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The dependence of the critical current 7, on magnetic field B in double Josephson tunnel
junctions is discussed in a model which includes the dependence of junction critical currents,
magnetic self-screening, and asymmetry, Account is taken both of static (zero-voltage) and
dynamic (nonzero-voltage) behavior, the former controlling the over-all shape of I,(B) and
the latter being important in nonadiabatic transitions between multiple states of the junction.
The experimental I,(B) of double Sn-Sn tunnel junctions are interpreted in this model, and

display effects of both static and dynamic origin.

I. INTRODUCTION

A well-known aspect of the Josephson effect!~
is quantum interference,’~" the oscillatory depen-
dence on magnetic field B of the supercurrent flow
and of the maximum supercurrent /, that can be
supported by single or multiple Josephson junc-
tions. One of the simplest and most revealing
geometries in which quantum interference can be
observed is the double junction,”® two individual
weak-link junctions operated in parallel. Under
certain assumptions, it is possible to interpret
fully the I(B) for this system,? taking exact ac-
count of the loop self-inductance and magnetic
asymmetry and allowing a more general form for
the supercurrent-phase relation of the junction than
the usual sinusoid, first predicted for tunnel junc-
tions by Josephson. The interpretation is thus suf-
ficiently general to make contact with experiment
and has been previously employed to interpret the
I(B) for Ta-Ta and Nb-Nb point-contact double
junctions'® and for Sn Anderson-Dayem bridges,
providing in these cases a simple relatively ac-
curate determination of the supercurrent-phase re-

11,12

lations. In this paper we describe effects occur-
ring in the I,(B) of double junctions fabricated using
superconductor-insulator -superconductor tunnel
junctions,7 the junctions originally discussed by
Josephson.! Interpretation of the observed behavior
requires that the dynamical aspects of the super-
current flow in the double junction be taken into ac-
count, and we extend our previous treatment!® of
the static aspects of the supercurrent flow to in-
clude these.

Section II analyzes the properties of the steady-
state supercurrent flow and describes a mechanical
analog (the double pendulum). Section III discusses
the dynamical effects. Section IV describes and
interprets experiments on the I,(B) of double
Josephson tunnel junctions.

II. SUPERCURRENT FLOW IN SMALL DOUBLE JUNCTIONS

In this section we review our approach to the
analysis of the double junctions. We also describe
an exact mechanical analog (the double pendulum)
whose behavior simplifies the qualitative under-
standing of double junction behavior.
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A. Analysis

Consider two bulk superconductors whose di-
mensions are large compared to the penetration
depth and which are connected at two points by
weak-link junctions forming a parallel circuit
[Fig. 1(a)]. We assume that the junctions are
small and that the magnetic fields to which they are
subjected (from external sources or their own cur-
rents) are weak enough that the magnetic flux pass-
ing through the barrier and the adjacent penetra-
tion depths of the superconductors is much less
than a flux quantum &,=//2e=2.07x10""* Wh.

Then the supercurrent I passing through a single
junction from one superconductor to the other can
be expressed as a function of ¢, the gauge-invari-
ant phase difference between the order parameters
of the bulk superconductors on either side of the
barrier. These functions, I(¢,) and I(¢,) for
junction Nos. 1 and 2, respectively, are taken to
be formally periodic in ¢ modulo 27, but are
otherwise unrestricted. In particular they may be
nonsinusoidal and are not necessarily smooth, con-
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FIG. 1. (a) Schematic double weak-link junction. (b)
Equivalent circuit of the double junction.

o

tinuous, or even single valued.
The net transport supercurrent I, carried by the
junction is

L =1(¢,) + L) . (1)

Additionally there is the usual constraint? on the
difference between ¢, and ¢,, namely,

b2~ P1=218/3,, (2)

where & is the total magnetic flux linking a contour
C which [Fig. 1(a)] passes through the two weak
links and elsewhere through the bulk superconduc-~
tors at a depth much greater than the penetration
depth. By the previous assumptions any change in
the position at which the contour passes through
the junctions changes & by an amount negligible
compared to &,. The effect of flux in the junctions
from external sources could be dealt with by as-
suming I, and I, to be B dependent, giving the
usual diffraction background of the interference
pattern of I(B). Addition of self-fields within the
junctions,® ! a further complication, will not be
considered.

The magnetic flux @ is the sum of two parts. The
first, denoted & ,, comes from the applied B field
modified by the diamagnetic screening of the bulk
superconductors. The second, denoted &, is due
to the magnetic fields set up by the flow of /; and
L. I & is negligible the phase difference ¢, ~ ¢,
is fixed for fixed B, and (1) and (2) reduce to

L=15(p;) + L, + 213, /&) . (3)

For fixed I, it is straightforward to find the value
of ¢, satisfying (3), and hence the separate values
of I and I,. For sinusoidal I(¢) this can be done
analytically. More generally a solution can be
found graphically for any I(¢) by simply adding I,
and I, displaced in phase by 27®, /&, and finding
the points at which the sum equals 7,. If &, is not
negligible then (1) and (2) are coupled and their
solution becomes ostensibly more difficult. Nu-
merical solutions in a few particular cases!® have
previously been given.

From our assumption of small junctions it fol-
lows that essentially all of the contribution to &
from I, and I, comes from the flow of these cur-
rents in the penetration depths of the bulk materi-
als. The junctions act as point current sources
supplying the surface currents of the bulk materi-
als, and the surface current density and its resul-
tant magnetic field are linear superpositions of the
currents and fields caused by I, and I, acting sepa-
rately (as well as, of course, the surface current
flow induced by the exterior magnetic field). Hence
we may write ; as a linear expression

o= L1y — Lyl , (4)

where L, and L, are coefficients having the units
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of inductance and the signs are taken so that L,
and L, are positive in most geometries. The sum
of L, and L, is L, the self-inductance of the double
junction loop, but L, and L, separately usually can-
not be interpreted as individually describing the
inductance of separate portions of the loop. None-
theless it is often useful to employ the equivalent
circuit of Fig. 1(b) in which L, and L, are treated
as separate lumped inductances. We shall assume
henceforth that L, and L, are non-negative, con-
sidering the importance of negative L briefly in
Appendix A.

With (4), the constraint (2) can be written as

Go= b1=218, /B¢ + 21 LIy /B - 2w Lyl /g . (5)

This constraint is much simplified by using a new
set of variables 6,, 6,, and 6, defined by

01=¢1+21 L1 (1)/ & (6)
85=ba+21 L1 ($5)/ @y , (7)
0,=21®, /& . (8)

Note that 9, and 9, depend only on the value of ¢,
and ¢,, respectively, while 9, is a normalized
measure of B. Expressed in these terms (5) be-
comes

62— 01=0, . ©)

One may also use 6, and 6, rather than ¢, and
¢, as the independent variables determining /; and
L,, denoting the function I;(¢,(8,)) by I,(6,) and
similarly L(¢,(6,)) by L(6,). Equation (1) then be-
comes

I, =5(8,) +I,(65) . (10)

Equations (9) and (10) replace Egs. (1) and (2) as
the basic equations of the problem and can immedi-
ately be combined to give

L =06,) + (0, +6,) . (11)

[For brevity we will subsequently denote I,(6,)
+L,(0,+6,) by I(6,,06,).] This equation has pre-
cisely the same form as (3) and the same graphi-
cal approach to determining the I,(B) and other fea-
tures of the supercurrent flow may be used. In ef-
fect the change of variables replaces the problem
involving L #0 by an equivalent L=0 problem having
current-phase relations with a modified shape.
Figure 2 gives two examples of the relation be-
tween ¢ and 6 and the construction of the 1(9).
In Figs. 2(a) and 2(b), we take I(¢,) =L, sing, and
27 Lyl /®,=0.45. The I;(¢,) and also a straight
line given by I = — (®,/27L;)¢, are plotted in Fig.
2(a). For each point P of L(¢,) there is a corre-
sponding value 6,(P) whose magnitude is the hori-
zontal distance between that point and the diagonal
line. The function I;(,) is generated by taking
these corresponding values of I;(P) and ,(P) for

11
I, (P)

g, (P)
/:

= __,

FIG. 2. Construction of I(8) from I(¢). (a) and (b)
Sinusoidal I(¢). (c) and (d) Nonsinusoidal, multivalued

I(g).

all points P on the curve. Figure 2(b) plots I,(8;)
for the case of Fig. 2(a) and illustrates the general
point that I;(8,) has the appearance of a skewed
I(¢,), rising more slowly and descending more
steeply than the latter. Figure 2(c) shows a more
complicated example, taking a discontinuous multi-
valued I;(¢;). We have taken 2r Lyl /®¢=0.72,
where I; is the maximum value of ;. The same
procedure for constructing I;(9,) applies, and this
function is shown in Fig. 2(d). In this case the
skewing is sufficient to create reentrant portions
in I,(6,), corresponding to all parts of I;(¢,) having
a steep enough negative slope, i.e., df/do,

<= @G/ZWLI'

Using Eq. (11) one may obtain a complete picture
of the supercurrent flow in a double junction given
L(¢y), L(d,), Ly, and L,. We shall discuss three
examples which illustrate most of the phenomena
that occur. We emphasize the I(B), or L(6,), as
this is what we measure experimentally, and we
restrict ourselves to I(¢) =1, sing although many of



858 FULTON, DUNKLEBERGER, AND DYNES 6

the qualitative results will obviously occur in non-
sinusoidal cases as well. To avoid obscuring the
results we set forth the manipulations of Egs.
(1)-(11) involved in the less obvious points in Ap-
pendix A. Certain comments involving the stability
of some solutions draw on results to be derived in
Sec. IIL

A convenient set of parameters are o, =2rLyl,,/
Oy, Qp=2wLyl5/®g, I.5/11, and I,;. We shall
suppose that [, 7,. Note that for fixed a;, a3,
and I,/I, the currents for a given 6, scale with
Ly, so that qualitative changes in, say, L(6,) re-
sult only from changes in the first three param-
eters. Although all three variables affect the
shape of I.(6,) it turns out (Appendix A) that I, /I,
and the parameter which we shall call @, where
a=2rLL, /&= ay+oy(l,5/I,), are of particular
importance in determining the major qualitative
features of 1,(6,). In Fig. 3, we show the various
regimes of « and I, /I,; in which qualitatively dis-
similar behavior is found. These regimes, which
we have labeled A, C, and B, are set off by the
heavy solid lines and roughly correspond to re-
gimes of increasing importance of the self-fields.
Our three examples are taken at the points indi-
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"IG. 3. A, B, and C are regions of qualitatively dif-
ferent behavior of I.(6,) in its dependence on I /I,y and
o =271LIy/®). The dashed lines set off differing regions
of single-valued and multivalued I;(6,) and I,(6,). The line
S-C indicates the transition between smooth and cusplike
minima of 1,(6,). The crosses indicate the values of o and
I4/1, for the three examples of the text.

cated by the crosses. The determination of the
boundaries of A, B, and C will be described sub-
sequently.

