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In this work we briefly review the Ornstein-Zernike prediction for the decay of correlation
functions, extend it to treat the decay of correlation near surfaces, and then contra. st this pre-
diction with the exactly known results for the two-dimensional' Ising model. We develop the
transfer-matrix approach to classical statistical mechanics in sufficient generality for its use
in later papers in this series, where it is employed to derive general forms for the decay of
correlation functions in Ising models away from the critical point, which provide a clear ex-
planation of the failure of the Ornstein-Zernike theory for the two-dimensional Ising model.
In particular, we show that the thermodynamic behavior of a classical system with short-range
interactions reduces, when the system becomes infinite in at least one dimension, to the cal-
culation of the largest eigenvalue of the transfer matrix. Using the Perron-Frobenius theorem,
we show that for a system infinite in no more than one dimension, an arbitrary correlation func-
tion defined on the system decays at least exponentially fast. One is able to predict whether
the decay of correlation is monotone or oscillatory on the basis of the largest few eigenvalues
of the transfer matrix.

I. INTRODUCTION

%e consider the behavior of classical many-body
systems interacting with strictly short-range
forces. ' The system of interest is an N-particle
(or N-spin) system, or equivalently, a system with
chemical potential p. and average particle number
A, with pairwise short-range interactions. %e
shall largely restrict our treatment to systems
whose particles (or spins) lie upon an underlying
lattice. although some of our results are easily ex-
tended to continuum systems.

Given such a system, the joint expectation value
G»(R) of the two locally defined quantities A(0) and

B(5) may be defined as

G„,(R) = (A(O)B(R) ),
where ( ~ ~ ~ ) denotes a thermal average with re-
spect to the appropriate ensemble. Such a joint
expectation is known as a pair-correlation function.
In cases in which the product &A(0)) &B(R)) is non-
zero, it is useful to use an alternate definition for
the pair-correlation function. Let us define the
fluctuation &B(R) of the quantity B(R) via

~B(R)= B(R) —&B(R) ) .

Then we write G»(R) as

G„,(R) =- &~A(O)aB(R) ) .
Kith this definition of the pair-correlation func-
tion, it is called variously the net correlation, the

excess correlation, or the correlation of fluctua-
tions.

The asymptotic decay of such correlations as A- ~ was long ago predicted by Ornstein and Zern-
ike to be of the form

(1.4)

where d is the dimension of the system. This pre-
diction was based on a simple argument which we
reproduce and extend somewhat below. The Orn-
stein-Zernike form (1.4) has since been found to
be a consequence of virtually every random-phase-
type theory, principal among which are the Curie-
Weiss theory and its generalizations, ' and the I an-
dau-Ginzburg theory. 4

The form (1.4) loses its validity if the second
moment.

c, =- J„dRf~'c„,(R) (1.5)

of the direct correlation function C~~(R), defined by

G„,(R) = C„,(R)+p J dR' C„,(R —R')G„,(R'),
(1.s)

diverges. ' It is now clear that this generally is the
case at the critical point of a second-order phase
transition. However, at sufficiently high temper-
atures and/or low densities there is good reason
to believe that C2 is finite and that (1.4) holds.
Additionally, one believes that even at low temper-
atures and high densities, away from T, , C~ will
be finite and (1.4) will hold. Thus, for example,
neutron scattering cross sections at small angles,
away from the critical point of a ferromagnetic
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system, yield results consistent with an Ornstein-
Zernike form for the decay of correlations. On
the other hand, in the exactly soluble case of the
two-dimensional zero-field Ising model, excep-
tions to Ornstein-Zernike theory are found at both
high and low temperatures in addition to those ex-
pected and found Bt the critical point. While the
spin- correlation function

G, (R) =—(6S'(0)6S'(R) ) (1.'7)

is found to decay as

(R) ft-1/2 e-sa

for temperatures above the critical temperature,
the low-temperature spin-correlation function de-
cays as '

G(R)-a e-"" (1.9)

Although one might expect the energy-density cor-
relation functions to decay as (1.4), they are found
to exhibit the non-Ornstein-Zernike behavior de-
scribed by (1.9) at all temperatures in zero field
and two dimensions. ' These violations of the
phenomenological predictions and experimental
measurements by the two-dimensional Ising model
are rather disconcerting in the light of evidence
that C2 should be finite except at a critical point.

One purpose of the work reported here is to un-
derstand the underlying cause of this exceptional
behavior in the two-dimensional Ising model. (A

summary of our approach and conclusions was pre-
sented in Ref. 1. ) Through an extension of our
knowledge of the decay of correlations in the Ising
model at both high and low temperatures to higher
dimensions and finite magnetic fields which we re-
port in Papers II and III of this series, we are
able to systematically catalog exceptions to Orn-
stein-Zernike behavior and to understand the
causes of these exceptions. Invariably it will be
found that exceptions are due to some hidden sym-
metry either of the Hamiltonian or of the lattice
involved. '

We present the relevant aspects of Ornstein-
Zernike theory in Sec. II, including an extension
of it to treat the case of a system with free edges.
Our calculation, in Paper IV of this series, of the
decay of spin-correlation functions in an Ising mod-
el with free surfaces confirms that at high temper-
atures the extended Ornstein-Zernike theory cor-
rectly predicts the decay of such correlations near
free surfaces.

The transfer-matrix approach employed in this
work is a generalization of matrix methods intro-
duced in 1941 by Kramers and Wannier, Mon-
troll, '~ and Lassetre and Howe. '3 In his monumen-
tal 1944 work, Lars Onsager used this technique
to obtain the partition function of the zero-field
two-dimensional Ising model in addition to the spin-

correlation function mentioned above. The matrix
method has since reappeared in the exact solution
of other two-dimensional problems such as the
dimer problem' and the ice and ferroelectric prob-
lems. ' Ashkin and Lamb' discussed the decay of
molecular order by means of the matrix method.
In this work they demonstrated that the existence
of long-range order is implied by a degeneracy of
the largest eigenvalue of this matrix. McCoy and
Wu'7 have employed the matrix method to study the
thermodynamics and correlation functions of a qua-
dratic Ising lattice with each row of vertical bonds
varying randomly from rom to row. One of the
most straightforward matrix treatments of the
the Ising problem in two dimensions is that of
Schultz, Mattis, and Lieb. '

A review of most known results concerning the
Ising transfer matrix in two dimensions was pre-
sented by Fisher and Burford. They found that
for a N&N lattice, the spectrum of the transfer
matrix is broken into N+1 bands, the number of
states in the nth band being given by the number
of ways of putting n Fermi-type particles into the
N sites of a lattice row. The largest eigenvalue—
corresponding to the zero-Fermion or vacuum
state-is nondegenerate for finite ¹ The size of
the largest eigenvalue of the gath band is a decreas-
ing function of Fermion number n.. After the vac-
uum state, the N single-particle states and

2N(N-1) two-particle states are of greatest im-
portance. Away from the critical point, the form
of these states and their eigenvalues determine not
only the bulk thermodynamics, but also the asymp-
totic decay of virtually any pair-correlation func-
tion.

