h(x) which

requires the knowledge of high-temperature expan-
sions only. In Sec. II the appropriate formulation
of the static scaling hypothesis is outlined, and for
the sake of illustration and assessment of our meth-
od, a calculation for the Ising model is presented.
In Secs. III and IV we proceed to apply our method
to the S= —, and S= ~ Heisenberg ferromagnets,
respectively. In Paper II, we discuss the depen-
dence of h(x) upon the form of the model Hamilto-
nian, and we examine the question of whether the
scaling function depends upon lattice structure and

spin quantum number (according to the universality
hypothesis it should not). We also compare in II
the calculated scaling functions with experimental
data on insulating ferromagnets (CrBr~, EuO) and

other materials.

II. METHOD OF CALCULATING SCALING FUNCTIONS
FROM HIGH-TEMPERATURE EXPANSIONS AND

APPLICATION TO ISING MODEL

A. Method of Calculating Scaling Functions

Our method of calculating the scaling function

h(x) was discovered after consideration of a recent
formulation of the scaling hypothesis that involves
the concept of generalized homogeneous func-
tions. ~~ 2s By definition, a function f(x, y) is a
generalized homogeneous function if there exist
two numbers a, b, such that for all positive values
of X, the relation

f(Z'x, X'y) = X'y(x, y) (2. 1)

H(~, M)/M = H(&/M"', 1)= h(&/M'") . (2. 3)

Therefore the scaling function h(x) is seen by
(2. 3) to be identical to the function H(x, 1).

However, if H(&, M) is not the singular part of
the magnetic field, then the last result is not a
complete truth since the arguments of P(&/MU', 1)
are not always small quantities, as they should
be in order that values of H are germane to the
critical region. That is, if H = Hying+ Hnpgsigg then

by definition H= H„„near the critical point.
Hence, if we stay very near the critical point we

can simply consider H, but if we do not manage to
stay near the critical point we must "sort out"

Hsing 3Rd Hff pllsill g in order to consider H„„only .
Since there is no way of doing this sorting out, we

must choose arguments of H such that we are al-
ways near the critical point, i.e. , such that al-
ways H= Hsing'

To overcome this difficulty, we can return to Eq.
(2. 2) and set X = (c/M)", where the number c may
(in princiPle at least) be chosen arbitrarily small.
With this choice, Eq. (2. 3) is replaced by

c P(6/M)/M = P(ec /M'y c) = c h(f/M )

(2. 4)
and the scaling function h(x) is now determined by
the equation

h(x) = H(xc" ', c)/c' . (2. 5)

That is, if we knew the function H(», M), then h(x)
could be obtained by replacing the variables & and

M by xc~~o and c, respectively.
Unfortunately, for all but the most unrealistic

is satisfied, where the exponent p is called the
"scaling power" of the function f(x, y) (one can
choose p = 1 by redefining a- a/p and b- b/p). The
reader can verify by inspection that the scaling
hypothesis in the form of Eq. (1.1) implies that
H(e, M) is a generalized homogeneous function in
the critical region, since there exist two numbers,
af= I/P(6+1)] and b[= 1/(b + 1)], such that for all
positive X, one has

H(& ' ' '» X' ' ' 'M)=X ' ' 'H(» M) . (2. 2)

Conversely, if we assume that P(e, M) is a gen-
eralized homogeneous function, then we can derive
Eq. (1.1) by setting X -=(1/M)" in (2. 2) with the
result
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H(&, M) = (&+ I) tanh-' [M~(M, v)],
where

(2. 6)

r(M, v)-=Z q„(M)v"=-Z y„(M)e.
n=0

(2. 7)

Here P„(M) are polynomials in M of degree I,
v =tanh(J'/kT) =-tanh[K, /(&+1)], (2. 6)

K, = J/kT, , k is-the Boltzmann constant, and J is
the exchange parameter in the Ising Hamiltonian
(J&0). Only a limited number (L) of polynomials
g„(M) could be calculated, m the number L being
equal to 8, 12, and 12 for the fcc, bcc, and simple
cubic (sc) lattices, respectively. Hence Eq. (2. V)

truncated at order L is not expected to describe the
behavior of H(&, M) in the critical region unless it
can be approximated by some closed-form expres-
sion that represents an extrapolation beyond order

According to Eq. (2. 5), to obtain the scaling
function k(x) we must set M= c in Eqs. (2. 6) and
(2. V), where c is a small positive constant. For-
mally, this procedure is similar to a problem en-
countered by Gaunt and Baker in a different con-
text, 3B and we shall therefore follow their approach
here. Specifically, we shall assume that the func-
tion 7(M= c, v) in (2. 7) vanishes at the phase bound-
ary with the power-law form

r(c, v)= Z P„(c)v"=(v,—v)'f{v), (2. 9)

where vo, q, and f(v) are to be estimated by the
method of PA's. Thus one first must find v0 and q

model Hamiltonians (such as the one-dimensional
Ising model and the Curie-gneiss model or "mean-
field theory"), all that we know about the function
H(e, M) is a finite number of terms in a series
expansion. Hence in order to obtain a reliable esti-
mate for H(&, M) we must extrapolate the regular
behavior of these terms using, e. g. , the technique
of Pade approximants (PA's). ' '"

In order to demonstrate the utility of our cal-
culational method, we begin with a calculation of
the scaling function for the Ising model.

B. Calculation of Scaling Function for Ising Model

As mentioned in Sec. I, Gaunt and Domb'9 have
calculated the scaling function k(x) for the two- and
three-dimensional (d = 2, 3) Ising models utilizing both
high- and low-temperature series expansions. In
this section we obtain an expression for k(x) that
requires for its calculation only high-temperature
series expansions. The appropriate high-tempera-
ture expansions have been obtained by Gaunt and
Baker in connection with their calculation of
M(T, H=0), the spontaneous magnetization or
"phase boundary. " These expansions have the form

by considering PA's to (d/dv)[lm(c, v)], and after-
wards f(v) can be determined by studying the prod-
uct (vo —v) '&(c, v).

Gaunt and Baker noted that the series (2. 9)
was not sufficiently lengthy for reliable estimates
for v0 and q to be obtained unless c was inside the
interval 0.6~ c-0.975. Since the smaller the val-
ue of e, the larger the region of x where the rela. -
tion (2. 5) is satisfied, we shall choose c=o. 6 for
our further analysis. For the Ising-model analy-
sis we shall consider first the bcc lattice. Table
I contains poles and residues of the PA's to (d/dv)
&& [ln7(0. 6, v)]; these correspond, respectively, to
the numbers vo and q of Eq. (2. 9). We estimate2~
from Table I that v0=0. 1658 and q=1. 0'76. Then
we form PA's to the function f(v) of Eq. (2. 9);
these PA's were found to be consistent up to five
decimal places. We therefore, almost arbitrarily,
chose the [4, 4] PA, and Eq. (2. 9) becomes

1.07B

r( 6,0v)=(1—

1 —4. 566v+5. 406v2+5. 842v +0. 3907v
1 —5. 936v+ 17.603va —37.098v + 25. 811v

(2. 1o)
If we now combine Eqs. (2. 10), (2. 9), and (2. 6),

we can obtain from (2. 5) an approximate expres-
sion for k(x) that depends upon the exponents p
and 5. If we use the generally accepted estimates
p =-~8 and 6 =-5, then we finally obtain for k(x) the
small-x expression

k(x)= k, (x) = [(O. 195x+I}/O. OV776]tanh ' [O. 6w, v)],
(2. 11a)

where 7(0.6, v) is given by (2. 10) and v
= tanh [0.15743/(0. 195x+1)].