Note that if o<1 then ay<1 and ,(6,) is single
valued, while if o/(l,,/I,1)<1 then o; <1 and both
1,(6,) and I,(p,) are single valued. Both I;(8;) and
I,(6,) may still be single valued for any « and I,/
I, obeying a<1+(I/I,,). These regions of single
and double valuedness are indicated by the dashed
lines of Fig. 3, and do not coincide with the bound-
aries of A, B, or C. The significance of the light
line denoted S-C will be described inthe second ex-
ample.

First example. Suppose that o, and o, are small
corresponding to region A of Fig. 3. The limit
a; = ap =0 is the familiar L =0 problem, and gives
1,(6,) = (1% +1% + 2,41, cos6,)' /%, For oy <1 and
ap <1 the deviation from the L=0 result is small.
Figure 4 shows an example of the graphical pro-
cedure for solving Eq. (11) in this particular limit.
Here we construct ,(6,) and I,(6,) from sinusoids
using 7,;=1.0, I,=0.4, ;=0.1, and a,=0.25, so
that [.,/I,=0.4 and @=0.29. In Fig. 4(a), we
show I,(0,), I,(6,), and I(8,,6,) for ,=0 and in
Fig. 4(b) for 9,=7. Note that the maxima of ,(¢,)
and L,(6,) occur at 8, =37+ qy and 0,= 57+ a,, re-
spectively, while the maximum and minimum
slopes of ,(9,) at 6=0 and 0,=7 are dl, /d6,=+1,,/
(1+ o) and correspondingly for I,(0,) the slopes at
02=0 and 0,=7 are dl,/do,=+ I, /(1% o). In solv-
ing (11) graphically, for a given I, =1, we find that
6, for which ,(9;,6,)=1,. The intersection of the
dotted line in Fig. 4(a) with (64, 6,) gives these
61. In all cases for most J; there are at least two
0, satisfying I,(9;,0,)=1,, e.g., P;and P, in
Fig. 4(a). Of these only those corresponding to
the portion of (4, 6,) having positive slope, such
as P;, represent a dynamically stable situation
(see Sec. IM). Having found the 6,, call it 6, for
1,, the junction currents are given by ,(§,) and
I,(6,+06,), the magnetic self-flux by L, (9,)

- LyI,(6,+6,), and so on.

The positive (negative) critical current I,,

(I,.) is the maximum (minimum) value of I,(6,, 6,)
at each 6,, a plot of I,(6,) derived in this manner
being shown in Fig. 4(c). The I,_(¢,) has a shape
similar to that of 1,,(9,), the two being related by
the time-reversal requirement I,(8,)=~ L _(-6,).
As for the L=0 case this I,,(p,) is a smoothly vary-
ing periodic function and is typical of type-A situa-
tions. Some salient features are these: (i) The
maximum of I,,(6,) is (I, +1,,) and occurs when the
maxima of (6,) and L9, +6,) are aligned, at g,
=@, — a;. This occurs at ,=0 (B=0) only if o,

= @y. It turns out (see Appendix A) that the mini-
mum of I, is (I,; — I,) and occurs when the maxi-
mum of ;(8,) is aligned with the minimum of

(6, +6,), at 0, =7 — (ap + ;). (ii) Since the angular
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FIG. 4. (a) I(6y), I,(6;+86,), and (85, 6,) for I,;=1,

I5=0.4, 0;=0.1, 0y=0.25, and 6,=0.
are two solutions to I;(64, 0)=T,.
(c) 1,(6,) for these parameters.

Points Py and P,
(b) Same except 6,=r.

separation between the maximum and minimum of
I, in the direction of increasing 6, is 7 — 2¢, and
in the direction of decreasing 6, is 7 +2ay, 1,(6,)
is always asymmetric in the regime A if ay+#0.
This asymmetry persists in B and C regimes with
the single exception of the case ;= a; and I, /L,
=1. (iii) From (i) and (ii) it follows that the posi-
tions and magnitudes of I, at its maximum and
minimum determine the parameters oy, as, s/
Ly, and I, for sinusoidal I,(¢). Experimental ex-
amples of this will be given in Sec. IV. (iv) The
maximum and minimum first derivative or slope
of ,,(6,) is dI,,/d6,=+I,/(1 £+ ap). (v) The shape
of I,(6,) in the A regime is uniquely related to I,(6,)
and can be used to generate it (see Appendix A). In
the limit o +1,,/I,; <1, I(6,) has exactly the same
shape as I,(6,) [which in turn for o, <<1 tends to
L(¢,) in its shape]. If this inequality is not strong-
ly obeyed the shape of I,(6,) becomes a distorted
version of ,(6,) with the maxima somewhat broad-
ened and the minima somewhat pinched. There is,
however, a procedure (Appendix A) for removing
this distortion and recovering I,(6,). Thus a double
junction having @ <<1 provides a direct means of
measuring I(¢) in weak links for which the shape
is not known.!%!2

Second example. For values of I, /I, and «
lying outside regime A a new situation occurs, il-
lustrated by the example in Fig. 5. Here the pa-
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rameters are I,;=1.0, ,=0.8, o;=0.4, and o,
=0.8 so that [,,/I;=0.8 and ¢=1.12, a case in re-
gime B of Fig. 3. Figures 5(a)-5(c) show I,(6,),
I,(6;), and I,(64,6,) for 6,=0, 37, and 7. The new
element is that for some 6, the function (6, 6,)
develops a double maximum and minimum as in
Fig. 5(b). This situation occurs in regime B be-
cause the condition I; /(1 +ay)< Ly/(1 - @) or
I»/I,+a>1 holds there, the boundary of B being
Ls/Iy+a=1. Thus at 6, =7 the slope dI(8,, 6,)/
de, is negative at both 6, =0 [at which d[(6,, 6,)/
d6,=1,/(1+a,)-1I,/(1 - ;)] and at 6,=7 [ at which
ar6,,6,)==1I,/(1 - o) +IL,/(1+a,)]. Hence

(8, 6,) must possess two maxima and minima be-
tween 6, =0 and 9, =27, and generally will retain

a double~-humped appearance in a range of 6, sym-
metric about §,=7. Appendix A shows, moreover,
that the double-humped condition occurs in regime

L 8= P P2 P3 P4 |
0 \/I Dl <
ne T, 1, () |
-~ 0 m 91
Ic
T T T
Tce+ 1
i .
of <o s ]
-t B M):
1 I I ) ]
-2t - 0 a 27 8,

FIG. 5. (a) I,(8)), I,(6,+86,), and I,(6;, 6,) for I,;=1.0,
I;=0.8, ;=0.4, 0,=0.8, and 6,=0. (b) Same except
0,=2r. (c) Same except §,=m. The points P;—P, are
four points of I (6, 7) having the same value. (d) Solid
lines—positive and negative critical currents. Dotted
lines—positions of intermediate extrema of I (64, 6,).
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C as well.

If the function I,(,, 6,) does possess a double
maximum and minimum then for some I, there are
four possible solutions to (11), e.g., the points P,
to P, in Fig. 5(c), of which only the two corre-
sponding to dI,(6,,6,)/d6,20, e.g., P, and P;, are
stable solutions. (See Sec. III concerning the sta-
bility of these solutions and how transitions occur
between them.) The critical current I,, is again
the maximum value of I,(y, 6,), corresponding to
the higher of the two maxima. Now one can show
(Appendix A) that if a double maxima occurs there
isag,, callit §;, at which the two maxima have
equal heights. The rate of change of the heights
with ¢, at §,=6,, however, is different, so that
for 6,%6,, I, will correspond to the maximum at
smaller 6,, and dI,/d6, will have some value
(dr,/as,)., while for 6,26,, I, will switch to the
maximum at larger 9, and will have a different
slope (dL,/d6,),+(dl,/d6,).. The appearance of
I,(8,, 6,) in these two cases corresponds to Figs.
5(b) and 5(c). As a result the ,(9,) has a break in
slope at 6,=0., or, if (dl,/ds,), and (dI,/de,),
have opposite signs, then I, (9,) will have a cusplike
minimum as in.our example, Fig. 5(d), solid
lines. Immediately on either side of the cusp or
break in slope at I, = I, the values of I,(8,) and L,(6,)
are quite different. There is no formula, to our
knowledge, for determining the position and depth
of cusplike minima, but if there is only a break in
slope the minimum is still at [, =I; - I, and 6, =7
— (ap + 1) as in the first example.

Consider how the I.(,) changes as one passes
continuously from regime A to regimes C and B.
‘In Fig. 6, we show I(9,) for a case in which I,/
I,,=0.2 and «=0.5, 0.7, 0.8, 0.9, passing from
regime A to C and then B. In A it turns out that
the point of maximum curvature or d2I,/d6? oc-
curs on the steeply sloped portion just above the
minimum of I,. This maximum value of d?I,/d6?
increases with increasing « until it becomes infi-
nite at the boundary of the regimes A and C. The
break in slope develops in I,(6,) at this point. For
an interval of larger « this break in slope remains
above the minimum, so that one can still determine
I, and ¢, from the position of the minimum. This
condition persists throughout regime C and slightly
into B. As one reaches the region bounded by the
light line marked S-C in Fig. 3, however, the
break in slope moves down, obscuring the rounded
minimum and becoming itself the cusplike mini-
mum. Note that even here one can still resolve
the point of maximum descending slope of I,(4,),
corresponding to L, =0 and having the value I,/
1+ ay).

