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The magnetic susceptibility at absolute-zero temperature for the one-dimensional Hubbard
model is studied exactly as a function of the concentration of electrons by using Lieb and Wu's
theory for this system. Our analysis essentially follows Griffiths s method for the magnetic
susceptibility of the one-dimensional Heisenberg antiferromagnet, and is a generalization of
Takahashi's calculation to the systems with an arbitrary concentration of electrons. The
ground-state energy and the magnitude of local moments at each site are also studied. Com-
bined with the results on the susceptibility, they should suggest how the effect of the Coulomb
interaction on the properties of the system at low temperatures changes with the concentra-
tion of electrons.

I. INTRODUCTION

Qne-dimensional systems are fascinating for
various reasons. They are usually easier to han-
dle mathematically than higher-dimensional sys-
tems. Qne can often give exact statements without
resorting to approximations. ' Moreover, in some
cases and for some properties, they are remark-
ably different from higher-dimensional systems.
The one-dimensional Hubbard model, a model of
interacting itinerant electrons, is not an exception.

The one-dimensional Hubbard Hamiltonian has
the form

X Xo + Kg

Kp ——g~ t]g C ~+ C yo
ice

tU~Cq, C)tC]IC]q )

where f;~ is assumed to be f for li —j i = 1 (nearest-
neighbor hopping) and zero otherwise. For this
model Lieb and Wu first gave an exact analysis on
the ground state by essentially the same approach
as that for the one-dimensional Heisenberg spin
system ' and for the one-dimensional fermion gas
with 5-function interactions.

In our Hamiltonian (l. 1) there are three funda-
mental parameters for the thermodynamic proper-
ties of the system, that is, the strength of the
Coulomb interaction relative to the transfer inte-
gral U/f, the concentration of electrons N/N, (N
and N, are the total number of electrons and lattice
points, respectively), and the temperature of the
system k~T. Let us review previous work on this

system and then make the purpose of the paper
clear, using these parameters.

A. Case (i):Half-Filled Band(W/N = j. )

I. Absolute-Zero Temperature (kz T = 0)

The ground- state ener gy was obtained in an an-
alytic form by Lieb and %u. ' According to them,
the ground state is antiferromagnetic and insulating.
Following this work, the spin-wave spectrum and
the magnetic susceptibility at zero temperature
were calculated by Qvchinnikov and Takahashi,
respectively. Hy these calculations the properties
of the one-dimensional half-filled Hubbard model
were clarified almost completely as far as the
absolute-zero temperature is concerned.

2. Finite Temperature (k& T 40)

Unfortunately, no exact solution is available for
finite-temperature properties of the infinite sys-
tern. But the thermodynamic properties of finite
chains were calculated exactly by Shiba and Pin-
cus. Based on this calculation, we can guess a
gradual "transition" from the paramagnetic and
metallic state at high temperatures to the antiferro-
magnetic and insulating state at low temperatures.

B. Case (ii): System with%/N 41

According to the Lieb-Mattis theorem' the ground
state of our system is a singlet irrespective of the
concentration of electrons. Even if N/N, x 1, I ieb
and Wu's theory should be useful and, in fact, it
predicts a metallic ground state. But the depen-
dence of the ground-state energy and other quan-
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II. GROUND-STATE ENERGY AS A FUNCTION OF THE
CONCENTRATION OF ELECTRONS

Lieb and %u gave an excellent analysis of the
ground state of the system (1.1) and a good starting
point to the exact discussion on the behaviors at
zero temperature, According to their conclusion,
the lowest state of the one-dimensional Hubbard
model with a fixed magnetization is described by
the coupled equations for two "distribution func-
tions, " p(k) and o(A),

Bu v(A)dA
2w p(k) = 1+ cosk,

u + 16jsink —A
~ -B

(2. 1)

Bu p(k) dk

u + 16(A —sink)

4u o (A') d A'
u'+ 4(A-A)2

where u = U/f, and the parameters B and Q are de-
termined by the conditions

J dk p(k) = N/N, (2. 8)

tities at T= 0 on the concentration N/N, has not

yet been examined.
This paper is devoted exactly to the case (ii).

