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In this paper we present a modification of an earlier theory of Singwi et al. of electron cor-
relations at metallic densities. The modification consists in allowing for the change of the
pair correlation function in an external weak field via the density derivative of the equilibrium
pair correlation function. This results in a new expression for the local-field correction. The
present theory has the merit of satisfying almost exactly the compressibility sum rule and of
giving a satisfactory pair correlation function. Results of self-consistent numerical calcula-
tions for the static pair correlation function, correlation energy, compressibility, and plas-
mon dispersion relation for the electron liquid in the metallic-density range are presented.
For those interested in the application of the results of the present paper, numerical values of
the local-field correction as a function of wave number have been tabulated in the density range
r =1-6.

I. INTRODUCTION

In a series' of recent papers Singwi et g/. have
presented a theory of wave-number and frequency-
dependent dielectric function q(q, +) of an electron
liquid in the metallic-density range (1 & x, & 6).
This theory attempts to take into account in an ap-
proximate manner both the exchange and Coulomb
correlations through a local-field correction (as
defined by Nozieres and Piness) which depends on
the pair correlation function. The latter is related
to the imaginary part of the inverse dielectric func-
tion through the fluctuation-dissipation theorem.
Thus, it is a self-consistent theory. The first
version of the theory, ' hereafter referred to as I,
yielded a physically acceptable pair distribution

function g(r), but the compressibility sum rule wa. s
only poorly satisfied. Although this deficiency was
rectified to a considerable extent in a latter ver-
sion of the theory, hereafter referred to as II, by
screening the Coulomb potential entering the local-
field correction, the compressibility was not very
satisfactory. The theory has since been applied to
a variety of calculations for free-electron-like
metals with a fair degree of success. Results for
the generalized paramagnetic susceptibility derived
on the basis of this theory have been no less en-
couraging.

Although the local-field correction in the theory
of Singwi et g/. is static, it will in general depend
on frequency. The importance of the frequency
dependence of the local-field correction in the di-
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electric resyonse function will show uy in phenom-
ena such as the optical absorption and plasma dis-
persion. If the present discrepancy between the
calculated and observed plasma, dispersion (see
Fig. 5) is any indication of the magnitude of the
frequency-dependent correction to the local field,
the latter could be as large as 30%. Unfortunately,
at present it does not seem too easy to take into
account in any satisfactory manner the frequency
dependence of the local-field correction, since it
will involve consideration of relaxation mechanism
of an interacting electron gas. On the other hand,
there is a large class of phenomena where the fre-
quency dependence is not so important, and in that
case one would like to have a satisfactory expres-
sion for the response function.

In this paper we present a modification of the
theory of Singwi et al. which has the merit of satis-
fying almost exactly the compressibility sum rule
and of giving a pair correlation function g(r) of the
same quality as in I. In brief, this modification
consists in allowing for the change in the pair cor-
relation function in an external weak fieM via the
density derivative of the equilibrium pair correla-
tion function g'(~). This then results in an addi-
tional term involving the density derivative of g'(y)
in the local-field correction of Singwi et al. Since
the density derivative of g'(&) is related to the
three-particle equilibrium correlation function, it
is in this sense that three-particle correlations are
built into our new local-field expression. It is this
later feature which we believe to be very impor-
tant and which mill have significant consequences,
as we shall show in a separate paper, on the cal-
culated annihilation rate of positrons in heavier
alkali metals in which Coulomb correlations are
very important. We shall see in the sequel that
the new term in the local field correction, as antic-
ipated, gives an important contribution to the q
-0 behavior of the static dielectric function q(g, 0)
and at the same time has an almost insignificant
effect on the very-large-q behavior of e(j, &o). In
all calculations of lattice dynamics, it is impera-
tive that the dielectric response function satisfies
the compressibility sum rule. Since one is con-
cerned in this and other calculations with frequen-
cies much lower than the plasma frequency, the
present static approximation should indeed be very
good.

In Sec. II the theory of an effective field felt by
an electron is given. In Sec. III the compressibil-
ity sum rule is discussed, and in Sec. IV the com-
pressibility in the Hartree-Pock approximation is
derived. Section V deals with sum rules. In Sec.
VI results of our self-consistent numerical calcu-
lations for the static pair correlation function, cor-
relation energy, compressibility, and plasma dis-
persion relation for the electron liquid in the

metallic-density range are presented. A simple
analytic expression for the correlation energy is
also given. In Sec. VII, for the benefit of those
wishing to apply these results to the calculation of
other physical properties for free-electron-like
metals, numerical values of the local field G(q)
have been tabulated for y, =1-6.