Returning to Fig. 5(d), the solid lines show
I.(6,) and I,_(6,), these corresponding, respective-
ly, to the highest maximum and lowest minimum of

K=z

L I L |
o] ™ 6y

FIG. 6. I.(9,) for the case I,y=1.0, I4=0.2, a;=0,
and 0y=0.5, 0.7, 0.8, and 0.9. The latter three cases
are offset vertically.

I,(61, 6,). We also show by dotted lines the contin-
uations of the intersecting segments of the I, which
are the positions of the intermediate maxima and
minima. These merge and vanish as L(4,,6,)
changes from double humped to single humped at
some 6,. Note here the characteristic asymmetry
of the I,(9,). Note also in this figure what happens
when one begins with a situation in which I,(6y, 6,)
is double humped and then follows the positions of
the two maxima through a cycle of 6,. One sees the
left-hand maximum at smaller 6, disappear while
the right-hand maximum moves over to take its
place with a third new maximum appearing and
moving into the right-hand position. Thus the
double maxima are in a sense the same maximum
observed at two different states, corresponding to
an increase in 9, of 27.

Third example. This case, shown in Fig. 7, in-
volves still larger values of a; and o, @;=16, a,
=2, I,=1.0, and I,,=0.6 so that I,/I,;=0.6 and
a=11.6. Consequently the I,(9,) and I,(6,) shown
in Figs. 7(a) and 7(b) are reentrant and multi-
valued. We shall see in Sec. III that the reentrant
portions of the I(9) are dynamically unstable and a
static state always corresponds to the nonreentrant
portion of the I(f) curves. Consequently we delete
these reentrant portions in the remainder of Fig. 7.

In forming the sum I,(6,, 6,) for the graphical
solution of (11) for multivalued I(9) the procedure
isto add to each branch of one function all over-
lapping branches of the other. In Fig. 7, in which
the various branches of the I(f) are in a sense
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portions of the same continuous branch separated
by A6 =27, it is equivalent and convenient to plot
a single branch of ;(4,) in an extended range of
6, > 27 and to add to it each of the branches of I,
where they overlap. This is done in Fig. 7(c) for

6,=0. Here again the multiple maxima correspond

in a sense to a single maximum observed at suc-
cesive values of 9, separated by 27.

The largest maximum of I,(9,,6,) is I,, and a
plot of I.,(6,) is shown in Fig. 7(d). It resembles
the I,,(6,) of Fig. 5 in the asymmetry and cusplike
minima. Here, however, less indication of the
sinusoidal curvature remains than in Fig. 5. In
the limit of very large oy and @, I, has a
nearly saw-tooth shape, with slopes dI,,/df, ~1,/
0y =®y/2nLy and dl,,/d6, ~— I,/ ;= — &¢/21 Ly on
the ascending and descending portions of the curve,
respectively, leading to variations in I, of &,/L
to lowest order. In this regime when I, <<I, the
values of ¢, — ¢, are rather close to a multiple of
2m for the states in which || < I, and ] < 1I,.
In this case the flux &=, + &, occurs in near mul-
tiples of &,, i.e., is nearly quantized. If either
I, and I, approaches its critical value, however,
the approximate flux quantization no longer holds.

B. Mechanical Analog of Double Junction
For many Josephson problems there are me-

chanical systems, often involving the simple pen-
dulum, whose equations of motion have the same
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form. For the double junction such an analog is
the double pendulum sketched in Fig. 8(a). The
two pendulums 1 and 2 whose angular positions are
B, and B,, measured from vertically downward,
are capable of exerting gravitational torques

M, sing, and M,sing,, where M,< ;. They are
connnected by a torsion bar of stiffness K with a
built-in angular displacement of g,, that is, in
the absence of gravity or externally applied torque
the torsion bar is unstressed and the pendulums
would have an angular separation of B, — By = 8,-
There is an external torque 7, applied at a point

@ on the torsion bar at a distance X; from pendu-
lum 1 and X, from pendulum 2. The sign conven-
tions are shown in Fig. 8(a). Both the statics and
the dynamics of this device have implications for
the double junction. We consider in this section
only the statics, discussing the dynamics in Sec.
III. In the static case the external and gravitation-
al torques are in balance, leading to

7,=M; SinBy + M, sing, . (12)

The torque-induced twist in the torsion bar be-
tween the point @ and pendulum 2 is

— (X,M, /K) sing,, and that between pendulum 1 and
point @ is (X;M,/K)sing;, the total torque-induced

(b)

FIG. 8. (a) Double pendulum connected by torsion
bar—mechanical analog of the double junction. (b) Equiva-
lent circuit of the double junction in-the dynamical case.
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twist g, being the sum of these. The actual dis-
placement between 8, and g, is the built-in dis-
placement B, plus B, or

Bz = B1 =B, + (X1 M, /K) sing, — (XzM, /K) sing, .
(13)

Equations (12) and (13) are of the same form as
(1) and (5) for sinusoidal I(¢) so the statics of the
double pendulum and double junction are complete-
ly analogous. The quantities (¢;, sing,, L;, I;,
2wL;/®o, 21®,/®y, 2nd,/®y, I,) in the double
junction correspond, respectively, to the quantities
(B, sing;, M;, M;sing;, X,;/K, B,, Bs, T,) in the
mechanical problem. Note that I, corresponds to
the maximum static torque that the pendulums can
balance for a fixed value of 8,, a quantity we shall
denote 7.

An analysis similar to that in Sec. IIA can also
be used in the mechanical case. The analogous
quantities to the I(9) have a direct mechanical in-
terpretation. Suppose 7,=0 and g, =0 so that g;
=0. K the torsion bar at @ is rotated through an
angle ¥;, pendulum 1 will rotate through a corre-
sponding angle B; and develop a gravitational
torque 7,. The functionrelating 7, to vy, isthe anal-
ogous quantity to ;(9,), and a similar interpretation
holds for 7,(y,). For example, for a rigid torsion
bar 7,(y;) is a sinusoid whereas for a less stiff
bar the pendulum can sag, requiring an extra rota-
tion of the torsion bar beyond 37 to bring it into the
horizontal position. This leads to a skewed sinus-
oidal torque-angle relation 7,(y;), in analogy to the
skewness of I;(6;) when L, #0. If the torsion bar is
sufficiently nonrigid the pendulum cannot be made
to stand vertically upright while remaining stable,
a situation corresponding to a reentrant I,(6,).
Nonetheless, the same interpretation holds with the
reentrant position corresponding to the position of
unstable mechanical equilibrium.

Let us consider briefly the previous examples
as they appear in this analog. The case of Fig. 4
corresponds to a situation in which M,X,; /K and
M,X,/K are small; i.e., the torsion bar is stiff
enough that the two pendulums are almost rigidly
attached with only a slight sag occurring, the sag
clearly being more pronounced when either pen-
dulum is nearly horizontal. Indeed the torsion bar
is stiff enough that when g, =7 and 7,=0 the lighter
pendulum will stand vertically upright at g, =7 and
the torsion bar will remain untwisted. As, say,

K is decreased or M, is increased a point will be
reached, for g,=r and 7,=0, at which for small
changes in 3, the energy gained from gravity and
the energy required to twist the bar will just bal-
ance. The upright position of the lighter pendulum
thus becomes unstable, and the pendulum will flop
over to one side or the other. This situation cor-
responds to I, /I, + @=1, the boundary between re-

K=z

gimes C and B in Fig. 3. (Actually for 7,#0
double-valued behavior sets in somewhat sooner,
at the boundary between C and A.) The two stable
positions for the pendulum at g, =7, 7,=0 corre-
spond in the double junction to the fact that there
are two stable conditions for I, =0, §,=7 if «
+I,/I;>1, i.e., atype-B case as in Fig. 5. For
still larger M;X, /K and M,X,/K the pendulums are
sufficiently heavy and the torsion bar sufficiently
weak that for small values of 7, there are several
static states. These are set up by holding one
pendulum fixed and giving the other some integral
number of 2¢ rotations, and then allowing both
pendulums to find their equilibrium position. If
the pendulums are heavy enough these twisted posi-
tions will be stable. This corresponds to the re-
gime of Fig. 7, and the various branches of the
I,(8;, 6,) correspond to the branches of the 7,(y, 8,)
=T7,(y;) +T5(y, +B,) with each branch representing a
different “trapped-twist” situation. As M,X,/K
and M,X,/K become very large the trapped twists
occur in near multiples of 27, corresponding to the
regime of nearly complete fluxoid quantization in
in the double junction.

III. DYNAMICS OF DOUBLE JUNCTION

A model circuit for a single small Josephson
junction has been discussed by Stewart!® and by
McCumber.!” Their model, appropriate for small
junctions and low voltages, comprises a parallel
circuit of the junction capacitance C, a resistance
R simulating the dissipative mechanism, and an
element supporting a supercurrent I, sing. The
current continuity equation combined with Joseph-
son’s relation V= &y(d$/dt)/2r leads to an equation
describing the dynamics which has the form of
Newton’s law for a driven damped single pendulum.
For the double junction a similar model circuit is
shown in Fig. 8(b). It consists of two Stewart-
McCumber circuits connected in parallel through
inductances L, and L,, with current I, fed between
the two inductances. The assumption here is that
the capacitance between the two bulk supercon-
ductors can be localized in the region of the junc-
tion, a good approximation for tunnel junctions,
and that the dissipative currents flow only through
the two junctions and can be adequately simulated
as Ohmic, although for tunnel junctions this is a
crude approximation. The current continuity equa-
tion for this system is

Li=Lz+Ls, (14)
where [;;, the current in L;, includes contribu-
tions from the displacement current and dissipa-

tive current as well as the supercurrent, with a
similar interpretation of I;,. Specifically, we have

g dp;  $,Cy dP¢,
2rRy dt * 2 dif (15)

Iy =1, sing; +
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L= Ly sing, + o2 oy, 20C; d°¢y (16) of dp,/dt and dB,/dt of zero, or (iii) rotating re

2rR, dt  2r dt? ’

where we have used d¢,/dt=21Vy /&y and do, /dt
=27V,/®y, V; and V, being the respective voltages
across the two junctions. Equating the voltage
drop around the circuit to d®,/dt and integrating
with respect to time, we obtain

G2 = $1=218,/Bg+ LIy — Lol m)

where @, is the external magnetic flux and, we re-
emphasize, I;; and I;; contain contributions not only
from the supercurrents but also from the displace-
ment and dissipative currents.