It is important to emphasize that the expression
of Eq. (2. 11a) for k, (x) is not expected to be ac-
curate for very large values of x. For example,
if x= 1.6 and P =,s, then the first argument of
H(c, M) in Eq. (2. 5) is given by xc~~8 = 0. 312, which
is hardly of the order of & in the critical region.
Hence we must expect (2. 11a) to fail for values of
x larger than about unity. This is the reason we
use subscript 1 in Eq. (2. 11a), reserving the nota-
tion h2(x) for an expression for large x.

Since x= e/M'l~ [cf. Eq. (1.1)], positive x cor-
responds to T& T, and it turns out that we can also
calculate k(x) for large x directly from high-tem-
perature expansions. The method has, in fact,
been carefully explained by Gaunt and Domb'~ (cf .
also Sec. III C). Thus we find the following ex-
pression for k(x), valid at large x:

1.0097+ 1.0189x ~+ 0.4945x + 0. 1696x
k, (x)=x" '

1+0. 4388x
(2. 11b)

where y=1. 25 and p=~1B. This expression differs
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only very slightly from the fifth expression of Ref.
19, and the difference is probably caused by the
rounding off of results at different stages of the
calculation.

At x= 1, the large-x expression of Eq. (2. lib)
for ha(x) overlaps the small-x expression of Eq.
(2. 11a) for h, (x) (within an accuracy of about 1%).
Hence our order-of-magnitude estimate presented
above for the domain of validity of h, (x) was indeed
fairly reasonable.

C. Comparison with Results of Gaunt and Domb

I.O-

O.e—

0.8—

0.7—

0.6—

I l I I I I I

We have shown above that, using high-tempera-
ture expansions exclusively, we can obtain two
expressions that represent the scaling function of
the ising model in its whole region of definition:
h(x) =h~(x) for x-l, while h(x) =h2(x) for x) 1
[Eqs. (2. lla) and (2. 11b), respectivelyf. On the
other hand, Gaunt and Domb~ derived five differ-
ent expressions for five different domains of x.
Their first four expressions were obtained using
"low-temperature" expansions, 3 and they cover the
same domain of x as does Eq. (2. 11a,) for h, (x),
while their fifth expression for large x coincides
with our Eq. (2. lib) for h, (x). Therefore we make
comparison only between our h, (x) and the four
"low-temperature" expressions of Ref. 19.

A few words of caution should be spoken in ad-
vance. First, h~(x) can be as accurate as the de-
termination of the phase boundary from the series
(2. 6) (cf. Fig. 1). This determination is limited
in accuracy owing to the fact that high-temperature
expansions, at least those of finite length as in

0.5
I I I I I I I I

lo i

tan h KC

IO

(2. 7), are not the best source of information near
the phase boundary. We have used no specific
values of critical-point exponents or critical am-
plitudes in calculating h, (x). However, these criti-
cal parameters were utilized by Gaunt and Domb
in their construction of h(x), thereby fixing certain
values of h(x) in advance. For instance, if we
combine (2. 8) and (2. 9) with the independenfesti-.

FIG. 1. Log-log plot of the phase boundary of the
Ising model for the bcc lattice. This curve, similar to
Fig. 5 of Ref. 26, is based upon calculations in Ref. 29
using exact low-temperature series expansions. The hori-
zontal lines represent the confidence limits that follow
from high-temperature-expansion calculations of the cor-
responding values of vo (Ref. 26). The arrow indicates
our estimation of vo, for M = 0.6, obtained from Table I.

TABLE I. Poles and residues of the PA's to (d/dv)[lnr(0. 6, v)] [see Eq. (2.9)]. N andD, respectively, denote the
order of the numerator and denominator of the PA. At each PA the upper number corresponds to vo while the number
in brackets approximates q of Eq. (2. 9). Here CZ ("competing zero") means that the PA erroneously predicts that 7 (0. 6,
v) has two zeros, one below T, and the other above T,.

O. 1847
(1.6vss)

O. 1669
(1.1288)

0. 1649
(1.0330)

0.1662
(1.1O33)

0.1661
(1.0949)

O. 1601
(o. svvo)

0.1662
(1.1016)

0.1662
(1.1O14)

0.1661
(1.0973)

O. 1660
(i.o93o)

0.1658
(1.0688)

0.1638
(1.oo52)

0.1662
(1.1O15)

0.1662
(1.1O16)

0.1660
(1.O911)

0. 1692
(1.3012)

0.1661
(1.oev3)

0.1660
(i.oe39)

0.1665

O. 1661
(i.oe54)

CZ

CZ

0.1659
(1.os68)

0.1658
(1.0758)

O. 1658
(1.0v6v)

0.1658
(i.os16)

0.1658
(i.oso4)

0.1658
(1.0v94)
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TABLE II. Values of h(0) of the Ising model (the bcc
lattice) obtained by using different I'A's (different rows
of the table) to the function f(v), Eq. (2.9), and by choos-
ing different estimates {different columns) of the expo-
nent q.

Pads
[x,a]
[3,3]
[4, 3]
[5,3]
[6,3]
[3,4]
[4,4]
[5,4]
[6,4]

[4, 5]
[5, 5]
[6, 5]
[3,6]
[4, 6]
[5, 6]
[6,6]

A

{q= l.076)

0.3812
0.3819
0.3819
0.3819
0.3819
0.3819
0.3819
0.3819
0.3819
0.3819
0.3819
0.3830
0.3819
0.3819
0.3819
0.3819

8
(@=1.08)

0.3807
0.3812
0.3812
0.3813
0.3812
0.3813
0.3813
0.381l
0.3813
0.3814
0.3812
0.3820
0.3813
0.3812
0.3801
0.3817

0.3911
0.3906
0.3889
0.3874
0.3906
0.3914
0.3769
0.3856
0.3899
0.3812
0.3868
0.3842
0.3888
0.3863
0.3846
0.3830

D
@=1.076
g =4. 8

0.3442
0.3448
0.3448
0.3448
0.3448
0.3448
0.3448
0.3448
0.3448
0.3448
0.3449
0, 3448
0.3448
0.3448
0.3448
0.3448

mate28'~o B= 1.5056 [where B is defined by M
= B( e)'] -and M = 0.6, then we find v, = 0. 164 66.
Our conclusion from Table I was vo =- 0, 1658, a
value 0. 69%%uo larger. The effect of this discrepancy
is 'that the Gaunt-Domb function h(x) vanishes at
x= —xo= —B ' ~= —0. 27, whereas Table I implies
that h(x) =0 when x= —0. 30.