II. THEORY

A. Classical Case

In this section we shall follow the derivation
given in I closely, omitting some of the details.
The equation of motion for the classical one-par-
ticle distribution function f(x, p; t) in the presence
of an external potential V,„,(x, t) is

(
—+v ~ g„x,p;t —v„V,„,x, t v~ x, p; t
Bt

~ v„P (
~

x —x'
~ ) ~ g~f(x, p; x', p

'
~
t) dx' dp' = 0,

(I)
where g(x) is the Coulomb potential and

f(x, p; x', p'l t) is the two-particle distribution func-
tion. The equation of motion for the two-particle
distribution function involves, in turn, the three-
particle distribution function and so on. Singwi
et al. in I truncated this hierarchy of equations by
using the following ansatz for the tmo-particle dis-
tr ibution function:

f(x, p; x'p'l t) =f(x, p; t)f(x', p'; t)g(x, x'; t), (3)

where for g(x, x'; t) they took the equilibrium static
pair correlation function g'(l x —x'

l ). They thus
introduced correlations between yarticles through
a physical function, and tacitly assumed that in the
presence of a weak external field, g(x, x';t) is not
different from g'(lx-x'I), which, however, is not
the case.

In the zero-frequency and infinite-wavelength
limit, g(x, x'; t) can be written as

g(x, x'; t) = g'([ x —x'
[ ) + an —g'() x —x'

) ), (3)

where n is the number density of electrons and 5g
is the static density response. Since the external
field can be arbitrarily weak, in the linear-re-
sponse case, terms higher than first order in gn
in Eq. (3) do not contribute. For finite wave vec-
tor j, we shall assume (in the spirit of linear re-
sponse) the following symmetric form" for
g(x, x'; t):

g(x, x'; t) =g'(lx-x'I)+-'[5n(x, t)+On(x', t)j

x —,
' g'(ix-x'i), (4)

where n+6n(x, t) and n+bn(x', t) are the local den-
sities at x and x', respectively. The above choice
of g(x, x'; t) for a one-component classical plasma
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+ s)*' ss.q(l *—x'I )Sx(x S)) q;fs(Ss) = (I, ((I)

where

6n(x, t) = f f, (x, p; t) dp,

v„y(x) =g'(x)v„y(x)+ ,
—g'—(x)v„(t(x) . (6)

The effective field felt by a particle can there-
fore be written from Eq. (6) as

E„,(x, t)

= —v„V,„,(x, t) —
) v„p(lx-x'l)6n(x' t)dx'

g X —X —1 ']]7~ X —X Q'PgX~t dX

n —[g'(l x —x'l ) —I]2 Bg

x v„p(l x —x'l ) 6n(x', t) dx' . (9)

The first two terms on the right-hand side of Eq.
(9) correspond to the usual macroscopic electric
field trandom-phase approximation (RPA)] and the
third and the fourth terms correspond to what one
calls local-field correction. The third term is the
same as in the theory of I. The fourth term is
new and takes into account the adjustment of the
pair correlation function in the presence of an ex-
ternal potential. Since the density derivative of the
equilibrium g (x) is related to the three-particle
correlation function, the fourth term in Eq. (9)
does contain effects arising out of three-particle
correlations.

Proceeding now as in paper I, we can find the
solution of Eq. (6) by considering a single Fourier
component of the external potential V,„,(q, ~). The
induced charge density is then

Qo(q, ~)
5n(q (())

( ) ( ) ( )
V '(q, (s)) (10)

exactly satisfies the compressibility sum rule, that
is to say, the isothermal compressibility derived
from the limiting behavior q- 0, ~ =0 of the dielec-
tri.c function q(q, e) is the same as that obtained
from differentiating the pressure.

For a weak external potential one can write

f(x, p; t) =fo(p)+fi(x, p; t),
where fo(p) is the equilibrium distribution function
and f,(x, p; t) is the small deviation induced by the
external potential. Using Eqs. (2), (4), and (5) in
Eq. (1) and linearizing the latter, one obtains

—ss ss, fs(x, )s; S)-(q„(s.„,(x, ()
Bt

e(q) =4."iq',

q (q ) = q (q) s q (q) (&
s

q
—,„)

dq q- q
(q, )s s ]S(q-q')-(]),

]q]0(q &) = —(t'(q))(.'0(q &) (12)

go(q, (d) being the usual free-electron polarizability
The dielectric function is therefore given by

q(q, )

1 —G., (q)q(&(q (o)

where

s., (q) = ((+"- —
) (-—,— q-, „q- [S(s(-s)') —)]),

(14)
where the term in the right large parenthesis was
designated as G(q) in I.

B. Quantum Mechanical Case

So far our analysis of the dielectric function has
been purely in classical terms. It is straightfor-
ward to show that the compressibility as obtained
from the limit &o = 0, as q- 0 of &(q, &u) of Eq. (13)
is the same as one would obtain from the classical
virial. This will not be the case if the density
derivative term were absent in Eq. (14) as was the
case in I. Following the arguments advanced in
I, we assert that Eq. (13) is valid in the quantum
mechanical case too with the proviso that the
classical free-electron polarizability is replaced
by its quantum mechanical analog, i. e. , by the
usual Lindhard function. In the present case we
make an additional assumption that the local-field
correction G(q) in the quantum mechanical case is,
instead of Eq (14), gi.ven by

S(q)= )) sssx —-- s
—

s ]S(q-q') —(])
8 1 dq' q q'
en n „(2v) q'