There is a direct analogy between (14)~(17) and
the equations which define the motion with time of
the double pendulum. For the latter, in addition
to the quantities defined in Sec. IIB, we have the
moments of inertia A; and A; of each pendulum
and we assume that each pendulum is subject to a
drag torque proportional to the angular velocity
given by — B, dp,/dt and — B,dB,/dt. We neglect
any inertial properties or drag related to the tor-
sion bar (but it is worth noting that inclusion of
these would be analogous to including electromag-
netic resonances between the two bulk supercon-
ductors). The pendulums are subject to respec-
tive torques 7, and 7, transmitted to them by the
torsion bar. Newton’s law for the two takes the

forms
: d &
Ty=M, sinp, + B; E}+A1 E% , (18)
. d &
Ty=M,8inB, + B, 7[;3+A2 d_t%a . (19)

The external torque balances 7, and 7,, so that we
have

T =Ty +Ty . (20)

The instantaneous angular displacement 3, — 3, is
given by the built-in displacement 3, plus any
torque-induced twist in the torsion bar due to 7,
and 7,. This leads to the constraint

Bz = B1=B, +X,T1 /K~ X575 /K. (21)

We emphasize that 7, and 7, are not solely gravi-
tational but contain inertial and damping forces as
well.

Equations (18)—(21) fully determine the motion
of the double pendulum and have the same form as
(14)-(17) for the double junction. The two systems
are then complete analogs. To complete our pre-
vious list of corresponding quantities we add [&,C; /
2m, &y/2nR,, I;;, 1,(81,6,), 1(6,)] for the junction
corresponding to [4;, B;, T;, T,(n,B:), 7.(8;)] for
the pendulum. We may point out that situations in
which the pendulums are (i) static, (ii) oscillating
about some average positions with a time average

peatedly through complete cycles with a nonzero
time average of dB;/df and dB,/dt correspond, re-
spectively, in the double junction to situations of
(i) zero voltage, (ii) voltage oscillations with zero
time average voltage, and (iii) nonzero dc voltage
situations.

It would require too much space to attempt to
discuss all the various time-dependent phenomena
which occur in double junctions, even for this
simplified model, although several novel effects
occur which we hope to describe elsewhere. We
consider here only features relevant to the quasi-
static properties, particularly 7,. The effect of
the dynamics can be illustrated by using the ex-
amples of Figs. 4, 5, and 7. We phrase the dis-
cussion in terms of measuring 7, in the pendulum
analog. We assume that 7, is determined by begin-
ning at 7,=0 and slowly increasing 7, until the
pendulum is finally set into steady-state rotation
at 7,=7,. This corresponds to the manner of mea-
suring I, in our experiments.

We begin with a type-A case, i.e., MX;/K
«1 and M,X,/K<1. For r,=0, the pendulums are
at rest at angles dictated by 5,. As 7, is increased
slowly the pendulums adjust their angle adiabatical-
ly until they reach the maximum gravitational
torque they can provide for the particular g,. A
further increase in 7, causes them to “overbalance”
and sets them into a steady state of rotation. For
T, applied sufficiently slowly the gravitational
torque is always in balance with 7, and (12) and
(13) are obeyed. Similarly, in measuring I, the
double junction follows (8, , 6,) if I, is changed
slowly with respect to the small oscillation period.

Note that an applied torque could in principle
hold the pendulum at the positions of unstable
equilibrium, with the pendulums above the hori-
zontal, as well as at the stable position. These
unstable equilibria are just the positions which
correspond to the solutions of I, = (6, , 8,) which
lie on the portions of I,(¢,, 8,) having negative
slope, e.g., P, in Fig. 4(a), which justifies our
previous remark that such positions are not stable
solutions. Similarly, the instability of the solu-
tions which correspond to reentrant portions of the
1(8) corresponds to the fact that a pendulum whose
7(y) is reentrant cannot be put into a stable ver-
tically upright position by torque applied at Q.

Consider next the case in which M,X; /K and
MyX, /K are increased and 8, is adjusted so that
74(n, B,) has a double maximum and minimum, as
in Fig. 9(a). The dynamics of this case have two
different regimes which we discuss in turn.

In the first regime 7,(y;, 8,) has a double maxi-
mum but the secondary mininum lies at 7,(y, 8,)
>0, so that as in Fig. 9(a) there is only one stable
state at 7,=0, 7, in Fig. 9(a). This is always the
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FIG. 9. (a) 74(y4, B,) for a double pendulum of case B
or C with one stable state at 7,=0. For zero damping the
jump at 7, is unstable and 7,=7,,. (b) Solid lines—7.(8,)
for small damping. Dotted lines—position of the other
maxima of 7,¢y4, B,).

case for all g, in a type-C regime (see Appendix
A), and is the case for some but not all of the range
of B, in a type-B regime. As 7, is slowly increased
vy increases from y, , following the curve

T.(v1, B;)- When 7, reaches 7., corresponding to
the first maximum at y; =y, in Fig. 9(a), however,
the system can follow the curve no farther. At

this point one pendulum, say the first, has been
tilted to B, = 37 or slightly farther. A further in-
crease in 7, will cause that pendulum to overbal-
ance and begin to rotate. Once this occurs there
are several possibilities. If viscous damping is
large the inertial effects are not important and,
once overbalanced, the first pendulum and the
second will slowly relax to new equilibrium posi-
tions corresponding to y; =7, in Fig. 9(a), in which
T, is increased and 7, is decreased. From this
point a further adiabatic increase in 7, will cause
the system to follow the curve to the largest value
T, beyond which the pendulums are set into rotation,
so that 7,=7,,. If damping is small and inertial
effects are important there are two possibilities.
Once pendulum 1 begins to rotate under the con-
stant applied torque 7., it acquires kinetic energy
and in consequence it overshoots the static posi-
tion y;=7vc. In effect the nonadiabatic change in
position of the pendulum excites the oscillations of
the system. It is apparent that if this kinetic en-
ergy is too small it cannot overcome the energy

barrier which must be surmounted in order for the
pendulums to be set into rotation. (The magnitude
of the energy barrier is derived in Appendix B.)
Instead the pendulums undergo coupled oscillations
which ultimately are damped out, the system com-
ing to rest at v =y;. We call this process, in
which the system shifts in this fashion from one
v to another without causing rotation to begin, a
stable jump. Following a stable jump the double
pendulum follows 7, =7,(y,, B,) to 7,=7,, beyond
which it begins to rotate. On the other hand, if
the kinetic energy acquired in the flipping of pen-
dulum 1 is sufficient to overcome the energy bar-
rier and the damping losses, a situation we call
an unstable jump, pendulums will begin to rotate
at 7,=1,,. Obviously the smaller 7, is compared
to 7., and the higher the damping the more likely
the jump is to be stable. It turns out in fact (Ap-
pendix B) that in the zero-damping limit the area
under 7,(y, 8,) and I,(8;, 9,) determines the stabil-
ity of the jump. In Fig. 9(a), the energy “saddle
point” for 7,=7,, corresponds to the unstzble point
v1=vp. Considering the two cross-hatched areas
in Fig. 9(a), if the area below the line 7,=7,, is
larger than that above the line the jump is unstable
and vice versa. In Fig. 9(a), the jump is clearly
unstable in the absence of damping. In the double
junction an analogous situation occurs. The ab-
sence of damping in a junction is related to hystere-
sis of its I-V curve.'®!” For highly damped junc-
tions (these with nonhysteretic I-V curves, e.g.,
superconductor-—-normal-metal -superconductor
sandwiches®® or, in our experience, point contacts)
the measured I, always occurs at the largest value
of I,(6y,0,), I (corresponding to 7,,). Inunder-
damped junctions (e.g., tunnel junctions'®!”), how-
ever, the measured I, might or might not occur at
a secondary maximum [,,, (corresponding to 7,,,)
depending on whether the jump involved is stable
or not. Figure 9(b) shows schematically the I,(B)
curves in the undamped cases, the solid lines
showing the observed I, and the dotted lines the
positions of the other maxima.

In the second double-maximum case 7,(y;, 8,) ap~
pears as in Fig. 10(a), with maxima at 7, and
T.u as before, but where now the secondary mini-
mum is negative, providing the new element of two
possible stable states at 7,=0. Once again to
measure 7, we start at 7, =0 and increase 7, until
rotation sets in. In this process the system could
initially be either at y; , or y;5, in Fig. 10(a), de-
pending upon previous history. For heavy damping
the observed 7, will be 7, as before, irrespective
of the initial state. For light damping if v, =9,
initially, the system will follow 7,(y;, B,) to T,
and the jump takes place as before, the choice be-
tween 7., and 7., as 7, depending on whether the
jump is stable or unstable. If, however, y;=v;5
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FIG. 10. (a) 74ly4, B,) for a double pendulum of case
B or C with two stable states at 7,=0. (b) 74(y;, B,) for
a double pendulum having three possible states at 7,=0
and three jump possibilities.

initially then no jump is involved and the observed
T, is 7,4. Similarly for the heavily damped double
junction I, is always the observed critical current
but for lightly damped junctions either I, or I ,
may be observed in cases where the jump is un-
stable, depending upon which initial configurationis
selected by the junction. In this case one can ex-
perimentally follow the position of a maximum of
I(6,, 6,) even if it is not the highest.