Following the lines indicated by Fisher, ' we
show in Papers II and III that although the d-di-
mensional finite-field problem cannot be exactly
solved, many qualitative aspects of the two-dimen-
sional case are found to carry over to the more
general cases. In particular, the bands remain
labeled by a "particle number, "with, however, the
particles being "hard-core bosons" rather than
fermions. By the use of simple perturbation the-
ories appropriate to high and low temperatures,
we are able to make quite general statements about
the decay of various correlation functions.

The outline of our work is as follows. In Sec.
II of this paper, we derive the Ornstein-Zernike
prediction for the decay of pair correlations, both
within a bulk system and near free surfaces. ' The
remainder of this paper is devoted to an exposition
of the theory of the transfer-matrix approach from
a general viewpoint" which brings out features
not, apparently, previously recognized in the liter-
ature. General formulas for the thermodynamic
functions, and for the decay of pair correlations
are derived. We consider the eigenvalue spec-
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II. ORNSTEIN-ZERNIKE THEORY

Given a. many-particle (or spin) system with
short-range interparticle forces, and a net pair
correlation function G(R) of interest, we introduce
the (shorter-ranged) direct correlation function
C(R) via

G(R) = C(R) + f dR' C(R') G(R —R'),

where we have employed a dimensionless volume
in anticipation of specialization to lattice systems.
It is easily shown that in the low-density limit
C(R) has essentially the same range as the inter-
particle potential V(R) of the system. By the con-
volution theorem we may write the Fourier trans-
form of (2. 1) as

(2. 1)

G(q) = C(q) + C(q) G(q)

or as

G(q) = [1 —C(q)]
' C(q) .

(2. 2)

(2. 3)

We ordinarily expect C(R) to be short ranged in the
sense that the series

C(q) =Z q dR(q R)'" C(R)
n=p

(2. 4)

converges rapidly. This being the case, as q-0,
we may write C(q) as

C(q) = Cp —q Cp+ ~ ~ ~ (2. 5)

where the integral moments of C(R) are given by

C, „=[(2n)!] f dR(q R)'"C(R) . (2. 6)

In terms of the moments of C(R), G(q) becomes

G(q) =[q'+~'+O(q')] 'G, as q-o,
where

v =(1 —Cp)Cp/Cp, Gp=Cp/Cp .

(2. 7)

(2.8)

We may obtain the asymptotic decay of G(R) for

trum and its consequences for the decay of correla-
tions functions, and we include a short discussion
of the asymptotic degeneracy of the largest eigen-
value and its implications about the existence of
long-range molecular order. ' '" In Papers II and
III we derive, using perturbation theory, the eigen-
value spectrum of the transfer matrix for the Ising
model in d dimensions and arbitrary magnetic
field, for very high and very low temperatures, re-
spectively, and we use these results to calculate
the asymptotic decay of pair correlations-noting
exceptions to Ornstein- Zernike behavior. In
Paper IV we treat the decay of correlations near
free surfaces at both high and low temperatures, '
and critically compare our results with the predic-
tions of the extended Ornstein-Zernike theory.

large R by Fourier-inverting (2. 7), as is well
known from the Abelia, n and Tauberian theorems
of Fourier analysis. Letting d be the dimension
of the system, we obtain

-ffR

G(R) = Gp („g&(p as 8 (2.9)

Formula (2.9) is the Ornstein- Zernike prediction
for the asymptotic decay of pair-correlation func-
tions within the bulk of a many-body system with
short-range interactions.

Our calculation is bound to break down if C2- ~,
as is now expected at a critical point, ' for then
(2. 5) and (2.7) become invalid. However, we shall
not here be treating systems at their critical
points. Away from T= T,. , we ordinarily expect
that Cp will be finite and that ultimately G(R) de-
cays as (2.9) for R- ~, at fixed 7 not equal to T, .

In order to extend the Ornstein- Zernike theory
to obtain the decay of pair correlation functions
near free surfaces, we notice that (2. 7) has the
same form as the Fourier transform of the follow-
ing equation:

(V'- ~')G(R) = —Gpz(R) . (2. 10)

This is eminently sensible, as G(R) defined by
(2.9) is seen to be the Green's function for g —q

with homogeneous boundary conditions. In fact,
the Landau-Ginsberg theory commences from
(2. 10) directly rather than from the Ornstein- Zern-
ike relation (2. 1). Thus, in order to obtain the
decay of correlations near a surface, we are led
to solve (2. 10) in the presence of a, boundary sur-
face.

There are two kinds of boundary conditions of
particular interest. In the first kind of boundary
condition, G(R) is taken to go to zero at a small
distance beyond the surface. In the other type of
boundary condition, the gradient vG(R) of G(R) is
taken to go to zero at a small distance beyond the
boundary surface.

In the theory of electrostatics, the effect of rec-
tangular boundaries is accounted for by a set of
image charges arranged so that the boundary sur-
face has the required potential distribution. The
image method may also be applied to the scalar
Helmholtz equation [our differential equation
(2. 10)], for which a boundary may either be ab-
sorbing or reflecting. For absorbing boundaries,
the effect of the boundary is duplicated by an image
source (or sources) arranged so that its wave
fronts exactly cancel those of a wave impinging
upon the barrier; and for reflecting boundaries,
the image sources have the same arrangement as
that of the image sources for absorbing boundaries,
but are opposite in sign. Thus they exactly rein-
force a wave front impinging upon the boundary.
The case of absorbing boundaries corresponds to
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we can write the correlation function G, (B), be-
tween sites Bo and 80+8 near an edge, as

G, (R) = G(B) —G(B'), (2. ii)

where G(R) is the correlation function given in
(2.9), i. e. , that due to a single source. Refer-
ring to Fig. 1(a), we write G,(R) as

( )
exp[- )([y0+ ( —x0) ] ]

1 0
[ 0+ (g ~ )8)(((-1&/&

erru(-~(yo+(x. +(()'}"'})
(e re)

[
0

(~ + )0](d-1) /4
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where yo- ~ and xo and 5 are fixed. Expanding the
radicals to low order in (()/y0) and (x0/y0), we can
write (2. 12) as'

-1
-gR

GO G1(R) A1(&0r (&) (d'-1&/2+1 r 3 0A
(2. 13)

(b)

ge
rces

FIG. 1. Correlations near free surfaces: (a) image
source for a single surface, (b) image sources for two
intersecting surf aces.

the boundary condition that G(R) be zero at the
boundary. Similarly, reflecting boundaries corre-
spond to a zero gradient at the boundary. (Of
course, since y is real, we have diffusion rather
than wave propagation. However, the image meth-
od is still applicable. ) The source terms in (2. 10)
are composed of the 5 function for the homogeneous
source together with the 5 functions for the various
image charges.