(16)
where a for the moment is to be treated as a pa-
rameter. Undoubtedly, the precise form of G(q)
in the quantum mechanical ease, which corresponds
to some effective particle-hole interaction, will be
extremely complicated and has hitherto not been
possible to calculate. %e have here not only
lumped all quantum correction to G„(q) in a single
parameter a, but have also tacitly assumed that
G(q) has the same structure as G„(q). These as-
sumptions are hard to justify in any rigorous man-
ner. The only justification we can give at present
is that they seem to work very well. It is a for-
tunate circumstance that a single value of the pa-
rameter a in the entire metallic-density range is
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adequate. This we believe is not accidental, and
one should look for a better understanding of G(q).
To avoid any confusion, we shall write in the quan-
tum mechanical case the expression for the dielec-
tric function as

Qo(q ~)
1 —G(q)Qo(q, )

' (16)

III. COMPRESSIBILITY SUM RULE

The ratio v/v& of the compressibility of an in-
teracting to a free-electron gas is given by the
forD1ula

3
lim &(q, 0) = 1 +

P g Kf

where q» is the Thomas-Fermi wave vector. In
the RPA, ))/yy =1.

From the expression for the quantum mechanical
virial theorem, it follows [see Appendix, Eq. (AS)]
that the ratio of the compressibility of the free- to
the interacting-electron gas is

3 1

n —(n (ke )) +—~ dx (t (x)
K y BC@ 2

g x, tl —1 +——g x, yg —1; 18a,

whereas the corresponding expression, as derived
from the Iim&(q, 0) as q-0 of Eq. (16) with G(q) of
Eq. (15), can be written as

n —(n (ke )~)+— dx P(x)
Kf 1

g) 2

where G(q) is given by Eq. (15) and Qo(q, ~) by Eq.
(12), with go(q, &u) being the usual I.indhard func-
tion.

It is worth pointing out the approximations that
go into deriving Eq. (16) from an exact set of equa-
tions. These approximations have been discussed
by I angreth, ' and we shall refer the reader to his
paper for details. The dielectric function &(q, &u)

can be expressed in terms of a vertex function
A (q, ~), which in general depends on the energy
and momentum of the electron (here denoted by
the suffix g)). The vertex function is given by an in-
tegral equation involving the effective particle-hole
interaction I(q, ~, p, p') which is frequency as well
as momentum dependent. If we a,ssume that the in-
teraction I is static and depends only on the mo-
mentum transfer q, an approximation first intro-
duced by Hubbard, '4 Eq. (16) for &(q, +) follows.
In the present context, I(q) corresponds to
—2&(q)G(q), and A(q, (o) is

A(q, &u) = [1+G(q)y(q)yo(q, ~)] ',
where A(q, (u) = &(q, (u)A(q, (o).

gx, rs —1 +an —gx, n —1
Bs

(18b)

Note that the upper bound of a is subject to some
uncertainty as discussed in the Appendix. Equa-
tion (18b) can also be alternatively written as

a g-p 0 9'z VF
(20)

IV. COMPRESSIBILITY IN HARTREE-FOCK
APPROXIMATION

In the Hartree-Fock (HF) approximation {ke)
= {ke )&, and hence for g= —,', (y&/y)D= (g&/y)» In.
the HF approximation the structure factor S(q) is
given by

2 1
S(q) = 1—

')) )&
dk'5(k —k'+q) .

(»)
Using this value of S(q) in Eq. (15) and with a= —,',
it is straightforward to show that

(22)

(For the evaluation of the integral, see Eq. (22) of
I.) Using Eq. (22) in Eq. (20), we have

(~»/~)~ =1 —44~ »/ez)'

which is the same as one would obtain by differen-
tiating the ground-state energy in the HF approxi-
mation. It is interesting to note that the result of
Eq. (23) is the same as obtained recently by Toigo
and Woodruff, ' who used a very different method.
The present derivation is much simpler; besides„
it is also apparent from it that the compressibility
ratio as given by Eq. (23) has no effect of Coulomb
correlations in it.

In the above equations, (ke) denotes the expecta-
tion value of the kinetic energy per particle in the
ground state of the interacting system, {ke)& is the
corresponding quantity for a noninteracting case,
and q~ is the Fermi energy. The suffixes V and D
stand, respectively, for virial theorem and dielec-
tric function.

Obviously, if {ke)= (ke)~, Eqs. (18a) and (18b)
would be identical for a= —,

' and hence the two ratios
of the compressibility will be the same. But we
know that (ke ) e (ke )~. However, one may take in-
to account in a, phonomenological way the differ-
ence between {ke ) and (ke )z by choosing a suitable
value for the parameter a such that ();z/g)D
= (~z /~)». In the Appendix we have pursued such
an analysis and have shown that a is a very slowly
varying function of z, and obeys the inequality
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V. SUM RULES

f (uim[q(q, (u)j 'd(u = ——,'v(o,'

J (elm[~(q, (u)jd(u =2v(u,' .
Equation (16) also satisfies the "perfect"-screening
requirement

Iim[&(q, O)j-'=O .
0

The compressibility sum rule is almost exactly
satisfied as will be discussed in Sec. VI.