In the final example consider an extension of this
situation corresponding to the 7,(y;, 8,) shown in
Fig. 10(b), which is similar to the I,(6,, 6,) shown
in Fig. 7. Here there are four relative maxima,
T,1—T.4 being, respectively, the highest points on
branches 1-4, and there are three stable states at
7,=0, on branches 1-3. Following the previous
arguments any of the 7,,—7,, might be the observed
7. depending on circumstances. In heavily damped
cases T,=T,, is always observed as all jumps are
stable. As an example of a lightly damped case,
suppose the jump at 7., is stable but those at 7,
and T, are not. Then one might expect only to ob-
serve T,, Or T,3 as T,, Since there is no stable
state on branch 4 at 7,=0. The stable jump at 7,
need not necessarily end up on branch 2, however,
but might well be energetically able to reach
branches 3 or 4. If so, which branch is the ulti-
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mate steady state reached by the jump at 7., de-
pends in a complex way on the interplay of the
damping and the internal oscillations of the pendu-
lum, and the result can probably be regarded as
random, with differing probabilities for each
branch. If branch 4 can be reached by a stable
jump, then 7,=7,, would also be observed in some
cases in which the initial state was on branch 1.

In this example the various maxima of 7,(y,, 8,)
are, as previously discussed, in essence the same
maximum observed at intervals of g, separated by
27. For 7,(8,), then, the dependences of 7.4, T,
T.3, and 7,4 on B, are identical, but offset by
8B, =2m.

In the double junction, the measurement of I,
generally involves switching from V=0 to V+#0 and
back by repeatedly sweeping the current bias sym-
metrically on either side of I,=0, the junction re-
turning to V=0 at some current (which for tunnel
junctions is I, 0). If at this current bias there are
several stable states the junction may end up in
any of them at random, although with unequal prob-
abilities, as the choice depends in a complex and
uncontrollable way on the details of the current
sweep. Thus in a lightly damped junction one will
observe multiple critical currents with identical
dependences on B but displaced by one period each.
In this example these would correspond to 7., and
T.3, and perhaps 7.,. For large «; these would be
spaced by approximately &¢/L,.

To summarize the implication of the dynamics:
(i) For heavily damped junctions (such as SNS or
probably point contacts) the I,(B) will be as de-
scribed in Sec. II. (ii) For lightly damped junc-
tions (such as the tunnel junctions of Sec. IV) the
L(B) for type A are as described in Sec. II. If o
and I, / I, are large enough, however, that cusp-
like features would occur in damped junctions, then
either I (B) will show a discontinuous jump at these
points rather than a cusp, or multiple I, will be
observed each having an identical dependence on
B except for a fixed displacement in B correspond-
ing to ,=27. Each of the multiple I, can be ob-
served so long as it corresponds to an unstable
jump and disappears for values of B at which it
is sufficiently reduced to correspond to a stable
jump.

IV. EXPERIMENT

In this section we describe the results of ex-
periments conducted on double junctions of a thin-
film sandwich construction. Typically these are
made as follows: A long (~2 cm) strip of Sn of
width 7 (~0.5 cm) and thickness # is deposited by
vacuum evaporation and a slightly narrower, equal-
ly long strip of Ge of thickness /g, is superimposed
upon it, leaving both edges of the Sn strip uncov-
ered, the widths of the uncovered portions being a



866 FULTON, DUNKLEBERGER, AND DYNES 6

and b. The combination is oxidized in an oxygen
plasma discharge and subsequently five long nar-
row Sn strips of width w and thickness ¢, oriented
at right angles to the large strip are deposited,
giving five double junction loops with the Ge form-
ing the filler material of the loop. Typical dimen-
sions are a, b, and w~0.2 mm, [~0.5 cm, and
film thicknesses determined by optical interfer-
ence of 1000-10000 A. The inset of Fig. 11 shows
the configuration.

The junctions are wired for four-terminal I-V
measurements using one end of the cross strip
and the broad strip as current leads, and are
either immersed directly in liquid He or are
mounted on a variable temperature holder which
makes use of exchange gas and a resistance heater
to warm the sample above the bath temperature.
The junctions are shielded from the earth’s field
by a u-metal can whose stray internal fields are
<102 G. The magnetic field B is provided by a
solenoid and is applied to the sample in a direc-
tion perpendicular to the area of the double junc-
tion loops.

The I-V curves of the junctions studied were
typical of Sn-Sn tunnel junctions, displaying at low
temperatures only small amounts of excess cur-
rents and subharmonic structure. To ensure that
the junctions had current-phase relations which
were basically sinusoidal it was necessary to have
individual critical currents which were small
enough (of order 1 mA) that self-field effects with-

fe——20 MG—=

T=1.58 °K.S=

-900K SnO
-925}
-950t

FIG. 11. Positive and negative I,(B) for a Sn-Sn double
tunnel junction (inset). The position of §,=0 is deduced
from the arguments of the text. In this figure and in Figs.
12—16 the values of I, at the extrema of the fringes vary
from one to the next as a result of the diffraction back-
ground. The values used in the analysis of the text are
taken at corresponding extrema of I, and I,_ nearly at the
diffraction peak.

in the junctions were negligible. In the junctions
which we describe these conditions were satisfied.
Under such conditions the magnitude of the Joseph-
son current will be nearly equal to the current rise
at V=2A (2A=1.21 mV for €n), provided that no
magnetic flux is trapped within the Sn films. The
spreading of any such flux (quantized in minimum
units of &;) in the plane of a single junction, of
course, substantially reduces the critical current.
If such flux is trapped it is generally possible to
purge it and restore the Josephson currents by
warming the sample above the critical temperature
briefly and allowing the sample to cool again in
zero applied field with no applied current.

The critical current I, was measured as a func-
tion of B by displaying the I-V characteristic on a
Tektronix 561 oscilloscope at a repetitionrateofa
few hundred Hz and utilizing a Pacific Electric
Measurements CRT converter which in each sweep
samples the applied current at the first onset of
voltage and plots this value directly on one axis of
an x-y recorder, with the current applied to the
solenoid being plotted on the other axis.

The oscillatory I,(B) patterns measured in this
fashion are a combined diffraction-interference
pattern since the junctions are not actually of
negligible size compared to the loop dimensions.
The period of the oscillations AB measured at
small B at the peak of the diffraction envelope may
be characterized by a magnetic area A, defined by
A=3,/AB. Inthe absence of demagnetizing ef-
fects such as sample misalignment A should be
given by

;4-: [d +7\1 tanh(t1 /2)\1) + )2 ta.nh(tz /27(2)]

X(I+3a+3b)+tgl,  (22)
which for ¢ >, and £,> ), reduces to
A=(d+xy +2,)(I+3a+3D) +1g.l . (23)

We have included here the possibility that 2, #
even though both films are of Sn. This situation
is particularly likely to occur near the critical
temperature, which varies from film to film in our
samples from ~3.7 to ~3.8 °K. At low tempera-
ture we would expect that » ~ 500 A as others have
observed for Sn films, and we use the usual approx-
proximate formula A(T)=X(T=0)[1- (T/T,)*]!/?
to estimate X at higher temperatures.

As a first example we show in Fig. 11 the I,(B)
interference pattern obtained for one such junction
whose dimensions were ¢=0.11+0.01 mm, b
=0.39+0.02 mm, [=4.19+0.03 mm, w=0.37
+0.01 mm, # =2400+200 4, #,=3700+100 A, and
fge=1000+ 200 A. The curves, taken at T=1.58
°K, are shown for a ~50-mG range about B=0
and possess a smooth continuous near-sinusoidal
appearance, indicating that this is a type-A case
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corresponding to Fig. 4. Over a larger field,

~% G, a diffraction background characteristic of
the individual magnetic field dependence of I; and
I, modulates the interference pattern, but in Fig.
11 this provides only a slight curvature of the
pattern. Both I, ,(B) and I, (B) are shown, the
current scale being broken in order to do so. Note
that the two have the same shape with only a phase
shift between them, thus satisfying the previously
mentioned time-reversal requirement.

The parameters Iy, I,, @;, and o, can be ex-
tracted from the curves as follows. The maximum
L, I, (ignoring the background curvature) is I,,
=934+1 pA and the modulation depth Al is 55.7
+1 pA. For this type-A case we have I ;= Al/2
=27.8+0.5 pA and [4=1, -1,=906.3+1.3 uA.
The angular separation A8, between the maximum
and minimum of, say, I, expressed as a fraction
of one period (27) is A6, /2r=0.500+0.013, i.e.,
I(B) is essentially symmetric. Hence a,=(A6,/
27— 3)r=(0+0.013)r=0+0.05 and consequently L,
= aydq/21L,,=0+0.6%x102 H. The measured
maximum and minimum slopes are 27.6+1 pA/rad
in agreement with + I, /(1+ a,)=27.8+0.5 pA/rad.

The determination of @; is somewhat more indi-
rect. The phase displacement 56, between the
maxima of [, and I,_, expressed as a fraction of a
period (27), is 66, /27 ==+(0.29+0.02). Here the
initial + indicates that the sense of increasing 6,
is not known. Ordinarily this sense is obvious for
a type-A interference pattern from the asymmetry
of the slopes of I,, namely, 6, increases in that
direction for which I, increases gently and de-
creases steeply. This sign convention canbe traced
back to the original assumptions that I, <7, and
¢s—1=213/®,. In this case, however, there is
no noticeable asymmetry in the slopes. There is
a further uncertainty of 2n7 (=0, +1, +2, etc.)
because an increase in ¢o; by 27 would produce the
same apparent phase shift 56, between I, and I,_.
From the I,(B) alone without further information
one can only conclude that 56, /2r is one of the set
of numbers (+n+0.29)r.