A second cautionary note concerns the effect of
different estimates of q upon the result in Eq.
(2. lla). 'gable IIprovides values of Q(0) obtained
from expressions fully analogous to Eq. (2. lla),
only constructed with different PA's to the function
f(v) of Eq. (2. 9). Column A is constructed using
q=1. 076, column 8 uses q=1. 08, while column C
uses the Gaunt and Baker prediction q= 1.2~ 3'

The reader mill note in column A the rather
striking consistency between different PA's [as is
typical for other values of h, (x) as well). It is
noticeable from column 8 that this consistency is
weakened when one takes a sort of average esti-
mate, q=1. 08, from Table I for q. From column
C we see that the consistency gets still worse when
one takes q= 1 (of course, this lack of consistency
does not disprove the Gaunt-Baker conjecture that

I) 28, 87

More significant, perhaps, is that all these val-
ues for h, (0) are about 10% different from the value
h(0) = 0. 345 that was estimated~' as the amplitude
of the critical isotherm [H= h(0)M' from Eq.
(l. 1)j and was utilized in the construction of the
Gaunt-Domb~e scaling function. That this 10%
discrepancy is due to the shortness of the high-
temperature expansions (2. 9) is supported by the
following argument. The critical-point exponent

6 is estimated by conventional methods (involving
the use of "high-field "~9 series expansions) to
have a value exceedingly close to 5. However,
when Gaunt and Baker26 decided to test their high-
tempe~atuxe expansion methods by estimating 5,
they were able to come up with the much /ess pre-
cise estimate 5 = 5.0+ 0.2. Presumably if con-
siderably more terms were known in the basic
high-temperature series, the confidence limits
placed on this estimate could be reduced. Corre-
spondingly, we decided to calculate h(x) using a
range of values of 5 between 4. 8 and 5. 2. When
we did this, we found that the agreement with the
Gaunt-Domb h(x) is considerably improved if we
allow 5 to decrease below 5. For example, we
show in column D of Table II the values of h, (0)for
the choice 5 =4. 8, and we note that they agree with
the value h(0) =0. 345.""Thus we conclude that
our method for calculating h, (x) is no less accurate
than the analogous method for determining the phase
boundary. ~s

Considerably better agreement with the Gaunt-
Domb scaling function is obtained if we compare
not plots of h(x) vs x but rather follow Refs. 19 and
12 and plot h(x)/h(0) vs (x+ xo)/xo. There are many
reasons for this kind of plotting. First, any com-
parison with experimental data is most plausibly
achieved with such "normalized" plots (see Paper
II). Second, for the purposes of such a normalized
plot, roe do not need knocoledge of the numerical val-
ues of the critical-Point exponents P and 6. This
is because of our method of calculating h&(x) [cf.
Eq. (2. 5)]; P becomes irrelevant because of the
identity

(xe"'+x c'")/xac" a = (x+ x )/x

and 5 becomes irrelevant because e' would be can-
celed by taking the ratio P,(x)/h, (0). In this way
errors implied by possibly inaccurate estimates of

P and 5 are eliminated.
Table III presents this kind of comparison be-

tween normalized values of h, (x) using expression
(2. lla) and the four corresponding "low-tempera-
ture" expressions of Gaunt and Domb. " It is evi-
dent that the discrepancy is much smaller than 10%%up,

and moreover it appears in regions of x where
Gaunt and Domb claimed only about 10% accuracy for
their own calculation. Therefore we feel that our
results (and theirs) for the normalized function
hq(x)/hq(0) are accurate to, at worst, 10%%uo, and
might be considerably better.

D. Calculation of Ising-Model Scaling Function for fcc and sc
Lattices

We have also calculated expressions for h, (x) for
the fcc and sc lattices, and these are given in
Appendix B.



EQUATION OF STATE NEAR THE CRITICAI POINT. I.
TABLE III. Comparison of the normalized scaling

function )t(x)/h(0) as it is calculated in this work by using
the high-temperature series expansion (see column 2)
vrith the results for the same function obtained in Ref. 19
by using lose-temperatire (Ref. 29) series expansions
(see column 3).

(x+xp)/xp

0.25
0.50.
0.75
1.25
1.50
1.75
2.00
2. 25
2. 50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4. 50

a, ( )/a, (0)

0.224
0.473
0.733
1.27
l.55
1.83
2.12
2.41
2.70
3.00
3.29
3.59
3.89
4.20
4.50
4.81
5.11

a(x)/) p(O)

0.231
0.471
0.733
1.27
l. 55
1.83
2. 11
2.40
2. 69
2.99
3.28
3.59
3.89
4. 20
4. 52
4. 84
5. 16

(3.1)

For both lattices the precision in determining
the phase boundary (i.e. , in determining ep and q)
was worse than for the bcc lattice. In the case
of the fcc lattice, this is because fewer terms in
the series (2. 7) were known (L = 8); in the case
of the sc lattice, the 12 known terms were less
convergent than in the bcc case. %e used c=0.64
for the fcc calculation and c= 0.70 for the sc cal-
culation.

One might get the impression that the constant
c is rather arbitrarily chosen. The fcc and bcc
lattices, however, have similar phase boundaries,
so that the value M= 0.64 for the fcc lattice lies
as much in the critical region as does the value M
=0.60 for the bcc lattice. Moreover, the sc lattice
has a steeper phase boundary, and it turns out that
M=0. VO for the sc lattice corresponds to about
the same reduced temperature as does M= 0. 60 for
the bcc lattice. " 0

A detailed consideration of the possible depen-
dence of the scaling function on lattice structure
is presented in Paper II.

III. CALCULATION OF SCALING FUNCTION FOR S
HEISENBERG MODEL

In this section we utilize the technique illustrated
in Sec. II for the Ising model to calculate for the
first time the scaling function of the S= —,

' Heisen-
berg model, with Hamiltonian

H(s, M) = (s+1)tanh-'(Mg(M, z)], (3. 2)

g(M, z) -=Z (2-"/ !)P„(M)»"=E (2-"/n!)P„(M)z" .
n=0 n=0

(3.3)
Here P„(M) are polynomials in M of degree n,

z -=If, /(p+1), (3.4)

K, = J/)pT„and L = 8 for all three lattices (fcc,
bcc, and sc).

Again, we assume that the one-phase region is
analytic (see Refs. 33 and 34), and we assume
that, in analogy with (2. ()), thefunction g(M, z) for
fixed M= c vanishes at the phase boundary as

g(c, ») =- 1+2 (2 /n!)P„(c)z"= (zp —z)PP(z) .
(3.5)

%e first consider the fcc lattice. The PA analy-
sis of (d/dz) lng(c, z) provides relatively reliable
results for zo and q, providing c is in the range
0.4&a&0. 85.3 For the reasons discussed in

Sec. II, we will choose the smallest possible value,
e= D. 4. The PA's for zo and q are somewhat less
consistent (cf. Table IV) than in the Ising case
(Table I). Our estimates are essentially the same
as those of Ref. 32, zo= D. 255 26 and q = 1.29.

The PA's to the function P(z) of Eq. (3. 5) were
next formed. They were found to be quite consis-
tent, and we chose the [3, 3] approximant as repre
sentative. The corresponding closed-form expres-
sion for g(0. 4, z) is, from (3. 5),

')(( 1.29

( 0. 25528i

1+3.789z+1.671z +3.612zs
1+3.775z+4. 622z~+14. 397z3 '

(3. 8)

Substituting Etl. (3. 8) into Eq. (3. 2) and using
Eg. (2. 5), we obtain the following expression for
the scaling function It(x) of the S=-,' Heisenberg
model:

a, (x) = ', t~h-' [O. 4g(0. 4, z)], (3.Va)
(0.4)' "x+1

the nearest-neighbor pair of sites (i, j ), P is the
external magnetic field divided by KT, /p, (to make
it dimensionless), and o, is the component of c
parallel to the field H.