Since the Hubbard model is often discussed in con-
nection with the origin of the itinerant-electron
magnetism, the magnetic properties of this Hamil-
tonian are especially interesting. Therefore, a
special emphasis in this paper is placed on the
study of the magnetic susceptibility. In other words,
the dependence of the magnetic susceptibility of the
system on U/f and N/N, is our main concern.
Many elaborate but approximate theories have

been proposed on the role of the correlation effect
in metallic magnetism, based on the three-dimen-
sional version of the Hubbard Hamiltonian. We
believe that exact calculations of the properties of
the one-dimensional Hubbard model must be inter-
esting. For the half-filled case, Takahashi cal-
culated the magnetic susceptibility at zero temper-
ature, as mentioned before. The present paper is
an extension of his work to arbitrary concentrations
of electrons.

In Sec. II we give a short summary of Lieb and
%u's work and then calculate the ground-state en-
ergy as well as the magnitude of magnetic moments
at each site as a function of N/N, and U/t. This
section may be regarded as the introductory part
of Sec. II. In Sec. III we study the magnetic sus-
ceptibility of our system without any restrictions
to the concentration of electrons, using Lieb and
%u"s formulation and following Griffiths's analysis
on the magnetic susceptibility at zero temperature
of the one-dimensional Heisenberg antiferromag-
net. A brief discussion is given in Sec. IV.

f dAa'(A) = M/N, ,

with the total number of down-spin electrons M.
Once these coupled equations are solved, the low-
est energy is obtained by the formula

(2. 4)

E = —2tN, J dk cosk p(k)

1
i d&

sech ,' mt-
4v „1+(x+ t)'

1 " „,~ 2g~ (- 1)"'
3 (2„)a (2. '7)

as in the study of the one-dimensional antiferro-
magnetic Heisenberg model. ' Thus, Eq. (2. 6)
can be written in the form

.wg

2m p(k) = 1+ cosk, dk' p(k')

X
Bv 4(sink —sink')
u u

(2. 8)

Although this equation is difficult to solve in a
compact form except for the half-filled case (Q= m),

it is easy to obtain the solution by the iteration
method or numerically, or to examine some
limiting cases. In fact, approximating Eq. (2. 8)
by a set of 41 coupled linear algebraic equa-
tions, we calculated N/N, in Eq. (2. 3) and the

ground-state energy per site E/N, . The results
are shown in Figs. 1 and 2. From Fig. 1 the re-
lation between the concentration of electrons N/N,
and Q in the ground state is found. As easily noted,
U/f = 0 is a singular point. From Fig. 2„which
shows the ground-state energy as a function of
N/N, , we can point out some features of the effect

Using this formulation we will calculate the mag-
netic susceptibility at zero temperature in Sec.
III. In this section we discuss the ground-state
energy and the magnitude of local moments at each
site (defined later) at arbitrary values of N/N, .

First of all, from the Lieb-Mattis theorem we
know that the ground state of our system (1.1) is
a singlet, that is, M/N= ~, which corresponds to
8 = . Now we can reduce the coupled integral
equations (2. 1) and (2. 2) into a single one. In-
troducing the Fourier transform of o(A) and sub-
stituting it into Eqs. (2. 1) and (2. 2), we get

+Q r~ iau(sink-sink' )

2w p(k)= 1+ cosk dk'p(k')
~

du- e"" +1
e ~Q ~00

(2. 6)
It is convenient for later purposes to define the

function
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0.6 FIG. 1. Relation between N/N~
and Q at some typical values of
U t.
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of correlation.
(i) At a low density of electrons (N/N, ( 0. 4) the

effect of correlation on the ground-state energy
is not so large, because electrons occupy the states
at the bottom of the band, where there is a high
density of states, and therefore they can avoid each
other without much cost of their kinetic energies.
The effect of correlation is the most evident in the
half-filled case.