The theories of I and II as well as the present
one satisfy particle-number conservation. This
follows from very general arguments. Particle
conservation states that

J dx [g(x) —lj= —I/n,
which implies that

limS(q)- 0 .
0

(24a)

(24b)

From the fluctuation-dissipation theorem, we have

S(q) = —(Iq'/4ve'n) f d+ 1m[1/q(q, (u) j . (25)
0

Using Eq. (16) for &(q, &u) in Eq. (25) and remem-
bering the fact that

limG(q) -yq, (26)
)~Q

it follows straightforwardly that IimS(q)-0 as q
-0. Equation (26) is valid in I, II, and the present
theory, and in fact in all theories of the Hubbard-

type, and hence number conservation is satisfied
in all these theories. The contention of GeMart and
Taylor'7 that the number conservation is violated
by the theories of I and II is therefore invalid. '

It may be noted that the relation'

G(-) = 1 -g(0), (27)

which is valid in I and II, does not hold in the pres-
ent case. Here Eq. (27) is replaced by

Q(

G( ) =((+an —[(—g(0)1. (26)
8N

It is, therefore, no longer possible to determine
g(0) simply by knowing G(~) for one value of r, .

VI. CALCULATIONS

Equations (15), (16), and (25) constitute the basic
equations of this paper. They have to be solved

Lt is easy to show that in the limit of large fre-
quencies Eq. (16) reduces to

&(q, (u) = 1 —(u,'/(u',

where co~ is the plasma frequency. From the ana-
lytical properties of &(q, &) and the above asymp-
totic behavior, it follows that

self-consistently with g as a parameter, the value
of which is limited by the inequality (19). One
could determine the value of g for each value of &,
such that the compressibility sum rule is exactly
satisfied. However, a self-consistent numerical
calculation in such a scheme would be very time
consuming. In practice it turns out that a is an
extremely slowly varying function of z, in the entire
metallic -density range. Calculations were made
for y, =4 for different values of a lying between —,

'
and 1, and it was found that for the choice of g = —',

the compressibility sum rule was almost exactly
satisfied. This value of g was then chosen for
calculations for all values of y, ranging from 0. 5
to 7. In order to illustrate the sensitivity of vari-
ous calculated quantities to the choice of g, we
have summarized in the table in the Appendix some
results for y, =4. For present numerical calcula-
tion we have chosen g to be —', . Since the bounds on
a were derived by considering the long-wavelength
situation, there is no g p&goyi reason to believe
that the above choice for the value of a would also
give a pair correlation function which is good for
small interparticle separation. Again it turns out
that the value of the pair correlation function for
small interparticle separation is not sensitive to
the choice of the value of a. This is, indeed, a
fortunate circumstance.

Equation (15) after angular integrations can be
written as

G(q)

= G, (q, r, ) + — —~ —G, (q, r, ) ——' G, (q, r, ) ~,
2 8 &s

(29)
where

G, (q, r, )

~C)O

2 &2

q"[S(q', r, ) —1j 1+,—», dq',
p

(3o)
where q is in units of q~. Equations (16), (25), and

(29) were solved self-consistently on a digital com-
puter. The computational time involved in the
present calculations was about twice that in I but
much less than that involved in II. To evaluate the
derivative of G, (q, r, ) with respect to r, , self-
consistent calculations were done for two neighbor-
ing values of z„say, z, = 3.96 and 4. 00„ thus giv-
ing us the derivative for y, =3.98. This was also
taken to be the value of the derivative for y, =3.96
and 4. 00. To establish the accuracy of such a
procedure calculations were performed at several
neighbor ing densities (say 3.94, 3.96, 3.98, and
4. 00), and it was found that the value of the deriva
tive did not change within our prescribed accuracy.
The derivative in (29) with respect to q can be
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evaluated with any desired accuracy. It is this
derivative which gives a dominant contribution.
Approximately ten to twelve iterations were
needed to obtain a self-consistency in G(j) of better
than 0. 1%. This in turn meant a, much higher ac-
curacy in S(j).

In the remaining subsections we shall present the
results for the pair correlation function, correla-
tion energy, and compressibility for values of p,
ranging from 1 to 6.

A. Pair Correlation Function

The pair correlation function g(x) is given by

g(r)=1+(3/B) f qsin(qr)[S(q) —ljdq, (31)

where q is units of q~ and y in units of q~'. Self-
consistent values of S(q) were used in Eq. (31) to
calculate g(x) The .results are shown in Figs.
1-3 for various values of z, . For the sake of com-
parison, corresponding curves in the theories of.

I and 11 are shown along with g(r) of Toigo and
Woodruff, in the original Hubbard approximation
and in BPA. It is clear from these figures that in
the present case g(r) for large values of z, and
small interparticle separation is slightly better
than that in II and definitely much better than that
in Ref. 19. The g(x) of paper I is slightly less
negative than the present one for y, &4. The nega-
tive values of g(0) are indeed so small in the pres-
ent theory that for all practical purposes they may

be considered to be zero.