A. Calculation of h, (x) for Small Values of x

beaker, Eve, and Hushbrooke have calculated
high-temperature series expansions for the Hamil-
tonian (3.1) that are analogous to the Ising-model
series of Eq. (2. '7):

Here o"' and o'~' are the Pauli spin operators at where
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TABLE IV. Poles (the upper numbers) and residues (the numbers in brackets) vrhich correspond to zo and q, respec-
tively, of PA s to (d/ds)[lng(0. 4, s)] (cf. Eq. (3.5)j. c.c. denotes that the corresponding prediction is a pair of complex
conjugates.

0.33967
(2.9vv)

O. 293 96
{2.016)

0.254 96
{1.281)

0.255 19
(1.286)

O. 255 99
(1.3O6)

0.257 82
{1.367)

0.276 70
(1.609)

0. 180 33
(1.894)

0.255 18
(1.286)

0.254 88
(1.2so)

O. 253 97
(1.271)

O. 22846
(o.v48)

O. 243 43
(1.007)

O. 256 01
(1.3ov)

0.253 94
(1.2vo)

0.250 84
(1.193)

ce co

0.257 57
(1.356)

0.265 54
(1.679)

0.261 58
(1.518)

0.260 15
(1.455)

z =-0. 2492/[(0. 4)'lax+1] . (3.Vb)

Again we must emphasize that Eq. (3. Va, ) is valid
for small x.~~ In order to obtain an expression for
large x we use the Gaunt-Domb method which is
quite sensitive to the estimated values of the criti-
cal-point exponents y and h. Here y denotes the
critical-point exponent that describes the diver-
gence of the zero-field isothermal susceptibility
()(r- q '), while the "gap exponent" b, describes
the divergences of the higher-order derivatives of
the magnetization with respect to field 0, when
H= 0 and T- T,'. Thus in our construction of k(x)
two separate groups of exponents are necessary:
We need P and 5 to get h, (x) for sma. ll x and we
need y and b. to get Q(x) for large x.

However, if we accept the scaling hypothesis,
we cannot choose these four exponents indepen-
dently: As noted above, they are related by the
scaling relations'

b. = p+y,
Pe=P+y. (3.&b)

Therefore, in writing Eqs. (3.Va) and (3.Vb), we
have not expressed the values of (0.4)'~ ' and

(0.4)', since there is now an alternative to choose
either P = 0. 35 and () = 5 (as in Ref. 32), or to take
P = 0. 385 and 5 = 4. Vl, which are obtained by com-
bining earlier but presumably more accurate esti-
mates~ y=1.43 and 26=3.63 together with the
scaling relations (3.&a) and (3.&b). For reasons
to be explained later, we shall choose y = 1.43, 26
=3.63, I3=0. 385, and 6=4. 71, a set of exponents
that satisfies the scaling relations. 37

B, Asymptotic Behavior of Derivatives of Magnetization with
Respect to Field

One can show4 (cf. Appendix A) that if the scaling
hypothesis, Eq. (1.1), is to be valid near the criti-

cal isochore (M= 0, T & T,), then it follows from
usual thermodynamic assumptions that the function
h(x) should have the large-x series expansion

I (~) = Z q„x""-'"&, (3.9)
n=1

valid when x exceeds some finite constant 8 (i.e. ,
If &x& ~).

On the other hand, Oomb and Hunters obtained
the same result, Eq. (3. 9), following a different
method, and their calculation provided a clue for
the actual calculation of the coefficients g„. One
first assumes that successive higher-order field
derivatives of the magnetization, evaluated at II
= 0, have singularities as T- T,' that are related
to one another by a constant "gap" index,

(
af™1

-y -a(r -1)~= A,„,e (~ = 1, 2, . . . ) .
BH 00

(3.10)
The "gap exponent" b, defined in (3. 10) is related
to the exponents p, y, and 5 by Eqs. (3.8a.) and

(8. &b); note that (3.10) reduces for r = 1 to the zero-
field isothermal susceptibility X~, so that the
"amplitude" A, is simply the susceptibility ampli-
tude.

If one now substitutes the asymptotic behavior,
Eq. (3.10), into the Taylor series expansion of
M(e, H) about H=O,

(3.11)

then one can obtain a simple relation between the
coefficients &7„ in (8. 9) and the coefficients As, ,
in (8. 10) by reverting the series (3.11) (see Appen-
dix C for the details of this procedure). There-
fore, it is necessary to know the amplitudes A&„&
in order to obtain the coefficients g„ in the large-
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FIG. 2. Plot of the sequences
(3.15). Estimates of the ampli-
tudes A2~~ can be obtained by ex-
trapolating the curves until they
intersect with the line 1/l =0
(l ). The curvy brackets,
labeled with PA, show the esti-
mates of A2 &

that follow from the
PA's (see Table V). Curves nurn-
bered 1 correspond to the critical-
point exponents y = l.43 and 2A
=3.63, whereas thosenumbered2
correspond to the choice y= 1.40
and 24=3.50.

(s. i2)

where

t'z. 't'

[o ' &+1 (s. is)

and the coefficients aa„, are derived in Ref. 35.
From (3. 12) it follows that

(
s'"-'g

=(a+I)'" 'Fo, (e) .
H~0

(s. i4)

Equations (3. 13) and (3.14) imply that the ampli-
tude Ao„, of Eq. (3. 10) can be obtained in either
of two fashions: (i) by estimating the I- ~ limit
of the sequence

or (ii) by evaluating the residues of the PA's to the
function

( )q1/ [y+ 2&r -1)A g (A )1/ [y+ 2(r -1)Eg -1
sr & s 2y -1

(s. 16)
Methods (i) and (ii) are the conventional techniques
used for obtaining amplitudes.

x expansion of h(x) [Eq. (3. 9)J.
The only amplitude A+ &

before evaluated ' for
the 8= —, Heisenberg model is the susceptibility am-
plitude A&. Therefore we calculated the higher-
order amplitudes from the series expansions

Only series of the form of (3. 13) with r = 1, 2,

3, and 4 are known, and therefore only the four
amplitudes A&, A3, A5, and A7 can be estimated.
As is clear from Eqs. (3.15) and (3. 16), the values
of the amplitudes Aa„& depend strongly upon the
estimates used for y and ~. Following the consid-
erations discussed at the end of Sec. IIIA, we shall
try the two choices (y = 1.40, 2h = 3. 50) and (y
= 1.43, 26 = 3.63).

In Figs. 2(a)-2(d) we have plotted against 1//l

for @=1, 2, 3, and 4, respectively, the known

number of terms in the sequence Aa,",, defined in

Eq. (3.15). For each value of &, plots for bzfh sets
of exponents (y, 6) are shown; however, only one
value for K, was used-the estimate K, = 0. 2492 of
Ref. 35.