In Fig. 1 we demonstrate the array of image
sources necessary to duplicate a single surface
and that needed to duplicate the intersection of two
such surfaces. Of course, the technique may be
generalized to d dimensions and up to d —1 inter-
secting surfaces. For simplicity we present the
calculation only for the case of a single surface,
and then simply state our result for intersecting
interfaces for n = 1, 2, . . . , d —1.

We first consider absorbing boundaries. Then
in Fig. 1(a) the image source is opposite in sign
to that of the homogeneous source, and symmetri-
cally placed across the boundary (so as to exactly
cancel the effect of the homogeneous source on
the boundary surface). Using the notation of this
figure, and employing the superposition principal,

where A, (x0, f) ) is fixed for fixed finite x0 and (&,

and is zero for x0 and/or () zero. Thus with an
absorbing boundary, the Ornstein- Zernike predic-
tion for the decay of correlations near a surface
differs from that for the decay within the bulk by
a factor [A, (x0, ())/A]. In particular, it is pre-
dicted that the sgme inverse range of correlation
& applies. The analogous formula for the asymp-
totic decay of the correlation function G„(R) be-
tween two points simultaneously near n surfaces
(»eing 0, 1, 2, . . . , d —1, where d is the dimen-
sionality) is easily derived, and found to be

- eR

[G„(R)/G0] =A, (e 1)/0, , R- ~ (2. 14)

~-aR
Ge(B) =2"GO (e-1&/0 (2. iS)

We note, however, that with reflecting boundary
conditions the component of the gradient of G„(R)
normal to a given surface is zero if R0 and/or
Ro+R actually lies upon the surface.

At high temperatures in the d-dimensional Ising
model with free-edge boundary conditions, the de-
cay of the correlation function for two spins simul-

where A„ is fixed for fixed finite distances from
the n surfaces and is zero if either Ro or Bo+R
actually is on one of the n surfaces.

For reflecting boundaries, Fig. 1 still applies.
In fact, changing the sign of the image source from
negative to positive, we may simply use Eq. (2. 12)
to determine the asymptotic decay near a surface.
To lowest order in ()(0/y0) and (()/y0), this correla, —

tion function decays as twice the bulk decay speci-
fied in Eq. (2.9). For correlations between two
points simultaneously near n. surfaces, we easily
find the decay to be given by 2" times the bulk de-
cay specified in (2.9). That is,
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FIG. 2. Correlations in a thin-slab geometry.

taneously near n surfaces is given by (2. 14), as
we shall show in Paper IV. However, we show
therein that the decay at logy temperatures is too
complicated to be correctly given by (2. 14).

It is also interesting to consider the decay of
correlation in a system which is finite in one or
more dimensions, e.g. , in a thin film. As an
example, we consider the slab geometry portrayed
in Fig. 2. As shown in the figure, we now need
an infinite series of image sources to duplicate the
boundary conditions. The image sources are to
be located at the positions (aa 2nL, 0, 0) and (- a
+2mL, 0, 0) for n=l, 2, 3, . . . and m=O, 1, 2, 3,

With g ~ gG=O on both bounding surfaces,
all the image sources are positive; with G=O on
both bounding surfaces, the image sources at
(a + 2nL, 0, 0) are positive, while those at (- a
+2mL, O, O) are negative; finally, if G=0 on the
lower surface while x. KG=0 on the upper surface,
the image sources above the slab are all positive,
while those below it are negative.

The correlation function G{R) is written in terms
of the correlation function Go(R) for homogeneous
boundary conditions by again using the superposi-
tion principle. For example, with G=O on both
surfaces, we have

of this series.
In this section we have considered the asymp-

totic decay of pair-correlation functions within the
context of the Ornstein-Zernike theory. The prin-
cipal results are formulas (2.9), (2. 14), and

(2. 15) for the decay of correlations in the bulk,
near n absorbing boundaries, and near n reflecting
boundaries, respectively. In Papers II, ID, and

IV we derive essentially exact results for the de-
cay of pair correlations in the Ising model at very
high and very low temperatures and compare them
critically with these predictions.

III. TRANSFER MATRIX

A. Introduction

In this section we present a rather thorough dis-
cussion of the matrix method. " Although the trans-
fer-matrix technique is almost always applied to
systems with strictly short-range interactions on
a regular space lattice, it may be used for any
system which has short-range interactions in at
least one direction —the layering direction. The
layer thickness is chosen to be equal to or greater
than this range. Then removing a layer from the
system corresponds to breaking it into two nonin-
teracting subsystems. This enables us to think of
building up the system one layer at a time. We
do so by repeated operation with the so-called
layer or transfer matrix which, given an L-layer
system, generates an (L+ 1)-layer system. The
interactions within a layer and between adjacent
layers may vary from layer to layer; but the
analytical theory is very much simplified when

they do not so vary.
Although the transfer-matrix method can be ap-

plied to purely statistical problems for which the
physical concept of energy is meaningless, we
shall assume that there is always a function anal-
ogous to the Hamiltonian and that the desired gen-
erating function (partition function) Z is given by

G(R) = Go(R) —Go(R —2ax) Z[R]= Tr(e ~), p=(kent) '. (3.1)

G(R) - (1/Z')G, (R) . (2. 18)

The above results are in essential agreement
with the results for the Ising model, as reported
by Camp and Fisher, and as derived in Paper IV

+Z ( [Go(R+ 2nLx) —Go(R+2(nL —a)x)f
n=i

+ [Go(R —2nLx) —Go(R —2(nL+ a)x)J) .
(2. 16)

Using (2. 16) we can show that if IR!»a, L, then

G(R) - (v/A)GO(R) as A- ~, (2. 17)

unless ~ =0 (i.e., T= T, ) when we have

We further assume that the Hamiltonian has the
form

L
X-=Z I„(n, n+1) .