B. Correlation Energy

As in I, correlation energy per particle can be
written as

4 9
~(~,')+0.9163 dr,' Ry,

s~0
(33)

where

Y(~.,) = —. 'f, -[~(q) —1Jdq, (33)

where q is ln units of q~. The Ferrel condition
on the ground-state energy, which is equivalent to

y(~) 0,d
d&s

is satisfied for the values of y given in Table I.
Values of the correlation energy per particle are
given in Table II, together with the values based
on previous approximate schemes.

Values of the correlation energy for x, = 1-6
can be fitted to the following analytic expression to
within half a percent accuracy:

& „=—0. 112+ 0.0385 lnz, Ry .
The form of Eg. (34) is the same as that of the in-
terpolation formula of Pines and Nozieres. The
values of q„ in the interpolation scheme of the
latter authors could differ from the present cal-
culated values by as much as 15%, depending on x,.

i.00—

0.50

G. I I ~0.06~0.04-
0.054~
0.00
-0.l6

-0.50-0.53

FIG. 1. Pair correlation function gt'z) vs q~ for &8=1 and 2. The abbrevations STLS, SSTI and T% stand, for Befs. 1,
2, and 19. The same is to be understood in other figures.
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I.O

0.5

0.006
0.0

-0.07

-02I

-0.5

FIG. 2. Pair correlation function
g(r) vs q~ for r~=3 and 4.

-0.68

-I.O

LOO—

0.50

0.00
-0.02+

-0.075/
-O.IO

-0.46~
-0.50 FlG. 3. Pair correlation functiong(r)

vs q~ for r~=5 and 6.

-092—
-I.OO

-I.50

-2.00
-2.04
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TABLE I. Values of y.

1 2 3 5 6

0.453 88 0.491 90 0.51679 0.53478 0.54847 0.559 27

TABLE III. Values of y.

r 1 2 3 5 6

0. 24284 0.261 37 0. 27433 0.28408 0. 291 84 0.298 16

C. Compressibility

The dielectric function of E(l. (16) in the limit
q-0 and & =0 has the following form:

lim q ((I, 0) = 1+—(qTF/q)'

o
' 1 r(q—T F/q, )

(35)

+— ———S(k v, .( — S(q, v, () . (86)
2 Q' Q + g

~Q' 3 ef'

Note that y and y are different; the former is re-
lated to the slope of the compressibility ratio, and
the latter determines the interaction energy per
electron.

Using the compressibility sum rule E(I. (17), it
follows from (35) that

Ky/K = 1 p(qTF/qp)

The values of y for different values of x, are given
in Table III. The values of ((z/A as obtained from
E(I. (3'7) are compared in Fig. 4 with those ob-
tained from differentiating the ground-state energy
(unmarked continuous curve). It is clear from the
figure that the two results almost coincide in the
entire metalli e-density x'ang. e. This justifies the
claim made in the Introduction that the compressi-
bibty sum rule is almost exactly satisfied in the

present theory. The curve for ((z/& obtained from
ground-state energy in HF approximation is a con-
tinuous straight line which intersects the g, axis
at 6.03. For the sake of comparison, curves for
qz /(( as obtained from the (I- 0 limit of q(c(, 0) in
different theories are also given in Fig. 4. Note
that it is the small Coulomb correlation contribu-
tion to the compressibility ratio that gives rise to
a curvature which is concave towards the origin.
The dashed curve marked present theory is indeed
concave towards the origin.

D. Plasmon Dispersion

The dielectr1c function in the limit q-0 and &

finite has the form
2

limp((I, +)=1 —~ 1+— — — —y
~

+ ~ ~

g-0

(33)
where co~ is the plasma frequency. The plasma
dispersion relation is then

(u, (q) = (u, + o.(&q'/m),

where

c(RpA 3kipp/10@i(dp

In Fig. 5 we have plotted o/n»A as a function of
y, in various theories. The experimental values

TA BLE II. Correlation energy (By/electron).

P. resent theory

Sinai et al.
(Hef. 1)

Singwi et g7, .
(Ref. 2)

Hubbard

Nozieres-Pines

IXI'A

—0.112

—0.125

—0.124

—0.131

-0.115

-0.157

—0.089

—0.097

—0.092

—0.102

—0.094

-0.124

-0.075

-0.080

—0.075

—0.086

—0.081

—0.105

-0.065

-0.070

-0.064

—0.076

—0.072

-0.094

-0.058

—0.063

—0.056

—0.069

—0.065

—0.085

—0.052

—0.057

—O. 050

—0.064

-0.060

—0.078

Toigo-Woodruff~ —0.134 —0.095 -0.079 —0.068 —0.061
(-0.103) (-0.083) (-0.071) (-o.o63) (-o.o57) (-o.o52)