Similarly, in Tables V (a)-V (d) we show the
PA's to the function of Eq. (3.16) for y = 1, 2, 3,
and 4, respectively, and again we show the pre-
dictions for each of the two possible sets of ex-
ponents (y; b.).

Ne see from Fig. 2 that the set y=1. 43, 2L
= 3.63 causes less curvature in the sequences
A2„", than the other set. %'e also see from Table
V that the I'A's are somewhat more consistent
when we use this set of the critical-point exponents.
Hence, the amplitudes Aa„& can be determined
more reliably for y= 1.43, 2L = 3.63 than for y
=1.40, 2~= 3. 50. In fact, for the first set we
find A& = 1.OV2 + 0.002, A = —4 05.o.

ooe

=130 0' '
-5.0
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TABLE V. Residues of PA's to the functions E2„(q) of Kq. (3.14). The amplitudes A~, A3, A5, and A. 7 follow, respec-
tively, from the (a), {b), (c), and (d) parts of the Table, by using the formula A2~~ =—& (residue/K~)~' '~, where & is
1, —2, 16, and 272, correspondingly. Two possible choices of the critical-point exponents, (y=1.43, 24=3.63) and

(y = 1.40, 26=3.50), are considered (cf. text). The dots appear at those places where the corresponding Pade pre-
dictions are unrealistic.

4

{a)
y=1.43

D$N

{b)
~=1.43, 2m=3. 63

0.274
0.265
0.262
0.261
0.262
0.262

0.272
0.261
0.261
0.262
0.262

0.249 0.259
0.261 0.262
0.261 0.262
0.262

0.259 0.266
0.262

0.302
0.307
0.273
0.285
0.281

0.306 0.283
0.297 0.285
0.287 0.290
0.292

0.426 0.282
0.282

0.279
0.270
0.268
0.269
0.271
0.272

0.276
0.268
0.269
0.267
0.272

y =1.40

0.258 0.267
0.269 0.271
0.267 0.272
0.271

0.267 0.281
0.271

0.310
0.312
0.288
0.298
0.289

y=1.40, 26=3.50

0.310 0.296
0.302 0.299 0.293
0.299 0.301
0.306

0, 294

(c)
y=1.43, 24=3.63

(d)
y=1.43, 26=3.63

0.350
0.314
0.332
0.312
0.320

0.295 0.379
0.328 0.318
0.321 0.318
0.318

0.215 0.237
0.318

0.497
0.296
0.442
0.258

0.373
0.326
0.356

0.291 0.505
0.348

0.352
0.319
0.343
0.323
0.337

y = 1.40, 2A =3.50

0.305 0.390 0.231 0.726
0.335 0.329 0.332
0.330 0.331
0.331

0.491
0.295
0.466
0.263

y=1.40, 26=3.50

0.376 0.303 0.513
0.331 0.356
0.369

On the other hand, for y = 1.40 and 2& = 3. 50 we
estimate A, = 1.127+ 0.004, A3 = - 4. 7'0 5, and A~
= 178.0+ 5. 0 using only predictions of PA's. For
either set of exponents, we see from Fig. 2(d) and
Table V (d) that all estimates of A~ are extremely
erratic and unreliable so that we shall not use this
amplitude in the calculation of g(x) that follows.

We will calculate hz(x), first for the set y= 1.43,
26= 3.63 (since this set corresponds to more reli-
able estimates for the amplitudes) and second, for
the set y = 1.40, 2~ = 3.63. %e shall find that al-
though the amplitudes A2„, (for the two sets of
exponents) differ quite considerably in magnitude,
the resulting large-g expressions for the scaling
functions are very similar, the discrepancy being
within 1% for the range x ~ 2. For larger x, the
discrepancy increases, but for all g within the range
corresponding to usual experimental values (x~ 10 )
we find that the discrepancy never exceeds about
10%.

C. Calculation of h2 (x) for Large Values of x

From the considerations of Sec. IIIB it follows
that the first three terms of the expansion (3. 11)
for M(c, H) may be estimated fairly reliably for
the set of exponents y=1. 43, 2~=3.63, with the
result that

M(e, H) = 1.072m "H —4. 05& " (H /3! )

+130~- '-4' (H'/5! )+ ~ ~ ~ . (3.17)

From Eqs. (C2) and (C8) of Appendix C we can ob-
tain from (3. 17) the first three coefficients g„ in the
expansion (3.9) for k2(x),

hz(x) =0. 9328m"'+0. 5111m' 8+0. 1263m" + ~ ~ ~,
(3.18)

where we have eliminated the exponent 6 in (3.9).in
favor of the exponent y by using the scaling rela-
tion P(6+I) =2p+y [Eq. (3.8b)]. In our final result,



EQUATION OF STATE NEAR THE CRITICAL POINT. I.

(3.18), the coefficients q„decrease in reliability
with order g because the process of series rever-
sion (cf. Appendix C and Ref. 19) increases the un-
certainty of the higher-order coefficients. This is
not serious, for the higher-order coefficients in

(3. 18) do not influence the numerical values of
kz(x) for large x nearly as much as do the lower-
order coefficients.

The knowledge of only three terms in the series
expansion (3.18) is certainly a disadvantage, but
owing to its presumably fast convergence it is not
disastrous. In fact, we found that numerical val-
ues of kz(x) were almost the same if we simply
truncated the series (3.18) at the three calculated
terms, or if we formed the "[1,1] PA" to (3. 18)
(this is the only PA possible for three terms),

IV, CALCULATION OF SCALING FUNCTION FOR
CLASSICAL HEISENBERG MODEL (S=~)

The classical (S=~) Heisenberg model is no less
interesting than the S=—,

' Heisenberg model, either
from an experimental or from a theoretical point
of view. In fact, according to the (unproved) uni-
versality hypothesis, critical-point exponents are
independent of spin quantum number S. However,
even for those properties which may depend on
spin, the S= ~ Heisenberg model is probably no
worse an approximation than the S= —,

' Heisenberg
model~~ 40 for the Heisenberg magnets CrBr3(S= —,')
and EuO(S=+z). Therefore in this section we cal-
culate the scaling function k(x) for the classical
Heisenberg model, described by the Hamiltonian

„0.9328 + 0. 2805x ~

1 —0. 2472m

Equation (3.19) for the large-g expression kz(x)
matches perfectly with Eq. (3. 7) for the smail-x
expression k, (x); the region of overlap extends from
z= 1.2 to x = 1.5, within which the discrepancy
between the two expressions is never larger than
about 1%. (Of course, when we consider matching
k&(x) and k2(x), we have to use the exponents p
= 0. 385 and 5 = 4. Vl in evaluating k~(~) Icf. Eq.
(3.Va)], since Eq. (3.19) for k~(x) has been calcu-
lated only for the corresponding values y= i.43 and
2s= 3.83.]"

In summary, then, we have found that in the case
of the 8= —,

' Heisenberg model, just as in the case
of the Ising model, tzo0 expressions are sufficient
to represent the scaling function k(g) over its entire
range of definition, —so&a& ~; k(g) = k, (g) for x
& 1.25 and k(x) = kz(x) for ~~ 1.25, where k, (x) and
ka(g) are given in Eqs. (3.Va) and (3. 19), respec-
tively.