[Note that the interlayer Hamiltonian h„(n, n+ 1)
may generally depend explicitly upon n. ] Addition-
ally, we take a purely "classical" point of view.
That is, we shall assume that the states of 3CL are
specified simply by specifying the configurations of
all of the layers of the system, which we shall
henceforth assume to be built up in the z direction.
As an example, consider a simple-cubic lattice of
interacting spins. Each layer might then be one or
several (0, 0, 1) planes depending upon the range
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L

Z, ,=Z" ZII -"'"~ ' (1=-L 1),
e2 eL n=2

(s.4)

of interplane forces. Note that we have ygot

limited the range of interaction in any direction
other than the layering direction z. Formally we
could accommodate long-range intralayer forces
in h„(n, n+1). However, with the inclusion of such
forces, the detailed calculational problems soon
become prohibitive.

For clarity we present the formalism in a con-
crete, matrix form and later generalize to more
abstract notation. This latter notation makes it
clear that systems with a continuity of configura-
tions may be treated, if we replace the transfer
matrix by a suitable integral operator.

Assume that our layers are specified by a set
of configurations {a},and that for the nth layer in
configuration u„, the energy function h„(n, n+1) is
given by $(o&„, o.„,,). [We have dropped explicit
dependence of h„(n, n+1) upon the layer index n ].
We specify the boundary conditions in the layering
direction either by assigning g p~io~i weights
{W,(n)} and {W~„(n)}to the configurations of the
first and last layers, respectively —representing
"end walls" —or by taking the first and (L+ 1)th
layers to be the same layer-representing cyclic
or periodic boundary conditions. The partition
function may be written

L

Z~ », =Z' ' ' Z Wq(n&)W~, g(oq, &)g e ' &' ~+&

e2 eL+2 n 1

(3.3)
with end walls, or

ZL ~=WL~, 2 K

Further, consider the trace of KL:

(s.a)

TrK'= Z Z g e ""&"&i& . (S.S)
e2= eL +2 eL l =2

Again, we see that this is the same as (3.4) for the
cyclic partition function. Therefore,

ZI. , c TrK (s. 10)

Since the partition function determines the com-
plete thermodynamic behavior of a system, Eqs.
(3.8) and (3. 10) are sufficient basis for a thermo
dynamic study of classical systems with strictly
short-ranged interactions. Further, we may use
them to clearly demonstrate how one builds up a
system layer by layer through repeated operations
with K. I et us define ZL by

ZL =K W2,' (s. ii)
then the components of ZL are the partition func-
tions Z~(n) for a system with the (L+1)th layer
restricted to its nth configuration. Definition
(3.11) implies the following fundamental recursion:

W,',, (K' W, )

L
W (u )Z Z W (n )Q e-"& &"&,i&

eL e2 l =2

(3.7)
where j' indicates the Hermitian conjugate or
transpose of a vector or matrix. This inner prod-
uct is seen to be identical with (3.3) for the parti-
tion function in the case of end walls. Hence

with periodic boundary conditions. These forms
for the partition function make clear why the meth-
od is essentially restricted to classical systems,
since for a quantal system

Z~ = Tr{exp[- p Z h(n, n+ 1)]}

~ Tr {Qexp[- Pa(n, n+1)1}, (s. 5)

(K),=e-"'" ' (gxg) . (s. 6)

because sL's does not equal e"-es except in the
special case that A and 8 commute. However,
provided that the interlayer and intralayer Hamil-
tonians commute, we may still have quantum
mechanics uithin each layer.

We introduce column vectors %2 and WL, 2 whose
components are the lTt weights {W,(n)} and {W~„(u)},
respectively (N being the total number of config-
urations of a layer). Then the transfer matrix K
is defined by its (n, n') matrix elements:

ZL, 2
—K ZL . (s. i2)

(A(l))=Ra(l, n)p(i, o) . (s. is)

The probability p(l, o.) is just the ratio of the par-
tition function for a system in which the Eth layer
is constrained to be in its ath configuration, to
the full partition function. For the case of end

walls, we have

With Z~ ~ given by W~. , ~ Zz, (3. 12) explicitly
specifies how to perform this layer-by-layer con-
struction.

We are now in a position to derive transfer-ma-
trix formulas for the expectation values of observ-
able quantities. A simple, correct definition of the
average of an observable A(n) in the nth layer is
the following. The average of A(l) is given by its
value, A(l, o.) in the nth configuration, times the
probability p(l, n) that the lth layer is in its nth
configuration, summed over all configurations a:

Consider the inner product of WL, , with KL ~ W, : ~(l, n) p(l, ~)
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P(n)=
(

o.') (n~, Z
~
o) (n~ =I,

(A(l)B(R+ l) ),= ( W(L+1)
I
K

(3.22d)

(s. 14)

Let us introduce a projection matrix which filters
out all but the nth configuration. We label this
matrix P(n). Since a layer is specified by the
totality of its configurations, these projection ma-
trices satisfy a completeness relation:

Z„P(n) =1, (s. 16)

where I is the ¹&N identity matrix. Also, since
A(l) is an observable for our systems,

A(l)P(n) = P(o.)A(l) = A(l, n)P(o. ) . (3.16)

(A(l))~= Z~ ~(Wl, g K ' A(l) K' Wg] .
(s. 16)

By an entirely analogous derivation, the joint ex-
pectation of the observable A(l) in layer l and the
observable B(l+R) in layer l+R is found to be

(A(l)B(l+ R) ),
=Zi ~$W~, i' K ' B(l+R) K ~ A(l) ~ K' Wi] .

(s. 19)
However, these arguments have been independent
of the boundary conditions, so we may immediate-
ly write the related formulas in the cyclic case as

(A(l) ),= Z, TrrA(i)K'], (s. 20)

(A(l)B(i+ R) )~ = Z~' ~ TrCK~ ~ B(l+R)K~A(l)] .
(s. 21)

Before proceeding further, it is convenient to in-
troduce a more abstract notation. From the theory
of linear vector spaces, we know that K forms a
representation of an abstract operator, also de-
noted K, and further that Wz and W~, & are the com-
ponents of abstract vectors I W, ) and I W~, , ) in
this representation. Having recalled these facts,
we see that our fundamental equations may be re-
written

Using (S. 14) and (3.16), we can write A(l, o.)p(l, o.)
as

~(i, ~)p(l, ~)

=Z,', (W,', , K'-' P(u) A(l) K' W,].
(3.17)

Then using (S. 13), (S. 16), and (3. 17) we may write
the average of A(l) as

Z~ c= Tr(~K~K q
~ ~ ~ K2Kq) . (3. 23)

This additional complication may make trivial
problems difficult, and difficult problems insolu-
ble —the reason being that noncommuting operators
cannot be simultaneously diagonalized.