~The values in parentheses in the last row are those calculated by us using the numerical values of G(q) given by
Toigo and Woodruff (Ref. 16). These values are different from those reported by these authors in Ref. 19. The dis-
crepancy seems to be due to the poor numerical accuracy of their computation.
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I.O

0.0

FIG. 4. Ratio between the
free-electron compressibility
and the compressibility of the
electron liquid vs r~. The un-
labelled full curve is obtained by
differentiation of the ground-state
energy. The broken curve
(labelled present theory) is ob-
tained from Eq. (37). The full
curve flabelled HF(TW)] is ob-
tained from differentiating the
ground-state energy in HF ap-
proximation. The same curve is
obtained in the theory of Ref. 16.

available for a few metals are also given in the
figure. Comparison between theory and experi-
ment may not have much significance, since the
influence of ion lattice on the measured values is
not known.

VII. SELF-CONSISTENT VALUES OF G(q)

Since the dielectric function occurs in the calcu-
lation of a variety of metallic properties, we
thought it worthwhile to give a table of self-consis-
tent values of G(q) for r, = 1—6. These are given in
Table IV. Values of G(q) for q& 2q~ can be fitted
quite well with a simple function of the form

G(q) = A(1 —e- '""&"), {41)

(valid only for q& 2qz). Values of the parameters
A and J3are given in Table V.

VIII. CONCLUDING REMARKS

The basic result of this paper is the expression
(15) for the local-field correction G(q). It repre-
sents our approximation to the effective particle-
hole interaction which occurs in the kernel of the
integral equation for the vertex function. The ex-
pression for dielectric function is such that in the
classical case, the compressibility sum rule is
eggetly satisfied; whereas in the quantum mechan-
ical case it is gzmost eggctly satisfied. The theory
also yields a satisfactory pair correlation function.

A few comments concerning the new term in the
local-field correction are worth reiterating. It
might appear to a cursory reader that it is the
choice of the value of the parameter g which is re-
sponsible for giving the correct compressibility.

I.O

FIG. 5. Coefficient of the
leading term in the plasmon dis-
persion relation (in units of its
RPA value) vs r~. The experi-
mental values (for Be, Al, Sb,
Mg, Li, and Na, in order of in-
creasing r, ) are taken from H.
Raether, in Springer Tracts in
Modem Physics (Springer-Ver-
lag, Berlin, 1965}, Uol. 38.

0.0—
0

rs
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TABLE IV. Self-consistent values of G(q).