Comparison of the calculated k(x) with experi-
mental results on ferromagnetic systems is pre-
sented in Paper II.

D. Calculation of Scaling Function for Other Cubic Lattices

The above calculations are for the fcc lattice.
For the bcc lattice we have also obtained an analo-
gous expression for k, (x), and it is given in Appen-
dix B. However, for the sc lattice we could not
calculate a satisfactory expression for k, (x) be-
cause it was impossible to determine zo and q in
Eq. (3. 5) with sufficient accuracy. In fact, the
same obstacle prevented a complete determination
of the phase boundary for this lattice. e~

Numerical comparison of the scaling functions
for the fcc and bcc lattices will be studied in
Paper II.

(4. 1)

I Z.a(~, m)=-M(&+1) Z a„(y)~
n =0

" &&+1
(4. 2)

where 8„is a polynomial of order z in the variable

y =M(@+1)/A; . (4. 3)

In the present case, we cannot follow strictly the
procedure applied previously to obtain the function
k(x). For if we were to follow Eq. (2. 5), fixing
M=const—= c in Eq. (4. 2), and rearranging the
series in terms of increasing powers of X,/(&+1)-=J/kT, then we would obtain a series

z, "
H(~, c)= & S„(c) q+i (4. 4)

whose coefficients S„(c)are not known exactly
Rather, S„(c)are infinite series in the variable c,
and only a few terms are known for each value of
yg. Therefore the coefficients S„(c)are not known
accurately so that if we attempted to obta. in an
approximate closed-form expression for (4. 4), it
would be exceedingly inaccurate.

Therefore we return to Eq. (4. 2) and fix y
—=const

=- g, which is more suitable since the quantities

where 8"' and S'~' are unit vectors ("classical
spins") at the nearest-neighbor pair of sites (ij )
of a lattice, while the other variables are defined
following Eq. (3.1). In contrast to Eq. (3.1), the
exchange parameter is now labeled 2J rather than
—,'J; the present convention was adopted to conform
with that of the workers who calculated the series
that we are about to use. '

A. Two Different Approaches to the Phase Boundary

For the purpose of calculating the magnetic phase
boundary for the classical Heisenberg model,
Stephenson and Wood ' generated the following
high-temperature series expansion for the fcc
lattice:
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B„(y) are polynomials in the variable y (rather
than infinite series) and hence for fixed y = a they
become precisely known numbers. In this case,
instead of Eq. (4. 4) we obtain boo coupled equa-
tions,

we infer that so = 0.1577 and q = 1.33. We then
formed PA's to the function (1 —z/zo) 'gB„(0.8)s"
[cf. Eq. (4. 6)], and choosing the [3, 3] PA as repre-
sentative, we obtain, on subsituting Eqs. (4. 6) into
(4. 5a),

e
B(~, ~)=~(~+I) Z B„(a)~

n=o
" «+&

M(e+ 1)/K, = a .

(4. 5a)

(4. 5b)

)1.8$

/l(t, M)=M(t+))()—

3 —22. 169z+23.Viz +9.51z (4 V )
1 —7.823' + 10.745@2+1.697g3 '

To obtain the scaling function h(x) we begin as
in Secs. II and III. First we assume that the sum-
mation of Eq. (4. 5a) vanishes at the phase boundary
in the form [cf. Eqs. (2. 9) and (3.5)]

9

Z B„(a)s"=- (z —z)'(t)„(z),
n=0

(4. 6)

where z=K, /(&+I)= J/hT as-before. We must
choose the constant a in the range 0. 8«a«3. (For
a & 3, PA's do not give consistent predictions for
zo and q, while for a&0. 8, zo is of the order of K,
and thus available techniques are not sufficient for
a precise estimation of zo. ) Since we wish both g

and M to be in the critical region, it follows from
(4. 5b) that we should choose a as small as possible
and, accordingly, we choose a=0. 8.

Next we seek to estimate the numbers zo and q
that appear in Eq. (4. 6) by studying, respectively,
the poles and residues of PA's to the logarithmic
derivative of (4. 6), (d/ds) ln[ P, oB„(0.8)z"]. The
consistency of the PA's thus obtained (cf. Table
VI) is superior to the consistency in the correspond-
ing tables for the Ising model (Table I) and the S
=-,' Heisenberg model (Table IV). The fact that the
consistency is slightly weakened at the last diag-
onal of Table VI does not cause us alarm and might
even have a simple explanation. From Table VI

where & and M are restricted to those values that
satisfy (4. 5b) with a=0. 8:

~(&+I) =O. BK, . (4. vb)

0. 8K
0 15VV

3 —22. 169m + 23. 71m~+ 9. 512™z3

1 —7.823%'+ 10.745z + 1.697m
(4.Ba)

c(xc'i'+ I) = 0. BK, , (4. Bb)

where z denotes K,/(xc'~z+1) as in the S= —,'case. zv

The coupling between Eqs. (4. Ba) and (4. Bb)
essentially means that in order to calculate h(x) at
some particular value of g, one first has to find
the corresponding value of c from Eq. (4. Bb). It
follows from (4. Bb) that large values of x imply
small values of e. But according to the discussion
that followed Eq. (2. 5), it is very important to
have c small; indeed, the fact that c decreases
avhen x increases leads to Zq. (4. Ba) being a valid

Next we apply Eq. (2. 5) and we obtain from Eqs.
(4. Va) and (4. Vb) an expression for the scaling func-
tion h(x) that is in the form of two coupled equations:

pAggE yy. poles (the upper numbers) and residues (the numbers in brackets) which correspond tozo andq, respectively,
of PA's to (d/dz)[ln($~08„(0. 8)z")] [cf. Eq. (&.&)].

0. 1563
(1.284)

0.1570
(1.303)

0.1624
(2.328)

0.1577
(1.331)

0.1577
(1.328)

0.1576
(1.323)

0.1578
0..335)

0.1569
(1.299)

0.1591
(1.446)

0.1578
(1.334)

0.1576
(1.327)

0.1577
(1.331)

0.1585
(1.417)

0.1574
0..315)

0.1577
(1.332)

0.1576
(1.323)

0.1577
(1.334)

0.1579
(1.343)

0.1576
(1.324)

0.1577
(1.328)

0.1577
(1.331)

0.1579
(1.342)

0.1576
(1.326)

0.1576
(1.323)

0.1582
(1.383)

0.1579
(1.345)

0.1578
(1.333)

0.1575
(1.317)
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B. Possible Sets of Critical-Point Exponents
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FIG. 3. Two ways of approaching the phase boundary
by the high-temperature expansion of the magnetic field
H(e, M). The path labeled 1 is used in the Ising and
S=~ Heisenberg model cases, Eqs. (2.7) and (3.2),
whereas path 2 is used in the case of the 8= ~ Heisenberg
model, Eq. (4.5a) (cf. also Befs. 26, 32, and 42).

expression fox large x as well as fox small x [and
this is why we do not place a subscript 1 on h(x)
in (4. Ba)].