Our abstract notation is sufficiently general to
treat such problems as the S=~ or classical
Heisenberg model and the classical gas in the
grand-canonical ensemble for which there are con-
tinuous infinities of configurations available to a
layer. Here instead of matrix representations,
the representations of K will be the kernels of suit-
able integral operator s.'

Having completed our introduction to the trans-
fer-matrix formalism, we go on in the next sub-
section to discuss general properties of the eigen-
value spectrum when the layer is finite in size.
For a lattice system, the size of a layer is defined
as follows: Let Nj~ N2& ~ ~ ~

& Na

gabe

the number
of sites to each of the d —1 intralayer directions;
then the layer size N isgiven by NON, ~

where No is the number of lattice planes in a layer
thickness. For a continuum system we may use
the same definition for N, where now, for example,
N, is the (dime. nsionless) extension of the layer in
the jth direction, measured, say, in hard-core
diameters. At finite N, we show that the limit as
the number of layers L tends to infinity is well be-
haved and considerably simpler than the problem
with L finite. The asymptotic decay of correlation
is expressed in terms of the spectrum of the trans-
fer matrix K.

B. Eigenvalue Spectrum, Infinite Limit, and Asymptotic Decay
of Correlation Functions

x B(R+ l)K"A(l)K'
~

W, )Z, , (S.22e)

(A(l)B(l+R) ) = Z ' Tr[K "B(R+l)K"A(l)] .
(s. 22f)

In order to treat the case with explicitly layer-de-
pendent interlayer and intralayer interactions, all
we need realize is that the transfer matrix K then
retains an explicit dependence upon which layer it
is adding to the system. Because matrices are
noncommutative, we must replace iterates of K
by ordered products K,K, ~ ~ ~ +K,&

~ ~ ~ . For ex-
ample, the cyclic partition function becomes

Zl, q,
= (w(L+ 1)

i
K

i
w(1) ),

Z, ,= TrLK'],

~

z(L))=K~Z(L —1)),

(3.22a)

(S.22b)

(3.22c)

Generally even for a lattice system with dis-
crete degrees of freedom. , the transfer matrix will
be real but not symmetric. Hence, we cannot al-
ways expect its eigenvectors to form a maximally
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linearly independent set, i. e. , the spectrum of K
will not, in general, be complete. However, K
must have a Jordan normal form~1; and as noted
previously, ' this is just as good for our purposes
as the completeness property.

Our matrices K all have non-negative elements,
and our integral operators are positive semidefin-
ite since the energy function is real. However, for
infinitely repulsive interactions, some elements
may be zero. On the other hand, we can expect
generally that there will be an iterate K", for suf-
ficiently large n, which will have positive-definite
elements. This simply corresponds to the fact
that sufficiently separated layers should be com-
patible in the sense that the joint probabilities
(P(l, o.; I+8, P)]. should be nonzero for arbitrary o,

and P for large enough A. Indeed under very gen-
eral conditions, K will be positive (no zero ele-
ments) —physically any state of layer n is compati-
ble with any state of layer g+2 via some state in
the (n+1)th layer. (This follows from our assump-
tion that only neighboring layers interact with each
other. ) Given this physically reasonable assump-
tion, we may employ the Perron-Frobenius theo-
rem. This important theorem states that if K is
positive semidefinite and has a positive iterate with
positive-definite elements, then K has a unique,
simple, and positive largest eigenvalue Ap. Fur-
ther, the eigenvector of this largest eigenvalue
will have non-negative entries. So, not only is Xp

nondegenerate, but also there are no eigenvalues
),, with modulus I'X, I equal to 30.

We now express K in its Jordan normal form. ~s

Let K'= T 'KT be the Jordan form of K. Then K'

is a block diagonal matrix, the dimensions of its
blocks being the degeneracies of its eigenvalues.
Assume that there are n eigenvalues, &0& 31& A&

& X3 ~ ~ ~ & A„„with associated degeneracies Jp = 1,
Jl, J&, . . . , J„&, J„,. Since the sum of the
multiplicities must equal the dimension of the
transfer matrix, we have

L,q(A) = '

1
X JxJ

where I is the J&J identity matrix, and J~ is a
representation of a so-called lowering operator in
a space of dimension J. It is named in analogy with

the operator J familiar from the theory of angular
momentum in quantum mechanics. ~ Consider the
2 states (I h)] defined through their column vector
representation:

0

1
y(h)=:, h=1, 2, . . . , Z, (3. 2V)

0

0

the 1 being in the hth place. Then clearly we have

(0+ii, A=1, 2, . . . , J'-1
0, A=J.

(s. 28)

Since (K')" = T K"T, it suffices to examine (K')" in
order to investigate the spectrum of K . It follows
from (3.25) that (K')" is block diagonal with the n
blocks [L~,(A, )], t=0, 1, . . . , n —1.

Let us now consider the structure of [L~(X)]":

(s. 26)

(s. 24) Equation (3.28) implies the following representa-
tion for J~:

We write K' as
(s. 29)

r,,(x, )

L~ (A2)

Hence,

rn& J. (s. so)

with

L g i(Ag) N& g
(s. 26)

We use (3.30) together with a binomial expansion
of (3. 26) to see that

(m J) J p

[L (&)] = 2 Z ~f)&" ~ (l+p~, (3.31)
p=p ~ l=l
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(3.32)
This result is of fundamental importance in the the-
ory of the transfer matrix. Using it we may derive
general results for the free energy, the asymptotic
decay of correlations, correlations near surfaces,
etc.

The associated vectors ]IX, , I &] form a. complete
set since they are orthonormal and since there are
exactly N of them. They are referred to as gen-
eralized eigenvectors of K' of rank l and eigenval-
ue A, . This is because they have the following
properties:

(K'-~, 1)" l~„f&=o,

(K'-~, l)" l~„ f&~0, m& I .