q/q~ r,
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9
2. 0
2. 1
2. 2

2. 3
2.4
2. 5
2. 6
2. 8

3.0
3.5
4.0
5.0
6.0
8.0

10.0
20.0
50.0

100.0

0.0024
0.0098
0.0219
0.0386
0.0597
0.0848
0.1135
0.1454
0.1799

0.2164
0.2542
0.2926
0.3309
0.3684
0.4043
0.4378
0 ~ 4684
0.4956
0 5189

0.5384
0.5548
0.5690
0.5814
0 592
0.6022
0.6110
0.6262

0.6387
0.6625
0.6790
0.7003
0.7134
0.7285
0.7368
0.7519
0.7597
0.7619

0.0026
0.0105
0.0236
0.0416
0.0645
0.0919
0.1234
0.1586
0.1970

0.2380
0.2808
0.3246
0.3687
0.4123
0.4544
0.4941
0.5309
0.5640
0.5930

0.6179
0 ~ 6392
0.6578
0.6743
0.6890
0.7022
0.7141
0.7347

0.7518
0.7839
0 ~ 8062
0.8347
0.8519
0.8711
0.8814
0.8992
0.9077
0.9099

0.0027
0.0110
0.0247
0.0437
0.0679
0.0968
0.1303
0.1678
0.2089

0.2530
0.2994
0.3472
0, 3957
0.4439
0.4908
0.5355
0.5772
0.6150
0.6485

0.6775
0.7025
0.7245
0.7440
0.7614
0.7770
0.7910
0 81c51

0.8350
0.8719
0.8970
0.9279
0.9458
0.9647
0.9742
0.9888
0.9945
0 9958

0.0028
0.0114
0.0256
0.0453
0.0704
0.1005
0.1354
0.1746
0. 2178

0.2642
0.3134
0.3643
0.4163
0.4682
0.5190
0.5677
0.6134
0.6551
0. 6922

0. 7245
Os 7525
0. 7771
0.7989
0.8182
0.8355
0.8509
0.8772

0.8987
0. 9378
0.9634
0.9936
1.0100
1.0259
1.0330
1.0415
1.0428
1.0428

0.0029
0.0117
0.0263
0.0466
0.0724
0.1034
0.1394
0.1800
0.2248

0.2732
0.3245
0.3780
0.4327
0.4877
0.5418
0.5940
0.6430
0.6880
0.7282

0.7632
0.7937
0.8203
0.8438
0.8645
0.8829
0.8993
0.9269

0.9491
0.9884
1.0130
1.0403
1.0536
1.0648
1.0685
1.0694
1.0659
1.0644

0.0030
0.0120
0.0269
0.0476
0.0740
0.1058
0.1427
0.1844
0.2305

0.2804
0.3336
0.3891
0.4462
0. 5038
0.5608
0.6159
0.6679
0.7157
0.7584

0.7958
0.8282
0.8564
0.8812
0.9029
0. 9220
0.9389
0.9670

0.9893
1.0274
1.0501
1.0732
1.0829
1.0887
1.0890
1.0826
1.0750
1.0724

This is true to some extent, but what is of great
significance here is the mathematical structure
of this new term. As mentioned before, it involves
the density derivative of g'(x) which in turn is re
lated to the three-particle correlation function.
And hence the local-field correction has in it the
effects of three-particle correlations. Remember
that the density-derivative term in (15) which rep-
resents the effect of three-particle correlations is
here evaluated numerically in our self-consistent
calculations without any approximations. The ef-
fect of this new term in the local field manifests
in a dramatic fashion in the calculation of positron
annihilation rates in heavier alkalis. In the non-
linear theory of positron annihilation in metals of
Sjolander and Stott, in which no account is taken
of this derivative term in the local field, one ob-
tains for Cs metal (x, =6) an annihilation rate
which is three times larger than the experimental
value. This is due to the fact that too much polari-
zation charge mounts on the positron. But when
one takes into accounts the derivative term in
G(q) in the theory of Sjolander and Stott, one ob-
tains annihilation rates in agreement with experi-
ment. This agreement is due to the reduction in
the polarization charge on the positron which in

turn is brought about by the derivative term in
G(q). The weakness of the present theory lies in
the fact that we have been unable to estimate the
value of the parameter g from first principles, al-
though we have been able to put fairly narrow
bounds on it in the limit of long wavelength. The
difficulty is further compounded by the fact that
our correction term is in general nonlocal, and we
have made here a local approximation. The pa-
rameter a in general will also depend on the wave
number q. The burden of nonlocality and of q de-
pendence has been absorbed in the choice of the
value of g. From the practical point of view what
is remarkable is that a single value of this param-
eter suffices in the entire metallic-density range.

We have also been able to extend the considera-
tions of this paper to spin correlations in the pa-
ramagnetic state. At present we do not have nu-
merical results for the Stoner enhancement factor.
As far as the use of the dielectric function in the
calculation of metallic properties of simple metals
is concerned, the present results do offer a satis-
factory solution. However, for the study of optical
properties of these metals, a static approximation
for the local field correction may not be very sa-
tisfactory.

APPENDIX

For a system of electrons interacting via Coul-
omb potential in the presence of a uniform rigid
positive background, an expression for the com-
pressibility ratio qz/w can be easily derived start-
ing from the quantum mechanical virial theorem.
The pressure for the system can be written as

P=-,'(n(ke)+-,'n(pe)),

where (ke) and (pe) are, respectively, the expec-
tation values of the kinetic and potential energies
per particle in the ground state, and n is the num-
ber density. Compressibility is defined as

8P=n
~S

Expressing (pe ) in terms of the equilibrium pair
correlation function g(x) and differentiating Eq.
(Al) with respect to the number density n, one
easily obtains for the compressibility ratio

n —(n (ke )) +— dx P(x)(
9

y SE'p. 2.

TABLE V. Values of parametexs A and 8 in Eq. (41).

A 0.708 53 0.855 09 0.978 05 1.084 82 1.17987 1.265 69
8 0.36940 0.331 17 0.30440 0.284 30 0.268 50 0.255 61
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where

x gx, n -1 +——gx, n —1, A3
2 en

be the same is obtained by equating Eqs. (A3) and

(A 8), thus giving

8
n —(n& e) —n(ke), )

(pe&= ,'n f dx-P(x) [g(x, n) —1]

y(r ) = —(2q )
~ f dq [S(q, n) —1], (A6)

E = &ke&z+ f '(dX/z) &pe(a)&, (Alo)

2 P

—(a--,') —"n dx—y(x)[ (x n) —1]=0. (A9)
2 en~

The first term on the left-hand side of Eq.
(A9) can be written in terms of the interaction en-
ergy if one writes the ground-state energy per par-
ticle Eo as

where &~ is the Fermi energy. On the other hand,
an expression for (gz/y)D can also be obtained from
the limit q-0 of the dielectric function q(q, 0).
Now we have

1)mG(q)= 1+am —)- a dq[s(q, n) —))) .s ( q

0 Bn ( Gnn„p

(A6)
Using the Fourier transform

f dx e'~ '
[g(x, n) —1]= (1/n) [&(q, n) —1] (A7)

in (A6), then substituting Eq. (A6) into q- 0 and
cu =0 limit of &(q, cu) of Eq. (16), and then compar-
ing it with Eq. (17) of the text, one obtains

n —(n&ke &~)+—'

dx4(x)
g g

Ofay

en 2

x gx, n —& +an —g x, n —1. , A8
~In

where &ke )& is the kinetic energy per electron for
the noninteracting case.