The meaning of the last sentence is graphically
illustrated in Fig. 3, which shows the two paths
of approach to the phase boundary utilized by the
high-temperature expansions used in this work.
In the case of the Ising and S= —,

' Heisenberg models,
the phase boundary is approached along paths of
the type labeled "path 1" in Fig. 3 (c fixed). In
the case of the classical Heisenberg model, we
approach the phase boundary along the hyperbolic
path labeled '"path 2" (a fixed). Therefore when
we apply Eg. (2. 5) to the Ising and S=-,' Heisenberg
models, we in fact use the II function given on path
1, while in the S=~ Heisenberg model, the H func-
tion on path 2 has been used. When g increases,
c remains constant for path 1 and decreases for
path 2. Therefore, although expressions (2. lla)
and (3. Va) for the Ising and S= —,

' Heisenberg models
cease to be valid at large g, we might expect that
the corresponding expression (4. Ba) for the S=~
Heisenberg model will be valid for very large x.

Consistent with the expectation that (4. Ba) be
valid for large g is the following observation. Ex-
pansion (3. 8), from which the large-x expressions
for the Ising and S= —,

' Heisenberg models were ob-
tained, was necessary in order to obtain h(x) for
large x—= &/M'~~, corresponding to the region near
the "critical isochore" (M=O, T& T, ). From Fig.
3 we see that this region is not probed by path 1,
but is probed by path 2. Thus it is reasonable to
expect that for the S= ~ Heisenberg model it will
not be necessary to appeal to a critical-isochore
expansion of the form (3.9) in order to obtain h(x)
for large g.

and so=0. 1577 as mentioned above. We note
from Table VII that each of the three possible sets
of exponents leads to markedly different values for

TABLE VII. Values of h, (0) and xo for the classical
Heisenberg model obtained by using Eqs. (4.8) and (4. 9)
and three different sets of estimates of the critical-point
exponents [cf. text; we made the estimate &,=0.1575 for
the third choice by studying PA's to (X&) ~', where Xz
is the zero-field susceptibility].

a(0)

P =0.38
g =4. 63

Kc = 0. 1573

0.589
2. 13

P =0.373
g =4. 9

Kc=0 15747

0.375
1.78

P =0.35
&=5

K =0. 1575

0.470
l.82

The derivation of the expression (4. 8) for the
scaling function k(x) of the S= ~ Heisenberg model,
like expressions (2. 11a,) and (3.Va.) for g, (x) for
the Ising and S=-,' Heisenberg models, respective-
ly, is independent of a particular choice of criti-
cal-point exponents P, 5, and inverse critical tem-
perature E, = 8/kT-, . As in the case of the S= —,

'
Heisenberg model, current estimates of critical-
point exponents are sufficiently imprecise that we
feel obligated to try all three possibilities that
have been recently proposed.

(i) Stephenson and Wood '4~ have proposed P
= 0. 38+ 0. 03 and they have not challenged the ear-
lier estimates" for y (y=-1. 38). Hence by using
the scaling relation (3.Bb), it follows that 5 = 4. 63.
These exponents are consistent with K, = 0. 15'73.

(ii) Using longer series for the zero-field iso-
thermal susceptibility and using higher-order mo-
ments of the two-spin correlation function as well,
Ferer, Moore, and Wortis ' estimated y=1. 405

0.02, 2+= 3. 54+ 0.03~ n= —0. 14+ 0.06, and Ec
= 0. 15747 from which they obtain, on using the
scaling relations n 2+p +y2 and (3. 8), the esti-
mates p=0. 373+0.014 and g =4. 9+0.4.

(iii) From the hypothesis that critical-point ex-
ponents vary with spin dimensionality D according
to a simple "bilinear form" (ratio of first-order
polynomials in D), Stanley and Betts 6 propose n
= —~to y

P=~2o=0 35 y=+5=1 40 & =5, and 2~=+2
=3.5.

We have calculated h(x) from Eg. (4. 8) using all
three possibilities-(i), (ii), and (iii). Table VII
shows for each possibility values of xo and h(0),
where xo is defined by the relation h(- xo) = 0, i. e. ,
the domain of definitionof fg(x) is —xo& x& ~. From
Egs. (4. 5a) and (4. 5b), xo is seen to be given by
the expression

x, = (1 —Z, /z, )/(ae, )'", (4. O)
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x() and I1(0).' This is not surprising since the criti-
cal temperature is not the same for all three sets
of exponents and a very small change in critical
temperature leads to a very large change in the
amplitudes I)(0) of the critical isotherm and 8=1/
x(') for the coexistence curve [cf. also Eq. (4. 9)].

However, when we compare normalized plots
«h(x)/h(0) ve) sus (x+x())/x(), all three sets of
exponents produce curves that are in agreement
within 1/o for all x less than about 100; at extreme-
ly large x, the function h(x) varies as x' [cf. Eq.
(3.9) or (3. 18)] (since y is not the same for all
three choices, the normalized functions will differ).
However, this difference is quite small, e.g. , even
for x=1000, the discrepancy is only about 8/o.

In summary, then, since normalized plots are
used in all practical applications (as in comparison
with experimental data —cf. Paper II), it does not
matter much which set of exponents one chooses.
However, since the Stephenson-Wood values, set
(i), were obtained from expansion (4. 2)„as was
(4. 8), we shall use set (i) in actual comparisons
with experiment to be carried out in Paper O.

The h(x) functions calculated in this work have
very recently been cast into the parametric repre-
sentation of the equation of state by Karo arid
Krasnow (their work will be reported in a future
publication).
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H(&, M) = Z fn(~)M
tl =1

(A3)

be convergent for

HAMI

less than some positive
number 3R(&). However, (Al) combined with (A3)
requires a particular form of the functions f„(&)
and, by implication, a specific expansion of h(x)
for large x. Specifically, we find on applying the
scaling hypothesis (A1) to the expansion (A3) that

x II(xc, c)=c Z f (6)c x
n~i

(A4)

Equation (A4) multiplied with &
~ can be true only

lf

f ( ) ~ ~6(6 +1 Rn)-
Thus for large x, Eq. (A3) becomes

If(X 1/6 )
6 5 ()(6+1-6n)

n=i
(A6)

Combining (A6) and (Al) results in the expression
reproduced as Eq. (3.9) in the text,

This point corresponds to a portion of the pha, se
boundary which lies in the critical region. Since
x= &/M', and M= 8(—- &) on the phase boundary,
it follows that

(A2)

(ii) Assuming that H(e, M) is a monotonic nonde-

creasing function of q for fixed M, we can see from
(Al) that h(x) is also a monotonic nondecreasing
function.

(iii) Analyticity of H(e, M) in the one-phase region
implies that h(x) is an analytic function for all x ~
—xo. However, careful consideration should be
given to the region of very large x, i. e. , close to
the "critical isochore" M = 0, E &0. For very small
M, analyticity of II requires that the expansion

APPENDIX A: CERTAIN PROPERTIES OF THE SCALING
FUNCTION h(x) i ( ) g 6(6 +1-6n)

~=1
(AV)

Here we review those general properties of the
scaling function k(x) that are used in the present
work; these properties are mainly consequences
of the basic scaling hypothesis (2. 5) and of "com-
mon assumptions" about the thermodynamic vari-
ables magnetic field H and magnetization M.