Now because we found that @, ~0 and L,~0, one
must have L, >0 and «, >0 because L, + L,=L>0.
We can therefore rule out the positive values of
66,=2a3 - 2. Another sometimes helpful condi-
tion on ¢ is the inequality I,/(1 - ap) <L, /(1 + ;)
which holds for type-A patterns. This is most
useful, however, if I,,/I;2 0.1 and for this case
it gives only the weak constraint a,< 30 or 56, /27
<10. To finally pin down o; we calculate the induc-
tance L. In this thin-film configuration we can
compute L if we assume that the broad lower
strip acts as a ground plane, concentrating the cur-
rent flow in the narrow upper strip on the under
surface, between the two Sn strips. A general
formula for L in this case,'® assuming a and b are

small compared to /, is
L=(uo/ W{(1+3a+3b)
x[Ag coth(xy /#;) + X cOth(Ny /25) +d] + 1t}

(24)
which, for thelimit # > ); and #,>> X, appropriate
in this case, becomes L= u,A/W. Using the ob-
served AB=20.1+0.1 mG we obtain A=1.03
+£0.005%x10° cm™. [We note that A, +2,+d can be
calculated from A and the dimensions a, b, I, and
tg. from (23), giving in this case X =700+ 200 A,
The usually quoted value for Sn at T=0 is 510 A
for pure Sn, with increasing values for samples of
shorter mean free path.] From A we obtain L
=3.5+0.1%x10"2 H. Taking L,=0, L,=L we obtain
oy =2rLyL,,/®=(3.06+0.08)7, in rough agreement
with one of the possible values of 56, /27 = ap — ay
=(&n+0.29)r. Taking =3, then, the measured
a;=(3.29+0.01)r implies the value L,=3.75
+0.1Xx10*2 H, which together with L,=0.0+0.5
x10-'% H is in fair accord with the computed L.
This choice incidentally determines the direction
of increasing 6, in Fig. 11 as being to the left.

Calculation of the relative values of L; and L,
depends upon the precise form of the current flow
patterns in the superconducting films. Since the
current is fed to one end of the broad strip and is
removed from one side of the narrow strip, how-
ever, one or the other of L, and L, should be much
larger than the other. In this case L;> L, which
indicates that the junction having the smaller crit-
ical current is on that side of the interferometer
from which the current is removed from the cross
strip.

It is noteworthy that for these values, I 5/l
=0.03 and I; /(1 + @) =2.9[L,/(1 - @,)], the
plot of I,(9,) should be an accurate representation
of L,(6,) and since a,=0, of L,(¢,). Thus the es-
sentially sinusoidal interference pattern in Fig.

11 may be regarded as a direct measurement of
the supercurrent-phase relation of the Josephson
tunnel junction.

In Figs. 12-14, we show the I,(B) for a second
interferometer of dimensions A=0.39 +0. 01 mm,
5=0.38+0.01 mm, w=0.35+0.01 mm, /=4.18
+£0.03 mm, #,=1700+150 A, #,=1500+100 A, and
fg.=2000+ 150 A. These data are taken at three
successively lower temperatures below the T,
of Sn. The variation in I; and I, with T causes
the patterns to change from a type-A case in Fig.
12 similar to that of Fig. 4 to a type-B case in
Figs. 13 and 14 similar to the case of Fig. 5.

In Fig. 12, taken at T=3.71 °K, the [,(B) is in
a type-A regime as in the previous example, but in
this case the pattern is skewed with the value of
Af, differing substantially from 7, indicating a
value of @, rather larger than for the junction of
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K=z

20 mG -]

-0 )

Tc(pA)

_50._
-60F

T=3.71°K.

FIG. 12. Positive and negative I,(B) for a Sn-Sn double
junction near T,. The position of 6,=0 is deduced in
text.

Fig. 11. From the asymmetry of the slope the
direction of increasing 6, is to the left. The pa-
rameters may be extracted as before with the re-
sulting values I,,=53.5+0.7 pA, I,=11.9+0.2
pA, a;=(0.052+0.025)r, and a,=(0.173+0.01)r
giving L,=0.9+0.3x10"? Hand L,=14.8+1.0
x10"'2 H, so that L=15.7+1.3x10"2 H. Here use
is made of the condition I,/(1 — a3)< I, /(1 +ay) in
order to reject all but one of the possible values
of @, which could give rise to the observed 66,.
We note that I,,/I,,=0.22+0.005 and a=0.55
+0.03, values which from Fig. 3 are consistent
with the type-A regime, although they lie near the

—O0x 80 T=3.19 °K.
400\
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FIG. 13. Positive and negative I,(B) for the junction of
Fig. 12 at a lower temperature. The expanded inset
shows the appearance of the minimum, including the slight
discontinuity due to the dynamic effects.
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FIG. 14. Positive and negative I,(B) for the junction of
Figs. 12 and 13 at a low temperature. The cross shows
the depth of the I,(B) discontinuity calculated from a zero-
damping model.

limit of this regime, a fact reflected by the
“pinched” appearance of the minima.

The magnetic field period here is AB=12.75
+0.1 mG, giving a magnetic area A=1.62+0.015
%10 cm?. In this temperature range the penetra-
tion depths are not small compared to the film
thicknesses and we must use the general forms for
A, Eq. (22) and for L, Eq. (24).

In this case the values X, =2,=2300 A give L
=15.7+1.1x10%2 H and A=1.55+0.11X10"° cm?,
in fair agreement with the measured values. The
uncertainties given reflect the film thickness un-
certainties. Here A has almost reached its limit-
ing value and is not very sensitive to the value of .
The variation in X which could still give agreement
with L and A is of order + 300 A. This value of A
is reasonable for £=0.99 but since the transition
temperatures of the two films differ by the order
of 0.04° the value should not be regarded as a pre-
cise determination of X.

Figure 13 shows the I (B) for this double junction
at 7=3.19 °K. Here again the pattern is oscilla-
tory, with smoothly rounded maxima, but the mini-
ma consist of two intersecting segments of differing
slope. On one side I,(B) is approaching a rounded
minimum, nearly attaining zero slope and on the
other side it is descending fairly steeply, giving
the cusplike minimum. The presence of the cusp
indicates that we have passed out of the type-A
regime of Fig. 3 and have entered the regime in
which I,(6,, 6,) possess a double maximum for an
interval of 9, about 6,=7. The inset of Fig. 13
shows an expanded view of the cusp, revealing that
there is actually a small discontinuity between the
two intersecting segments of [,(B). This indicates,
as described in Sec. III, that the jump from the
lower of the two maxima of I;(6,, 6,), correspond-
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ing to the smaller I, is unstable in this region.
Since the cusp in this case apparently only just ob-
scures the minimum to which the right-hand seg-
ment of [(B) is tending, it is possible to obtain by
extrapolation the position A8, and the depth (Al) of
this minimum. One can then determine as before
the parameters [,;=321.3+1 pA, I,=44.7+1 uA,
a;=(0.056+0.026)r, and a,=(0.318+0.01)7, and
consequently L;=0.2+0.1x10"2 H and L,=7.24
+0.3x10" Hor L=7.44+0.4x10" H. From
these values we obtain o=1.04+0.03 and I,/1,
=0.14 which from Fig. 3 indicates that the I,(B)
should lie in the type-B regime and just beyond the
point at which the minimum changes from rounded
to cusplike. The uncertainty in the various o
here precludes accurate calculations of the ex-
pected size of the discontinuity at minimum. One
can explain why it is that the steeply descending
segment of I,(B) extends below the shallow, rather
than vice versa. The argument will be given in
the next example along with a calculation of the
size of the jump.

The magnetic field period AB is 13.75+0.1 mG
giving A=1.505+0.01x10"% ecm?. Using the known
dimensions along with x=1200 A we compute from
(22)and (24) A=1.49+0.1%x10%° cm? L=7.6+0.4
x 10712 H, in reasonable accord with the measured
values. The uncertainty in X is about + 150 A. At
this reduced temperature £=0.85 we expect A=1.45
X(#=0) which would make X(¢=0)~850+100 A, This
is in fact close to the observed low-temperature
value as we shall see.

In Fig. 14, we show the I.(B) of this junction at
T=1.65°K. The I (B) shows oscillations with
rounded maxima but having minima possessing a
discontinuous transition between two segments of
I(B). The segments approach each other as if to
form a cusplike minimum, but because of the
dynamics the lower jump is unstable. We defer
for the moment consideration of the dynamics and
concentrate on the shape of I,(B). In this case the
smooth minimum of the I(B) is concealed, with
neither its position nor its depth being obvious
from the I,(B) alone, although by extrapolation from
the previous higher-temperature curves it must lie
somewhat to the right of the observed minimum.
Consequently we cannot directly determine the
separate values of I;, L., «, and o, in the man-
ner used for the previous cases. It is feasible,
however, to extrapolate the higher-temperature
values and make an approximate determination of
these quantities. We note first of all that the
maximum I, is 954+ 3 pA. If we extrapolate the
ratio I,/I,, from the previous measurements
[making use also of another set of I(B), not shown
here, which were taken at a temperature of 2. 86
°K] we conclude that ., /I,;=0.11+0.01 is a rea-
sonable extrapolation and thus we obtain that I,

=849+10 pA and [,,=105+10 puA. Now the portion
of L(B) to the left-hand side of each minimum in
Fig. 14 corresponds to the portions of I,(B) on the
left-hand side of the minima in Figs. 12 and 13.

In Fig. 14, the slope of this portion clearly reach-
es a maximum before the curve terminates in the
discontinuity. The magnitude of this maximum
slope is L,/(1 +a,), and is 40.2+2 pA/rad, giving
@, =(0.5+0.12)y. The value of §6,/2r=a,/7

- ay/mis n+0.552+0.04, where » is some integer.
Noting the small values of L, at the higher temper-
ature we conclude that z=0 and o, =(0+0.15)r,
L;=0.0£0.2x10%¥ Hand L,=5.3+0.6x10"2 H.
Note that the value of ¢=1.57+0.37 and I, /I,
=0.11 is in accord with the cusplike nature of the
minimum according to Fig. 3.

From the magnetic period AB=15.35+0.1 mG
we obtain A=1.345+0.01x10° cm?®. If we take
A=700 A we obtain A=0.37+0.1x10® cm? and
L=5.4+0.4x10" H from Egs. (22) and (24). This
value of X has an uncertainty of about + 100 A and
is again larger than that usually proposed for Sn,
which may be due to mean-free-path effects.