(3. 33a)

(s. ssb)

where (m, Z} is the mimmum of I and J—1. We
can write each ]I ~, (&)] in the form (3.31). Since
the associated vectors are orthonormal —()(, , flh„x&
= 5„6,„—we may simply write (K')" as the sum of
these orthonormal operators. That is, we con-
sider each [I ~, (3,)]" to be an operator in the full
+-dimensional space, all of whose entries except
for the f. th block are zero. Then, we have

A'(I) = T-'A(f)T . (3. 34b)

%ith these definitions at hand we see that all the
results of Sec. IIIA hold also if all the unprimed
variables are replaced by primed variables.
Again, this is obvious from linear-vector-space
theory —expectation values are invariant under
similarity transformations.

For simplicity we shall first consider the case
with cyclic boundaries and then consider the differ-
ences induced by end walls. In what follows, the
layer size N is kept finite; thus our matrices are
finite, and the Perron-Frobenius theorem applies.
We use (3.10) and (3.32) to write the cyclic parti-
tion function in the I1X, , I &] basis as

This is easily seen because, in the t th block, sub-
tracting &, I from K' leaves only J~, and (J~, ) has
the property that all the entries of its first m col-
umns are zero I

In order to study the thermodynamic limit (L
—~) and the asymptotic decay of correlations, we
substitute the Jordan form for K into the formulas
of Sec. I1IA. The transformed states l W', ) and

l W~, , & are defined by

l
w', &=T 'l w, &, &w,'„l =&w, , lT (3.34a)

and the transformed observable A'(I) by

(s. s5)

or more simply,

Z, , =~', [I+K J,(~, /~, )']
g =1

(J,= 1) . (s. s6)

%e can determine all bulk thermodynamic proper-
ties from the (general) free energy per layer given
by

—PIl, =-lim (I/L) ln(Z~ c) . (3.3'7)

Using (3.36), the free energy is written
n-1

—pF, = In&, + lim (I/L) InII +2 J, (x, /x, )~] .
L ~oo t=1

{s.33)
The last term on the right-hand side of (3.38) is
seen to be majorized by

(I/L)in[1+X(Xg/Xo) ] =(N/L)(Ag/Xo) —0 as L
(s. sg)

Thus the cyclic free energy per layer is complete-
ly determined by the largest eigenvalue of K:

—pF, = lnko . (3.4o)

It should be emphasized that F, is the free ener-

gy per layer and as such is still proportional to N,
the layer size. Ultimately in calculating bulk
thermodynamics, one takes the further thermo-
dynamic limit N- ~. Thus the free energy per site
f is to be calculated

—Pf, —= lim lim — In(Z~ c) =lim —jn(XO(N)) .
1

pg~ao i, ~ ~

(s. 41)
Evidently a finite free energy per site will imply
that ),o(N) = pg [1+o(e")]as X tends to infinity. In
the formal part of this work we do not consider this
latter thermodynamic limit. However, in the ap-
plication to the Ising model, f will be calculated via
perturbation theory and found to be finite. (Under
suitable conditions, it may be shown very general-
ly that f exists and is finite. ')

Ne now calculate the expectation value of an ob-
servable A(l) in the Lth layer. We shall find that if
A(l) has no explicit dependence upon layer index,
the result is independent of the layer:
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( )) "p Q Q &Xg, f+p IA'(f)1 X», f)
t=0 p=0 g=1 0

x — . 3, 43

Now suppose that &XoIA'(l) IAO) is nonzero, then

&A(l) ), = &Aol A'(l)
l a, ) . (3.44)

However, if the right-band side of (3.44) is zero,
so also is that of (3.42). [This is because the re-
maining terms in (3.42) are majorized by 0((&,/
x )~) which tends to zero as L tends to infinity. ]
Thus (3.44) is correct for an infinite system.
Then, as claimed above, if A'(f) does not depend
upon l, neither does its expectation.

The derivation of the joint expectation value of
A(l) and B(l+R) is only slightly more complicated
and yields in the limit as L- ~:

&A(l)B(l+R) ), = &A(l) ), &B(l+R) ).+ &6A(l)6B(f+R)), ,

(3.46)
where

&6A(l)6B(l+ R) ).=Z
P 0 (~ &I ~0

Using (3.46) we are able to calculate the decay of
net pair-correlation functions as R- ~.

Suppose that (for N finite) the matrix element
&AO I 8 I' )( g» l ) &)(y l +p I A IXO) isnonzero for at least
some 1 and p. Then as R tends to infinity the con-
tributions from X~ in (3.46) are exponentially
greater than those from any other eigenvalue and
determine the ultimate decay of correlation. We
define an inverse range of correlations g through5

(3.4V )

Then if y is nonzero, we know that the net correla-
tion function (3.46) decays as (. ~ as R tends to in-
finity. But note that definition (3. 4V) is sufficiently
general that it includes, for example, functions
which decay like P(R; n)e ~, where P(R; n) is a
polynomial of degree g. in both R and R '.

As R tends to infinity, (3.46) becomes

R
&6A(f)6B(i+ R) ), -

~

— Z

&&ol 8 I&x» f) &&x» f+f)IA I&0)

l~l

(3.46)

Jg -P

~ Z l~„ f»', '&~„i+Pl A'(f)l~„, q) .
&=1

(3.43)

Qr, as L tends to infinity; we have

Then )( defined by (3.4V) is

&=in(x, /l&, l) .
This may be taken as a proof on the basis of the
Perron-Frobenius theorem that in systems with
finite-size layers and with discrete degrees of
freedom, net pair correlations will always decay
exponentially with decav specified bv the largest
and next-largest level. Now the formulas we have
derived above are true for 1 «8 «L even if L is
finite. Thus, the layer size N, given by

N0N, N~ ~ ~ N„, will still be finite if we take ¹ to
be L for every j & 1. Then our formulas will be
true for the decay of correlations in the layering
directionof a large but finite hypercube. If the
system has strictly short-range forces, the lay-
ering direction is arbitrary. Hence, for such a
system the correlation function will decay exponen-
tially in aEE directions.

At this point one may ask to what extent we can

apply these results to a system with continuous

degrees of freedom (so that the transfer "matrix"
is now an operator in an infinite-dimensional
space). For example, one could ask whether the
Perron-Frobenius theorem extends to such sys-
tems. In its full generality this question goes be-
yond the level of this work and will not be consid-
ered herein. However, as noted previously" for a
positive completely continuous operator one can
use the Jentzch and Hopf theorems 6 which then re-
place the Perron-Frobenius theorems.