(ii) When U/t increases, the system can gain

energy only by migration processes of electrons
through vacant sites, and thus the position of the
minimum of the ground state as a function of N/N,
shifts from N/N, = l. 0 to 0. 5. Although our system
is a simple one-dimensional one, with a single
orbital, this result should be, in principle, sug-
gestive of the effect of correlation on the cohesive
energy of transition metals.

(iii) The energy of the lowest state with the max-

imum total spin coincides with the fI/t = ~ curve in

1.5—

0/t= 00

1.0
FIG. 2. Concentration depen-

dence of the ground-state energy
at typical values of U/t. At ff/t
=0, the ground-state energy is
given by —(4/v) sin{2~ N/N, ) while
E/tN, =- (2/m) sin(v N/Ng at U/t

0.5

0.2 0,4 0.6
N/Ng

0.8 I.O
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2w p(k) = 1+ cosk —ln2 —+ 04 Q 1
(2. 9)

Substituting this equation into (2. 3) and (2. 5) and
determining tk) up to the order of I/u, we have

E 2 . N 4ln2 (N

Fig. 2. Physically, this is natural.
Let us study the strong U limit (u»1), starting

from Eq. (2. 8) and expanding in power of I/u. We
can easily obtain

3 N 3 1 &E(U)
0 4 ~ (2. 12)

as easily proved. Note that in Eq. (2. 1, 2) Q a]so
depends on U. In fact, from the condition of the
fixed number of electrons we obtain

i.= (1/N. ) ~, ((~,)'), (2. 11)

where t2& is the spin operator at the j th site: 5&

= g„, (o ISIcr') c J, c&, and the average ( ~ ~ ~ ) is taken
in the ground state. This quantity is related to
the ground-state energy by

2NN
2'/N, (2. 10)

sQ 1
i

9 p(k)
&U 2p(Q) ' BU

(2. 13)

In the half-filled case (N/N, = 1), Eq. (2. 10) re-
produces the ground-state energy of the one-dimen-
sional Heisenberg antiferromagnet with the ex-
change coupling J'= 2t2/U. '4

Another quantity, which is useful to understand
the ground state and is easy to derive from Eqs.
(2. 5) and (2. 6), is the magnitude of local mo-
ments at each site introduced in Ref. 8:

By using this expression, the derivative &E(U)/&U
is written in the form

1 &EU sp k

N. sU
= 2 dk (costk) —cosk)

&u

(2. 14)

where sp(k)/&u is obtained as the solution of the
integral equation

sp(k)
2)) — = cosk' dk'p(k')

Q Q

4 sink —sink'
+ cask dk, 'p(k')

~Q

ss S(sink —sink ) Ss S(sink —sini)) Ss S(sink s(ni)))x —R -- — — R ——R
Q Q Q Q Q Q

(2. 15)

with

x'- (2n)'
4(x) =—Q (-1)"' n

(
p

(2 )ap (2. 16)

Thus, it is easy to get the quantity I.o.
Figure 3 shows the dependence of the magnitude

of local moments at each site on the concentration
of electrons at various values of Ult. In the non-
interacting system (U/t = 0), I-p is given by

I.O
= g (N/N, ) (1 —2N/N, )

while in the strong U limit we obtain

(2. I V)

2in2 iS s ~ in(2s)Si'in,
))u N, 2'/N,

(2. 18)
Again the effect of correlation on I z is small in the
low density of electrons, and it becomes evident
when N/N, approaches unity.