The condition that the two compressibility ratios

where X is a parameter representing the strength
of the interaction. Also we have

Eo= &ke)+ &pe) .
From Eqs. (A10), (A11), and (A4) and remember-
ing that

dX e&'/' r—&pe(~) &= -- — — y(x) dx B~,
„p r, jo

one can write

(ke) —(ke&~= —— — —
& ) y(x)dx ———' Byy(r, )

~ 4 &s

(A12)
Substituting Eq. (A12) into Eq. (A9) and using Eq.
(A4), we get

(1/r, ) f ' y(x) dx+;Lo (2a+1)r,y'(r, ) = 5(6 —2a) y(r, ),
(Als)

y'(r, ) being the derivative of y(r, ).
It is easily seen that Ferrell condition on the

0.800

g {oo) WIGNER ----- 0~&5

0.600-
~ STLS $ (0

0.400
0.375

FIG. 6. Function y(x, ) vs w~.

.Solid curve gives the values of

y (y in their notation) of I.

0.200—

IO
I

Is
I

20
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ground-state energy, which is equivalent to

—y(y, ) &0,d

lim y(~, )=0.375,
r~ 0

lim x, y'(x, ) =0(-x, inr, ) .
0S

Hence, in the limit r, -0, Eq. (A13) leads to

y(0) =-'. (6 —2.) y(0),

which gives
1a= 2 ~

(A15)

(A16)

(A17)

Also from %igner's low-density calculation 6 we
have

y"(r,) &0 .
It then follows that for y, —~,

(I/~, ) f, 'y(y)dy=y(")

Using the above relations in Er.;. (A13), we have

a( )=-,'. (A19)

Clearly a= —,
' does not satisfy Eq. (A13) for all

values of y„ the parameter a is thus a function of
A bound for a(r, } can be obtained by noting that

the Ferrell condition in Eq. (A14) implies that

y(0) & (I/~, ) f,
' y(x) dx . (A20)

requires that y(x, ) be an increasing function of r, .
Using the fact that y(z, ) is positive and so also its
first derivative y'(r, ) [from Eq. (A14)], we shall
establish the bounds for the parameter a in Eq.
(A13).

In the high-density limit an exact value for the
parameter a can be obtained, where one knows that
the Gell-Mann and Brueckner (GB) ~ result for the
ground-state energy per particle becomes exact.
Using the GB expression for the correlation ener-
gy, one has

TABLE VI. Effect of variation of a.

g(0)

+0.006
-0.054
—0.07
—0.08

0.5261
0.3282
0.2841
0.2685

yg/y = 1 —0.6634yys

—0.3961
0.1291
0.2462
0.2876

Using Eq. (A20) into Eq. (A13), one gets the in-
equality

~(~,) & 2+ l (y(~, ) —y(0)]/Y(~, ) (A21)

If one takes y"(r, ) & 0 (this is the case in all the
theories, e.g, , the GB high-density limit, 25%ig-
ner's low-density limit, ~s Pines and Nozieres's in-
terpolation scheme, ' Singwi et al. , ' and the pres-
ent theory), one can write

l ty(0)+y(, )]~(1/, ) J, 'Y(x) d (A22)

(see Fig. 6), which when substituted in Eq. (A13)
gives

~(~.) & l + ~~ [V(~,) - y(0)]/y(~, ) . (A23)

One may obtain an estimate for the upper bound of
a(z, ) by using the value of limy(r, ) = 0.735 as z,.- ~ from signer's low-density calculation or the
value of y(x, . = 20) = 0. 5986 (y in their notation) from
paper I. This leads to the upper bound for a(r, ):—1.

Thus we finally obtain the following inequality for
the para. meter a(r, ):

1'a(r, ) &-,'

It is clear from the foregoing discussion that the
upper bound for a has been estimated from the
presently available values of y(r, ) for large values
of r, Althou. gh the uncertainty in the upper bound

for a is related to the uncertainty in the value of
y(~, .), nonetheless, the former is relatively much
less sensitive to the variation in the latter.

In Table VI we give for y, =4 our self-consistent
values of g(0), y, and gz/& for different values of
the parameter a.
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Phase Reversal and Modulated Flux Motion in Superconducting Thin Films
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It is shown that a small magnetic field alternating at audio frequencies causes an ampli-
tude modulation of the electric field associated with the flux motion oscillating at microwave
frequencies in superconducting thin films. The phase of the modulation component of this elec-
tric field can be changed almost 180' by reversing the sweep of the external magnetic field.
These phenomena can be explained by invoking the influence of boundary currents on the motion
of the flux lattice.

I. INTRODUCTION

If a constant homogeneous magnetic field H is
applied along the normal of a superconducting film
carrying a current J exceeding a critical value, a
flux flow results in the direction perpendicular to

both J and H. ~ This critical current is not the
critical current for destroying the superconductivi-
ty but is related to the pinning of flux in the sam-
ple. The vector relation among 8, 8, and the flux-
flow velocity v, is shown in Fig. 1(a). It has been
established both experimentally~ and theoretically