For the systems with continuous degrees of free-
dom which we consider fe. g. , the classical Heisen-
berg model or a classical fluid), the "transfer op-
erators" will be completely continuous since they
can be derived from limiting sequences of bounded

finite-dimensional operators. Further, as in the
discrete case, they will be nonnegative but not

necessarily positive definite. However, as pointed
out above, K will be positive under very general
circumstances and thus will have a positive unique

eigenvalue of largest modulus. This suffices to
prove that a net pair correlation function defined
on such a system decays exponentially under the
conditions noted above in the discrete case.

It is often most convenient to employ periodic
boundary conditions. However, in order to justi-
fy their use, we must convince ourselves that these
simplified boundary conditions do justice to the
bulk thermodynamices of a system with end walls.
One expects this to be the case because the number
of "end-wall" interactions is proportional to N,

whereas there are 0(NL) bulk interactions. Then
as L tends to infinity these surface terms should

have a, negligible effect upon such bulk properties
as the free energy or the decay of correlation func-
tions far from either end. On the other hand, we

know that periodic boundary conditions are inad-
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J
I

w&)= w, (f, q)l~„q&,
t=0 q=g

J
&w,', , I

=Z w, ,(f, q) &x„ql .
f= 0 q= 1

(3. so)

Using (S.22a) (in the primed representation),
(3.32), and (3.50), the end-wall partition function

equate to treat such interesting effects as surface
tension, scattering from surface states, and the
decay of correlations near a surface. In addition,
when a system is ordered, order induced by a
pinned surface might well propagate throughout the
system, affecting both bulk expectation values and
the decay of correlation functions within the bulk.
Therefore, we shall treat the case of end-wall
boundary conditions in order to justify the use of
cyclic boundary conditions for bulk properties and
to enable us to treat surface properties.

The weight vectors I W,') and &Wl„, I defined in
(3.34a) may be expanded in the {IX, , q )}basis:

is seen to be

—PE = intro, (3. s2)

which is in exact agreement with the free energy
calculated in the case of cyclic boundaries. Thus,
except in the unusual case that the end walls are
such that W, (0, 1)w~ „,(0, 1) is identically zero, we

have shown that the bulk free energy is independent
of the boundary conditions imposed upon the end
surfaces.

The calculation of expectation values is some-
what more cumbersome. Consider the expectation
of A(l):

-i (L J]}
z, ,= 2 w, (f, f+f) w„,(f, f)~; '.

t=0 p=0 P l =1

(3. sl)

When L tends to infinity, if the weights W&(0, 1) and

W~. ,(0, 1) are nonzero, the dominant contribution
to the partition function is W~(0, 1)Wi„,(0, 1)X0.
Then the free energy per layer is given by

Jg ~ pg Jg ~)2

&A(l)) =k g 8 i 2 2 f
I

L- f g g Ws(ts, Pi+sr)wr, s(t~, s~)

» OPg==o» 0 =&1 E f 2 sg=1 s~= 1 ~L, W

x (x, )'-'~ (x, )'-'-» &&,» P, +s, l
A'I &... s& & . (3.53)

We take the "thermodynamic limit, " L tending to
infinity, with l fixed. Then

&A(f) ) Q Q I(
f Q Wg(f, P+s)

~=o &=0 &P .=i %(0 1)

&x, lA'I x„s) . (3. s4)
0

For sufficiently large l, we see that all the terms
in (S. 54) except &XOIA'I'%0& are majorized by
O(l X, /XOI'). Hence, for large f, we have

&A(l) ) = &Xol A'I Xo)+o(/X, /)0}') . (3.ss)

L+1
7l—= lim —Z &A(l) )L-- L )=i

(3. s6)

There will exist a positive number p such that for
l greater than p, &A(l) & is given by (3. 55). For
the p terms in (3.56) with f less than or equal to
p, it suffices to replace the summand by O(1).
Then A may be written

&=»m(1/L) & [&&OIA'I ~0&+o(I ~i/&Ol')]

+o(g/L) . (3.s7)

Generally, we measure a bulk density A defined by

As L tends to infinity we may allow p to become
infinite, as long as p/L tends to zero. Then (3.57)
becomes, very simply,

&= &&0IA'I &0& (3. s8)

Formulas (3.55) and (3.58) reproduce (3.44) for
the cyclic expectation value of A(l).

Thus, bulk expectation values are unaffected by
the end-wall boundary conditions. Similar consid-
erations to those above show that the joint expecta-
tion of A(f) and B(f+R) becomes independent of
boundary conditions when L, /, and L —/ —8 tend
to infinity. That is, for fixed 8,

&A(l)B(l + R) )„=&A(l)B(l + R) ), ,

L —R —l- ~ . (3. 59)

In particular, the decay of pair correlation func-
tions remains exponential with the same inverse
range of correlation g defined above.

It should be noted that were XO allowed to be de-
generate, expectation values need not become in-
dependent of boundary conditions even within the
bulk of the system. The result is explicitly depen-
dent upon the weights (W&(0, q); W~. &(0, q')} as-
signed to the degenerate largest eigenvectors in
the first and last layers. However, the free en-
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ergy F would still be given by (3.52), as is seen
by (3.36) and (3. 51) with Zo not equal to one.

To simplify our considerations, we shall now as-
sume that K has a complete spectrum fl X, , q)) and
that the vectors I W(1}) and I W(L+1})can be writ-
ten in this representation as

n-1

w, (f, q) ~~„q),
t~0 q =I

n-1

&w(L+1)
i
=Z w, , , (f, q)(~„qi .

t 0 q0

(s. 6o)

With the completeness property, K may be ex-
pressed as

K =Z ~~„q)x,"(x„q~ .
t=0 q=0

Then (3. 18) for the expectation of A(l) may be
written

(s. 61)

&A(f}&.=—5 ().„q~&~~„q) .
J0 qy

(s. 6s)

Even in cases where the cyclic expectation (3. 63)
is zero-such as the cyclic expectation of the mag-
netic moment of an Ising ferromagnet below its
critical temperature —the end-wall expectation
(3.62) need not be zero. Thus, for a system with
a degenerate largest level, the expectation value
of an observable quantity depends upon the bound-
ary conditions imposed. Such a situation is indica-
tive of the existence of Eon@-gauge order in the
system. For no matter how far we choose our
layer from the walls, expectations of quantities
defined within the layer will explicitly depend upon
the configurations of the end walls. Such long-
range order is found to arise below the ordering
temperature of a system exhibiting a continuous
phase transition. For such systems there exists
an olde~ parameter'. a physical variable whose
expectation value is strictly zero above the order-
ing temperature, but whose value ranges over a
finite interval of values, depending upon boundary
conditions, below the ordering temperature. a~ Ex-
amples of such order parameters are the spon-
taneous magnetization of a ferromagnet, the differ-
ence in density between the liquid and gaseous