III. MAGNETIC SUSCEPTIBILITY AT ZERO TEMPERATURE

The magnetic susceptibility gives important in-
formation on this system. For the half-filled case,
Takahashi calculated the susceptibility and showed
how it changes from the Pauli paramagnetic be-

S -=;N/N, M/N, = f dAo(A—) (3. 1)

The integral equation for o(A) is obtained by sub-
stituting Eq. (2. 1) into (2. 2) in the form

2v o(A) = (1/2m)gz+ (A)

—f d A' So (Ai A') o (A') (3. 2)

havior to that of localized spins as U/t increases.
It is interesting to study the magnetic susceptibility
for N/N, & l. The Griff iths method, which
Takahashi followed in his analysis, is still found
useful even when N/N, & 1.

In the study of the susceptibility we can assume
that the magnetization induced by an external field
is small, and therefore 8 remains quite large
in Eqs. (2. 1)-(2.4). The increase of energy due
to the magnetization of the system, which is di-
rectly connected with the magnetic susceptibility,
is determined by the asymptotic behavior of a (A)
in the region A»1.

Let us rewrite Eqs. (2. 1)-(2.4) into a conve-
nient form for this purpose. Integrating both sides
of Eq. (2. 2) over A from —~ to + ~, and using the
relations (2. 3) and (2. 4), we get
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FIG. 3. Magnitude of local
moments at each site I 0 versus
the concentration of electrons
N/iv, . When U/t=~, L, is
equal to ~~N/X, . On the other
hand, I-Q is given by 4Q(N/NQ)

(1-~N/N, ), when U/t=o.
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0.2 OA

N/Ng
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Q

gz"'(A) —=
~

dk cos"k z
--- . —

z (3.3)

and the kernel is defined by

4u
S (A, A') =

4(
"~ dk gg—cosk —

~2nu+ '16(A —sink)a

x —, 6", . —; (3.4)u'+ 16(A'- sink)

It is useful to introduce a new function a'"'(A) as
the solution of the integral equation

—f dA'S (A, A') o'"'(A') . (3. 5)

(Q) + 2
tN„ tN,

—o (A) (2v)'o'"(A),

(3.9a)
dA

o(A)(2v) o' '(A),
N NG(Q)

IN, N,
I & I &8

(3.9b)
where Eo(Q) and IVo((Q)) are the ground-state energy
and the total number of electrons at a fixed value
of Q, respectively, i.e. ,

By using these newly introduced functions and in-
tegrating the product of &z(A, , A) and E(I. (3. 2) over
A from —~ to+~, we obtain

dA'
G(N) = G'"(1() G

j'

——G 1,(G(, A')G(G(') .
I A' llB (3. 8)

Similarly, the integration of the product of o(A) and

E(I. (3.5) over A from —B to 8 yields

Then o'"'(A) can be expressed in terms of the re-
solvent kernel &(A, A') defined by

go(A, A') = So(A, A') —f dA" Sq(A, A")SQ)(A", A')

= S,(A, A') —f dA" &,(A, A")S,(A", A') .
(3. 6)

In fact, it is easy to show

dA'
&o(A, A') —g(Q)N)(A') . (3 7)

G(Q) —— GGGQ —Q( G&G)(G()Nu)(GG)

(3.10a.)

G(Q) Q
I G&G)(GG) 11)(N) (3 (())1)

The (Iuantities Eo(Q) and j()'o(Q) were actually cal-
culated in Sec. D. In order to evaluate the second
term in Etls. (3.Qa) and (3.9b) we have to know
o'"'(A) and cr(A) for A»1. Starting from E(ls.
(3.6) and (3. 7), solving the latter by iteration and

rearranging terms, we find that



MAGNETIC SUSCEPTIBII ITY AT ZERQ TEMPERATURE FQR

1
l

dk „2v(A- sink)e" A=- cos"k sech
or

—x = e '*i' I, ch'ii(x —x') I' —x') .