The discontinuous jump at the minimum of I,(B)
in this example is caused by the dynamics. We
shall now consider three aspects of the jump. The
first point is to explain why it is that the steeper
of the two intersecting segments is observed below
the extrapolated point of intersection rather than
the shallower. Recalling the values of @; and a;y,
we observe that the I;(8,) is basically a sinusoid
while the smaller amplitude I,(9,) is a reentrant
function, having an ascending slope which is
relatively gentle and a descending slope which be-
comes infinitely steep just beyond the maximum.
As ¢, is increased from @, - oy, the peak of I,(0,),
a double maximum of (9, ,) is formed which
roughly corresponds to the sharp maximum of I,
moving down the steep side of I;(¢;) and the peak
of I; superimposed on and moving up the gentle
slope of ,. The former peak, which corresponds
to the steep descent of L,(6,), occurs at the small-
er value of 9, and is the first maximum encountered
on (84, 6,) as I, is increased from zero. Thus it
is from this point that the jump occurs, and if the
jump is unstable then the observed I, (6,) will
correspond to the steep segment of I,,(6,) even
though the segment of shallow slope may have a
larger magnitude.

The second point involves the absolute magni-
tude of the jump. Using the considerations set
forth in Appendix B we can calculate the point at
which the jump would turn from stable into un-
stable, assuming no damping. Such a calculation
really requires that one know the four parameters
ay, @z, Iy, and I, precisely. Since our knowl-
edge of these is somewhat rough we take the easier
course of approximating I;(6,) by the sinusoid



870 FULTON, DUNKLEBERGER, AND DYNES

I,(8y) =L, sing, for I,;=850 pA and I,(9,) by the saw-
tooth L(6,)=1,,(0, /), where I,=105 pA. The saw-
tooth terminates at 6,=+7. From these one can
calculate that the point at which the steep branch

of I,(6,) becomes stable is at 6,~ ay~ o; +0.83

and I,,~674 pA, the point indicated by the cross

in Fig. 15.

The third point concerning the dynamics is to
note that, according to Appendix B, for zero
damping the lowest value of I,,(9,) on the metastable
branch is independent of the value of L, — L, and
depends only on L. I Fig. 15, we show the I,(B)
for this interferometer which is observed when one
changes the current lead from one end of the cross
strip to the other. As can be seen by comparison
with Fig. 15, this criterion is very nearly satis-
fied.

Finally, in Fig. 16, we show the I,(B) measured
at 7=3.08 °K for a third double junction of dimen-
sions A=0.30+0.01 mm, 5=0.05+0.007 mm,
1=3.15+0.02 mm, w=0.20+0.005 mm, # =2500
+200 A, 7,=2800+200 A, and #g,=9300+ 300 A.

This junction shows the phenomenon of multiple
critical currents®® characteristic of the regime
which is exemplified in Fig. 7. In each cycle of the
ac current bias the junction switches from V=0 to
V+0 at any of three or four discrete values whose
magnitude depends on B. The choice of which is
~observed as the critical current is apparently ran-
dom with different probabilities for each value.
The dependence of these different I.’s on B is dis-
played in Fig. 16 which shows that they depend on
B in an identical fashion with a fixed phase shift
which is just the magnetic field period AB=5.70
+0.30 mG corresponding to A9, =27.

For the moment we concentrate on attempting to
interpret the shape of a single branch of I (B).

This consists of an essentially linear portion at
the right, reaching a peak at 622+ 6 uA at, say,

T=1.65 °K.

Ic(pA)

FIG. 15. Positive I (B) for the junction of Figs. 12—14.
The upper curve repeats the data of Fig. 14, while the
lower shows the effect of changing the current input in the
other end of the cross strip.
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FIG. 16. Positive I (B) for a Sn-Sn double junction
showing multiple critical currents.

0,=0 and extending down to a current of 350+ 10
uA at a value of 6, =(6.0+0.1)r, giving a slope of
14.4+0.3 pA/rad. The segment of I.(B) to the
left of the maximum, on the other hand, is notice-
ably curved, particularly near the maximum, and
descends much more steeply. The maximum slope
of this portion is dI,/d6,=110+15 pA/rad, and
the segment terminates (i.e., the corresponding
I, no longer is observed) at A, =— (0.65+0.05)r
from the maximum and at I, =420+ 10 pA.

In a case such as this, in which the value of a
is obviously larger than in the previous example,
there is no sure means of determining the individ-
ual values of I;, L,, @, and a,, but certain con-
clusions can be drawn. We first note that the area
of the two junctions differs by a factor of 6, so that
it may be assumed that the smaller junction cor-
responds to [,. As it happens this was the junction
on the side of the interferometer having the cur-
rent lead on the cross strip, so that most probably
the inequalities L;> L, and ;> a, apply. Thus
I,(6,) will probably be a highly reentrant function,
being nearly linear over most of the region corre-
sponding to — 47 — @3 < 6, < 7 + @, and going sudden-
ly to a negatively infinite slope just beyond these
points. Under these conditions it turns out that
on one side of its maximum I,(9,) reproduces rather
closely the shape of I,(8,), since the value of 9, is
held nearly fixed by the steepness of dI, /df, in
this area. On the other side of the maximum of
I.(6,) the reverse situation generally holds. Pro-
vided that I, /I, + > 1 the slope of dI; /d6, at I,
is small compared to the slope of dl,/d6,. We
associate the linear segment of I, (B) on the right-
hand side of the maximum in Fig. 17 with the pre-
sumed near-linear I;(6,) and the nonlinear segment
on the left of the maximum with L(6,). The slope
14.4 uA/rad of the linear segment should then
give a measure of I, /1+ . Since ;2311 pA
the value of ¢, must be a;220, and the slope of
1,(8,) should be approximately given by I,;/ o
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FIG. 17. Derivatives of I;(§,) and I,(9;+6,) in three
schematic cases. The value of ¢, increases from 0 to 7

from left to right. The intersections of the curves are
the extrema of I,(8,, 6,).

=®,/2rL,, giving L;=22.9+0.5x10'% H.

From the nonlinear shape of the left-hand seg-
ment of I(B) it is apparent that the value of a, is
not large compared to unity. We can roughly
estimate the values of I, and @,. There is an
upper bound of 310 uA on I,;, and, since the I(B)
segment seems to terminate without reaching a
maximum slope, a lower bound of 200 uA. We then
have 200 uA <I,<310 uA, and from the shape we
can estimate 0% @, £1.5. The complete list of
parameters is then 200 puA<1I,<310 uA<I,<420
uA, 0<ay<1.5 and 20< @;<30. We can also ob-
tain L,<3x10" H and with somewhat more ac-
curacy L;=22.9+0.5x10"% H, for a total L=24.4
+2.0x10"% H,

In this case AB was less accurately known, being
5.70+0.3 mG, giving A=3.64+0.2x10"° cm®. The
bulk of this area is due to the Ge. At this temper-
ature we estimate the value of x=1.35)(T=0), so
that X =700 A if A(T=0)=510 A, the generally ac-
cepted value for pure Sn. Short-mean-free-path
effects could increase this value. If we take X
=800+ 100 A we obtain, using (22) and (24), A
=3.48+0.15%10"° cm® and £=21.8+1.2x10"2 H.

In summary, we have discussed the quantum in-
terference properties of double weak-link junc-
tions, with emphasis on the dependence of the crit-
ical current I, on applied magnetic field B. The
model employed takes account of the dependence
on the individual critical currents and the self-
magnetic field screening (including both self-in-
ductance and asymmetry). It also includes the dy-
namic effects (both adiabatic and nonadiabatic
changes of the phases in response to applied cur-
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rent) legislated by the capacitance and dissipative
processes. The resulting nonlinear equations can
be treated by a simple graphical approach. This
analysis, with the conceptual aid of a mechanical
analog (the double pendulum) appears to provide a
complete qualitative understanding of the diverse
behavior of I,(B) in such junctions, and allows a
quantitative analysis of experimental I.(B) in many
cases. The predictions of the model are illustrated
by the experimental ,(B) of Sn-Sn tunnel junctions
over a range of critical currents and magnetic ge~
ometries. The junctions show behavior [discon-
tinuous and multiple-valued I,(B)] which demon-
strates the role of the dynamics.

The understanding of “classical” Josephson ef-
fects as predicted by the simplest equations is
desirable not only in its own right but also as a
necessary condition for the study of more subtle
properties such as fluctuations or quantum effects.
The fact that one can understand the basic be-
havior of I(B) of double junctions by these rela-
tively simple means should allow them to be used
effectively in such studies.
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APPENDIX A

In this Appendix we derive some of the results
involved in the analysis of Sec. II. We first
demonstrate that o= o, + (3 /L) @, is a more im-
portant parameter than oy or a;. The constraint
(5) can be written

G2 = ¢1=0, +20 L1151 (P1)/ @9~ 21 LoLy(h2)/ By -
(A1)

If we define the loop current I =3[I)(¢;) = L(d,)]
then (A1) becomes

o= 1=0, +2r LI/ &g +m(Ly — L), /&y . (A2)

Suppose now L, and L, are fixed and I, and ¢, have
the particular values §, and 7, , _causing ¢, and ¢,
to take on the particular values ¢, and ¢,. If we
then decrease L, and increase L, by equal amounts
AL (easily done experimentally), leaving L fixed,
by also adjusting 6, to the new value 6,=9,
~27ALI, /&y we again arrive at the samevalues ¢,
='¢, and ¢,= ¢, as satisfying both the constraint
and I,=1,. The implication of this is that the new
problem with different L, and L, is in complete
correspondence to the original one once 9, is re-
placed by 6, —27rALIL /&, Since a is proportional
to L=Ly +L,, the effect on I,(9,) of changing oy and
a, while leaving o and I, /I, fixed is merely to in-
troduce a displacement in the value of 6, corre-
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sponding to a given I,, the displacement being
proportional to ,.2' The maximum and minimum
values of I, remain unchanged as do qualitative
features such as cusplike minima or breaks in
slope. This shows why regimes A, B, and C in-
volve only o and I, /I;. [If AL islarge enough that
either L, or L, becomes negative then the I,(9,)
must become reentrant and therefore multivalued.
We will not go into these complications, however.]

We next consider the shapes of 1(6,) in the vari-
ous regimes, specializing to sinusoidal I(¢). Given
that

61=¢1 + ay sing, , (43)

03= s+ ap Sing, , (a4)
it follows that

d .