& A(f) )
~a=1 Zt& Owl(=0& q) wl + 1» &)(&n ~ f ~

A'
~ &0 ~ q )

5.", ', w, (0, q) w, ,(o, q)

(s. 62)

with I.- ~, l'- ~, and I.—l- ~. Note that although
this expectation value is independent of the layer
/, it still depends upon the weights assigned to the
end walls-this despite the fact that l corresponds
to a layer within the bulk! With degenerate larg-
est level, the analogous cyclic expectation be-
cornes, as I tends to infinity,

phases of a liquid-vapor system, and the super-
fluid density of He II. Thus we have confirmed the
intimate link between the existence of such long-
range order and the degeneracy of the largest
eigenvalue of the transfer matrix. '"

Now, of course, for finite cross section N, we
know that the Perron-Fr5benius theorem requires
that A be nondegenerate. But, as X tends to in-
finity, ~0 and A., may become asymptotically de-
generate in the sense that""'

&,/q=l+O(e-'"), X- (3.64)

Concerning the nature of long-range order, one
should note that although external fields may induce
"order" in a system in the sense, for example, that
the spin-correlation function &S'(0)S'(R) does not
decay to zero as R tends to infinity in a magnetic
fieM, H; there is no true propagation of order
throughout the system. In fact, for a ferromagnet,
a finite field will break the degeneracy (or quasi-
degeneracy) of &0 and A „ thereby destroying the
ordered state. We have emphasized this point to
make cl.ear the difference between true long-range
order, evidenced by ~p ~j and externally induced
"order" or alignment.

To conclude this section, we present a few gen-
eral remarks of Fisher about the asymptotic
decay of correlations. Since the transfer matrix
is positive semidefinite, its characteristic poly-
nomial K(A) has all real coefficients. Thus, the
eigenvalues must either be real or appear in com-
plex-conjugate pairs (A.„X,"). This being the case,
we may list the possibilities for the second-largest
eigenvalue X,: (i) A. , is real, positive, and no other
eigenvalue has equal modulus; (i ) &, is also sim-
ple (nondegenerate); (ii) X, is negative, real. , or
(X„X, ) are a complex-conjugate pair; (iii) A. , is'

Thus, in the fu11 thermodynamic limit there may
exist a range of temperature (0, T,) over which the
system exhibits long-range order. Equation (3. 64)
is the basis for a very simple calculation due to
Fisher'9 of the surface tension at the phase bound-

ary between two coexisting phases. The basic
notion is that we can determine the surface tension
by a comparison of the partition function with the
ends weighted for different phases, to the partition
functions for a system in which the ends are weight-
ed for the same phase. Weighting the end walls for
the two phases presents no difficulty, since at low

temperatures, by the Perron-Fr5benius theorem,
the largest eigenvector is a symmetric combination
of the two phases, whereas evidently the next
largest eigenvector is the corresponding antisym-
metric combination. The resulting formula for
the surface tension is

—po(1, 2) = lim N ' in1ln[XO(N)/X, (N)]$ . (S.65)
gmOO
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positive, real, and there are other eigenvalues of

equal modulus.
Let G(5) be the net correlation function of inter-
est. In case (i), G(K) decays exponentially. Gen-
erally, && will be degenerate, and we will find

G(, ) g) ~P„(5)8-"" as R - ~, (3.66)

where P„(5) is a polynomial of degree n equal to
one plus the degeneracy of &,. In case (i ), A., is
also simple (nondegenerate). Then n will be zero,
and the decay will be a pure exponential:

G(g &
(5) A. e" as R (3.67)

Hence, we have

G(„)(0) =P„(R)cosR8 e "s as R —~. (S.69)

In case (iii), we have a general combination of the
other two cases:

G&„,) (5) =[P„(R)+Q~(R)( —I)""+Q, A, cosR8, ]e

(3.70)
Whether or not this last correlation eventually
does not change sign depends upon the relative
amyl. itudes of the monotone and oscillatory corn-
ponents. In any case, this correl. ation function
will always contain an oscillatory component.

IV. SUMMARY

In this work we have reviewed the phenomeno-
logical prediction (I.4) for the decay of correlation
in many-body systems, extended it to treat the
decay of correlation near surfaces, and contrasted
this prediction with the exactly known results for
the two-dimensional zero-field Ising model. In
order to reconcile the differences between the
phenomenological and Ising results, we consider

For real, negative ~&, we find that

G(„)(R)=he ""[(—I) "P„(K)] as R-~, (3.66)

where v is a positive constant and n= 1+J,. That
is, in case (ii), G(%) ultimately oscillates in sign.
In the complex case (ii), we have

in the following papers of this series the decay of
correlation in d-dimensional Ising models with
arbitrary magnetic fieMs, away from the critical
point.

Our study of the decay of correlation in Ising
systems is based on a general transfer-matrix
method, ' which we have developed in sufficient
detail herein to form a basis for the remaining
papers of this series.

The general formulas of use are (3.22a)-(3. 22f)
for the partition function and for expectation values
of physical quantities both for cyclic and for "end-
wall" boundary conditions in the layering direction.
Equation (3.22) is a. general formula for a positive
iterate of an arbitrary matrix. Equations (S.40)
and (S.44) determine the bulk-free energy and the
expectation of bulk quantities, respectively, while
the inverse range of correlations defined in (3.47)
is given by (3.49). The decay of correlations is
given by (3.46). (Note, however, that this result
is for finite cross section

¹ As N tends to in-
finity, the eigenvalues immediately below &, may
close up to form a band" with leading edge &, .
Then the contributions from the eigenvalues at this
band edge are not damped with respect to that from
&& as R tends to infinity. Therefore, in such cir-
cumstances we need integrate over the leading
edge of this band. ) From (3.62) we can calculate
the expectation of, for example, the order param-
eter (e.g. , spontaneous magnetization) of an or-
dered system, that is, a system for which the two
largest eigenvalues of the transfer matrix are
asymptotically degenerate. Equation (3.64) yields
the surface tension at a phase boundary below the
ordering temperature of an ordering system.
Finally, formulas (3.66)-(3.VO) depict the various
kinds of asymptotic decay possible depending upon
the reality, positivity, and simplicity —or lack
thereof —of ~„ the second-largest eigenvalue.
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