+
~ sing

t
I,

"'q dt' 2(( 2(((A- t)sech--
2(( I 2v u u

4-sin Q

(3.18')
Now Eqs. (3.9a), (3.9b), and (3. 1) can be written
in the form

x L (t, t') dk „k 4 4(sink —t')

Q

(3.11)
where Lq(t, t') is the solution of the equation

+
„-sinQ

Lq(t, t') = 5 (t —t')
(' sinQ

dt" —R -- — L (t", t') (3 12)

(S. 19a.)
N No(Q)

N, t
0 -4IIB/II E(1)( ) E(0)( )

(3.19b)

(3.19c)S=a e ' "I' '(u),

B Ep(Q) Bbp -4))B/u E(0)( ) E(0)( )

(3. 13)

where

Now it is clear that for A» 1, ()(")(A) decays ex-
ponentially. Infact, theasymptotic form of a(")(A)

!A! )) ~ is given by

q(»(A) (2/u) e-2)) II(l /sl(»( )

where ao and bo are given by

up=-,' f, dxp(-,'ux)

bp = v J dec '"/0
p (-,'ux),

(S. 2Oa)

(s. 2ob)

"Q duE(»(u) cos)(k ep«4())))) /&

Q

~sinQ ~ 8'inQ

dt. Bt(/ I))
" -sinQ

dt'I q(t, t')

x I
cos"k —R —— . (S. 14)

dk „4 4(sink —t'
27I' u u

The next task is to simplify Eq. (S.8) for I A I &B
)) ]..

Defining the function P(A) by

a(A+B) = '—Iq '(u)P(A) e 0'B/"(0) (s. 18)

and using the asymptotic expression for o' '(A)
[Eq. (3. 13)j, we have

"" d 1

P(A')

x [sq (B + A, B + A') + s q(B + A, B —A')—]
(3.18)

for A &0. But this equation is further simplified
in the case where B» 1, A and A' & 0, since we
can apply the following approximations:

Iq(B+ A, B+ A') + Sq(B+ A, -B—A')

= Sq(B+ A, B+ A')

= (8((/u) R [4(A —A')/u j . (3. IV)

Here we ignored exponentially small terms. Sub-
stituting this into Eq. (S. 16), we obtain

P(A) = e 0'~ "+
I

dA' —R P(A')4 4(A —A')
u Q

(s. 18)

respectively. The important point here is that Eq.
(3.18') is exactly the same as that in Griffiths's
work, "his equation (43), and that ()0 and b, are the
same quantities with the same notation. So there
is actually no need to solve (3.18) or (3.18'). Sub-
stituting Eq. (3. 19c) into (3.19a) and (S. 19b), we
find that

Z E,(Q), (2v)' I(') (u) (3.2la)

N N()(Q) 0 (2w) Iq' ) (u)

Here the use was made of the relation bp/ep= 2((

conjectured by Griffiths~3 and proved rigorously by
Yang and Yang. " In Eqs. (3.21a) and (3. 21b) there
is a deviation of Q due to the magnetization S from
the value in the singlet ground state. The change
of Q is determined by the condition that the total
number of electrons should be constant. Substitut-
ing the deviation of Q obtained in this way into Eq.
(3. 2la), we find that

1 ~1"' (ii) 8)iii(Q) eii'o(Q)

)2u Ig) (u) SQ ()Q

Here Q is related to N/N, through the relation we
found in Sec. II, i. e.,

N/N. = N, (Q)/N. .
The second term in Eq. (3.22) represents the in-
crease of the energy due to the magnetization. Add-

ing the Zeeman terra and minimizing the total en-
ergy with respect to S, we find our final expression
for the susceptibility
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By using the formula (3. 23) we can calculate the
magnetic susceptibility at arbitrary values of U/t
and N/N, . Details of the numerical calculation are
described in the Appendix. Figure 4 shows our re-
sults for the susceptibility per electron versus
N/N, at typical values of U/t, while Fig. 5 shows
the dependence of the susceptibility on U/t with
fixed values of N/N, . From these figures it is evi-
dent that with the decrease of the concentration of
electrons and/or with the increase of U/t the sys-
tem is more easily magnetized. This tendency is
consistent with the results for the energy (Fig. 2
and can be explained by the fact that when N/N, de-
creases and/or U/t increases, one can get a small
amount of magnetization without much cost of en-
er gy. In 1g. q

aIn F 4 all the curves of the susceptibility
diverge at N/N, = 0 simply because of the diver-
gence of the density of states at band edges.