(i) We begin by writing (2. 5) in the form

a(x) = If/I M I'= ff(«'"/l Ml"', (sgnM)c)/o'
(Al)

in order to allow for both positive aygd negative M.
If we restrict M to being nonnegative, it follows
that H is nonnegative and hence that h(x) is non-
negative. Actually, since in the one-phase region
H is zero only on the phase boundary, it follows
that for nonnegative M, I6(x) is always positive ex-
cept at the single point —x6 for which P&(- x()) = 0.

Now the initial series (A3), afforded by the analy-
ticity of H, is convergent for a given q providing
M is sufficiently small; therefore (A7) is conver-
gentwiththeprovisothat x[=-&/M' '] is sufficiently
Eatage, i.e. , in the range R&g&~, where B is some
positive constant. We cannot predetermine the
value of R in general, nor even for the specific
cases under consideration. Fortunately, it turned
out that R was sufficiently small (R:-1) for both
the Ising and S= —,

' Heisenberg models (cf. Secs.
IIB and HIC, respectively) that our expansions for
h6(x), based upon Eq. (A'I), extended to sufficiently
small values of g "overlapped" smoothly with the
small-x expressions derived for h1(x).

The scaling functions for the S= —,
' Ising and

Heisenberg models vary as x" for large g in ac-
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cordance with (A7), but the scaling function of
Eq. (4. 8) for the S= ~ Heisenberg model can be
seen to vary as x"'"' "'~'. This discrepancy
means that (4. 8) cannot be valid for arbitrarily
large g, but in practice the discrepancy is mani-
fest only for extremely large x (x-'10').

%e conclude with a remark concerning one par-
ticular value of h(x), namely, h(0). It is evident
from (A1) that h(0) is the amplitude of the critical
isotherm H= h(0)M . Hence we might expect that it
would play a special role in our analysis. indeed,
following Gaunt and Domb we chose to compare
our calculated scaling functions with experimental
data and with each other by making plots of h(x)/
h(0) vs (x+xo)/xo, where xo is related to the co-
existence curve amplitude 8 by Eq. (A2). In fact,
normalization by h(0) (the critical amplitude) might
appear to be more judicious than normalization by

h(1), 4~ especially since Betts, Guttmann, and Joyce'
have recently made a plausible argument for how

the critical amplitudes correspond to very specific
characteristics of a given system.

where

x tmh '[O. 64r, (0. 64, ,)], (81)

l.0771

r~ (0. 64, u) =
i
1—

0. 1102

1 —5.4432u+ 12.1S4u —23. 296u
1 —8.1315u+41.835u' 121.68u'+ 122. 28u'

(82)
and u —= tanh(0. 1021/[x(0. 64)' '+1]}.

Similarly, we find for the sc lattice

h, (x) =([x(0.V)"'+1]/(O. V)'} ta h '[O. V7, (O. V, u)],
(83)

where

APPENDIX B: EXPRESSIONS FOR THE SCALING FUNCTION
h(x) OF ISING MODEL FOR fcc AND sc LATTICES

AND OF S=
~ HEISENBERG MODEL FOR THE bcc LATTICE

1. Ising Model

Calculations of hz(x) in the case of the Ising model
are based on the series (2. 6), where the necessary
coefficients of the polynomials g„(M) were obtained
in Ref. 26 for g=1, 2, . .. , L, and L is equal to 8
and 12 for the fcc and sc lattices, respectively.
Details of the calculations are analogous to the bcc
lattice (cf. Sec. II) and here we present only the
results. Thus for the fcc lattice we obtain

h, (x) =([x(0.64)'~~+1]/(0. 64)'}

and u = tanh(0. 221V/[x(0. 7)'~~+1]}. In derivation of
both (81) and ( 83) no specific values for P and 5
were used, but in using these expressions one may
assume the commonly accepted values '

p=~16 and
6=5.

These two expressions cannot be expected to be
adequate for x~ 1, just as our h, (x) expression in
Eq. (2. lla) for the bcc lattice was found to fail for
x~ 1. In fact, the series analogous to (2. 7) is less
convergent in the sc lattice case; in the case of the
fcc lattice L=8 instead of 12, as for the bcc and sc
lattices. Both facts imply that (81) and (83) are
not as accurate as Eq. (2. 11a), which is caused
by a corresponding weaker precision in locating
the phase boundaries.

The corresponding large-x functions h, (x) were
not calculated.

2. S= 2 Heisenberg Model

For the 8= —,
' Heisenberg model for the bcc lat-

tice we find~'

h&(x) ={[(0.55) ~ x+ 1]/(0. 55)}

x tanh '[0. 55g„,(0. 55, 2)], (85)

where x -=0. 39V3/[(0. 55)' ~x+1] and

1.32

g...(0. 55, 2) = ~1-

x 1 —0. 0696z —1.1591z~—1.550Vz3

1 —0. 3492z+ 0. 2296z~ —2. 324Vze —1.164lz4 '

(86)
Again, we did not have to specify P and 6 in cal-

culating (85) and (86), so that one can use both
choices p=0. 35 and 6= 5 or p=0. 385 and 5=4. Vl

(cf. Sec. IIIA). As far as the validity of (85) is
concerned it cannot be more accurate than Eq.
(3. 7) for the fcc lattice and hence we also expect
(85) to break down for x~ 1. We did not calculate
a large-x expression for ha(x) for the bcc lattice.

APPENDIX C: REVERSION OF SERIES EXPANSION OF
THE SCALING FUNCTION h(x) FOR LARGE x

Here we will show that from the series (3. 11)
and assumption (3. 10) (Sec. III 8) one can get ex-
pansion (3.9) of the scaling function h(x), with the
coefficients q„expressed in terms of the amplitudes
Aa„&. Relations (3. 10) and (3.11) yield

(Cl)

where the abbreviated notation
1.085

v, (D. V, s)= (1— ag„g=-Ag„g/(2r —1) t (C2)

1 —3. 3V5Vu+1. 0923u —2. 9041u
1 —4. VV18u+ S.5V48u —15.399u

has been used. Using the scaling relations y+P
= p6 and b, = p6, Eq. (C1) can be transformed into
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~8-&Rr -1)85 psr -1
~a -1&

r= 1

and further

M 0'"-'
8 ~ asr 1(Rr--1)85 M(Rr -1)5

or, more conveniently,

(
-8 -(Rr-1)85 pp ~Rr -1

M'1i8 =~ a~-1 M')i8M

(cs)

(c4)

i.e. , y/)(" appears as a function of x ', whereas
(CG) expresses the inverse function. Therefore,
one can get q„ from g~„1 and vice versa, by the
series-reversion method. Since estimation of

g~„, is more reliable, one usually obtains g„ from
Qpp

Inserting (CV) into (CG) and identifying coefficients
of the equal powers of x ~ on both sides of the result-
ing identity, the following expressions for the first
ferv coefficients can be obtained:

X 8=K a „R,(y/X") "R-' (cG)

This form is suitable for introducing the scaled
variables x = e/M ' and y

= H/M5-. Hence
)I, =1/a, ,

V(3
= —Q3/ Q1 &

'gR = (Sas —a)a5)/&51

(CGa)

(C8b)

(CGc)

On the other hand, the series expansion (S.9) states

/y5 Q „-&R -1&8

The higher-order coefficients can be obtained in
a similar way, but we quote here only as many is
are necessary to obtain Z&I. (3. 18) from (3.1I).
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