Let us study some limiting cases.
u. Half filled case (Q= w). -It is easy to find

I('& =I, (2w/u), Io('& = 0,

I& ' = (u/2w) Iq (2w/u),

where I„(x) is the Bessel function of imaginary
argument of the order &/. Therefore, (3.23 gives

dk—cos" kQ " -Q

is appropriate. Furthermore, we have

1 BE 20 = ——cosQ
N, (&Q

1 BN() 1

N, BQ p

Therefore, the susceptibility in the strong /J limit
is proportional to u in the way

N p'/t w ( 2i) .)
u sin(aviv/ii. ))

'
w 2wN/N,

(3.aS)

Note exactly the same factor 1 —fsin(2wN/N, )]/
(2wN/N, ) appeared in Eq. (2. 10). When N/N, =1,
the right-hand side of Eq. (3. 25) represents the
Griffiths formula for the susceptibility of the
one-dimensional antiferromagnet with the nearest-
neighbor coupling Z= 2t /U, while in the low-den-
sity limit Eg. (3.25) gives

1 I, (2w/u)
(3. 24)N tL /t w I&(2 w/u)

which is Takahashi's result' for the half-filled
case.

Strong U limit (U/t» 1). In this limit the ap-
proximation
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with a single orbital. But as far as general aspects
of the effect of correlation are concerned, our re-
sults should be suggestive beyond one dimensional-
ity.

Our study in this paper has been restricted to
absolute-zero temperature. Combining the results
with the conclusions on the finite-temperature
properties of the half-filled case, we can give
some conjectures on finite-temperature properties
of the one-dimensional Hubbard model with N/N,
& 1.

(i) The high-temperature peak of the specific
heat per atom, which was found in the half-filled
case for fI/t24, must be observed, as far as N/N,
is not too small. But the height of the peak will de-
crease with the decrease of N/N„because the
probability of finding doubly occupied states be-
comes small. As for the low-temperature peak
the coefficient of the linear increase with tempera-
ture must become large with the decrease of N/N„
and the height of the peak will decrease.

(ii) When N/N, decreases, the susceptibility per
electron increases at low temperatures, and it
must decrease rapidly with temperature.
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APPENDIX

Here an outline of our numerical calculation of
the susceptibility is described.

The quantities Iz"' (u), BED(Q)/BQ, and &NO(Q) /BQ
appearing in Eq. (3. 23) can be expressed in terms
of the solutions of integral equations. In fact, we
can write Eq. (3.14) in the form

Io'"'(u) = —cos"k y(k),
dk

2m

where p(k) is the solution of the equation

g(k) = e ""~' "+ dk'cosk'
a -Q

(Al)

4 4(sink —sink )
P k, (A2)

as one can easily check by the iteration method.
As for sEo(Q)/BQ and BNO(Q)/BQ, the same tech-
nique as in the calculation of I.o is useful. From
Eqs. (2. 3) and (2. 5) we obtain

sE.(Q)
BQ

= —4 cosQ p(Q) —2 dk cosk

and.

sN, (Q) 2 sP(k)
(A4)

Here use was made of the relation p(k) = p(-k).
Performing the differentiation of both sides of Eq.
(2. 9) by Q, we find the equation

8P(i.')
~ ( )

Bm 4(sink —sing))

8w
&

4.(sini: ~ sinq))
Q Q

dki ~p(k') ~&
& 4(sink —sink')

„o &Q u u

(A5)

In our numerical calculations the integral equations
(A2) and (A5) were replaced again by 41 coupled
linear algebraic equations and then I&"', &Eo(Q)/
sQ, and eNO(Q)/eQ were evaluated.
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