EZ%I-: (1+C!1 COS(;bl) ! N (A5)

Edy . 3

76—%_ - a sing, (1 + @, cosp,)? , (A8)

an _Iy < 491\ -

a8, oy \' ", )T rc0801 (L ancosd)”,

) . (A7)

dh_Iy d°¢y_ _ Lising; (1 +aycos0,)°, (A8)

do: oy ded

with similar relations between I,, ¢,, and §,. The
net transport current I, is

It=Il(91>+12(91+9x)=ls(91>ex) . (Ag)

The extrema of [;(9;,6,), both primary and second-
ary, occur at the points dI,/dg,=0, or at those
6y, call them 47, such that

w0

ddq dé, (410)

A convenient graphical approach to thinking about
the properties of ,(8,) is to plot dI, /df, and — dI,/
df, and overlap them with a phase lag §,. The in-
tersections of the two then occur at the extrema of
I(6y,60,). We show three examples of this ap-
proach in Fig. 17, in which three examples from
regimes A, B, and C have been plotted for vari-
ous representative 9,. These plots show clearly
how the three regimes differ. In case A for all
0, there are always only two intersections, corre-
sponding to I,,(6,) and I, (6,). The right-left sym-
metry of the derivatives reflects the time-reversal
requirements, I,,(+6,)=-1I (-6,). The fact that
the value of 4, at the intersection corresponding
to I, (say, 61) varies smoothly and periodically
with 6, leads to the conclusion that I, (9,) is also a
smooth periodic function. We can compute the
slope of I,,(6,) by noting that 1,(6,)=L,[61(6,), 6,,] so
that

61= 6

d6, \db1)y,. oy db,

dl, d64
“2. “v1 1
+(d62> .. ei+9x<dex+ ) (A11)

and taking account of (A10) this becomes

Al _ (4!3.) = _<£L>
(19,, d93 6= 09+0, d91 69=64

Thus the slopes dI,/dd, and dI,/df, have a point-
by-point correspondence. Since 6; is bounded, as
9, increases through 27 so does 6,=6; +6,, so that
a plot of dI, /de, over a cycle is in effect a complete
plot of dI,/de, over a cycle, except that the rela-
tion between 6, and 6, is nonlinear. It follows that
the maximum and minimum of /,,, which occur at
di,., /dé,.=0, correspond to the points at which ar,/
d9,=0, or at [I,,=1,+L,, 0,=a,— oq] and [I,,= 1,
~Ls, 0,=7—(ay+a,)], respectively. It also fol-
lows that the maximum and minimum slope of
L,0,)are £+ I, /(1 £ ap) .

In addition, we note any particular value of dI,,/
do, (other than the extremes), say, (dl,,/ds,) oc-
curs twice in a cycle of 6,, say, at 6, and 6,'. But
the values of 91(9,) and 61(6,’) are the same because
— (dL /d6y),- 6, = (dI,./ds,) in both cases. Conse-
quently the values of 8,=0;+6, at 6,=6, and 9, dif-
fer by exactly the observed value 9,’ - 6,. Hence
by plotting dI,,/do, vs 6, and extracting from it
(dI,./ds,) vs 6.’ — 6. for all the values of (dI,,/
d6,) from L,/(1 +ay) to - I,/(1 ~ a;) we create a
plot of dI,/dé, vs 6, which can then be integrated to
give I,(6,). This is the approach mentioned in
Sec. II. We note here incidentally that the second
derivative d°I,/d6? is given by

&L [\ A -
c?é{{(%%)a = 69 +<d_9§a>a =67+6 ] ’
1=91 2791% %1

In the example of type B in Fig. 17, it is obvi-
ous that dI, /d6, and - dIL /d8, have four intersec-
tions in a symmetric interval about 9, =7, leading
to the double~humped property. Here as well, the
rate of change of the heights of these extrema is
given by the values of dl, /d8,= - dI; /d8, at the in-
tersections. Consider what happens as —dI,/d6,
is moved from right to left with increasing 6,,
starting at ,=0. This is a condition in which
there are only two intersections at 6; and 6;’, cor-
responding, respectively, to the maximum and
minimum of I,(8,,6,). As 6, increases there comes
a point, say at 8., at which —dL/df, and dI, /dé,
touch, forming a second pair of points of intersec-
tion, #;’" and 6;"’’. These correspond, respec-
tively, to a minimum and maximum. At 9, 6; "
=0y "', and I(6; "', 8,)=181""",8,) < L(81, 6,) but as
6, increases they pull apart, and L(6{'’, 6,)
<L(8;" ", 8,) for all 6,. Now at 6,=27 -, a pre-
cisely symmetric situation occurs with two inter-
sections coming back together and disappearing.

(A12)

(A13)



6 QUANTUM INTERFERENCE PROPERTIES OF DOUBLE... 873

If one follows the progress of the intersections for
6, lying between these values, however, it can be
seen that the intersections which come together at
6,=2r -6, are 67 and 6;’. From the symmetry of
this case with §,=§, it follows that the values of
I.(61, 27 - 8,)=1,(61, 2r — §,) must lie between the
values of I,(9;"’, 2r - 8,) and I (97’ "/, 8,) so that
somewhere between 6, =8, and 6, = 27 — 6, the val-
ues of I,(91, 6,) and I,(6;" ', 6,), the two maxima,
must be equal as was asserted in Sec. II. This
point corresponds to the break in slope or cusplike
minimum of I,,(6,). Further, since ;#6;"'" at
this point, the rates of change of the two maxima
with 6., which are given by — (dl; /d6,)s,- 4 and
~(dIy/d81)e4-6y **, are different, as claimed in
Sec. II.

In the type-C example of Fig. 17 we see that the
regions of 6, for which there are four intersections
occupy two limited, symmetric sections of 6, on
either side of 6, =7 but not including that point.
Consideration of the appearance and disappearance
of the intersections with increasing 6, leads to the
same conclusions as in the type-B case regarding
the existence of the break in slope. We will pre-
sent here the criteria which lead to the distinction
between type-A and type-C cases. In this we take
advantage of the fact that in the latter case for some
6, there will be a transition between a four-inter-
section situation and one of two intersections. At
this point an intermediate maximum and minimum
of I,(8,, 6,) have just come together so that both
the first and second derivatives of I,(6,, 6,) with
respect to 6, vanish at one point. The boundary
between A and C can then be determined by eval-
uating d?I, /d6? at the points at which dI, /d6, van-
ishes for various combinations of « and I,/I,; and
finding whether d?I, /d65 vanishes for any 6,. If
so, the case is type C, if not, type A. To do this
we note that at a maximum or minimum ¢, and ¢,
are related by

L1 cos¢, (1 + @y cospy)™=—1,co8p,

x(1 Sp,)t
or (1 +aycosp,)t  (A14)
(IcZ /[cl) (COS¢1)'1 == (COS¢72)'1 -a. (A15)
The second derivative [using (A8)] is
& .
ngi= ~ I, sing; (1 + @, cosgy)®
— Ly sing, (1 +a, cosgpy)™, (A16)

where ¢, and ¢, at the maximum are related by
(A15). We can therefore write d°I;/d6? at any ex-
trema as
2
(d—’z) = (1+ 0y c086,)°
d91 max

Lz cos,\® .
X [Icl Sin¢1 <i—?-§%—s%f> —4c2 SIn(bZ] ’ (A17)

which is only zero if

L1sing;(I; cos¢ ) = I, sing, (I, cosp,)™® .
(A18)
Squaring both sides and employing (A15) again we
arrive at the requirement

(Lo /1,1)2 [~ (cospy)™ = a]® - [~ (cosgy)™ - a]*
~ (cospy)™+(cospy)*=0,

which is polynomial in (cos<¢>1)'1 and must possess
zeros for some value of cos¢, if dzls /d6% vanishes
at the maximum, and vice versa. The boundary
between A and C in Fig. 3 is determined by nu-
merically investigating the value of the polynomial
between 0 < cos¢, <1 for various fixed I,,/I,, and
a. The task is relatively easy because the poly-
nomial possesses only a single well-defined mini-
mum,

Finally, we justify the assertion of Sec. III that
in regime C there is only one stable state at [, =0.
Recall the situation in the C regime (Fig. 17). At
0, = &y — o, the dI, /d6, and - dI,/d8, intersect at
zero corresponding to I, =1, +1,. As g, increases
this maximum of I (6,, 6,) whose position we shall
call 9] decreases at a rate dl,, /d6,=(~dI,/
d84)e1= 04 Which for a, — @y <6, <7 is always nega-
tive, while as 9, increases at some point the new
maximum and minimum form at a larger 6, and
smaller (9, 6,). This secondary minimum whose
position we call ¢, is always below the original
maximum at 6; but decreases at a slower rate, be-
cause (~dl/db)e1-61< (= dl;/db;)g,. g4 . Ultimate-
ly at a value 6, =0, <7 the original maximum and
new minimum combine and disappear at some
point 6, =6y, where 6,,>0. Now if the minimum
at 91’ had ever become negative in this process
the maximum at 9; would also, because the two
ultimately came to the same value and both de-
crease monotonically with 6, in this range. But
this cannot be the case because the value of (41,
6,) at the point where the 9;=6;’ must be given by

by dr.
Icl +Ic~2 "S <Zi_él;) or 0% dex
1=91

(A19)

da-Dtl
or
°Y a1, /de
11+12—S —L<—i> do,
¢ ¢ /2 déy \do, 61=61 ’

and since 64> 0 and 1d6, /d6;! <1 (as can be seen
from the Fig. 17), the integral is less than I,.
Consequently, I(8y,6,)>0 and the minimum can
never pass through zero.

APPENDIX B'

In this Appendix we discuss the energetics of the
double junction and double pendulum. The dis-
cussion is in the notation of Fig. 8(b). We as-
sume that no dissipation occurs and that both the
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external flux &, =6,8,/2r and the current bias I,
are fixed. Then the energy of the system can be
written

E=3CVi+3GVE+3L I +3Lo0%
~ (®q/27)(I,; cosp, + 1,5 cosS,)
~(®¢/20)1,¢, , (B1)

where (®y/27)¢, is the time-integrated voltage drop
V, around the path between the leads through L;.
Noting that I; = (&,/21)(¢, — 1)/ L, and I;5=(®,/
21)(¢, +6, — $2)/ Ly we may rewrite E as

E=(dy/20 ) [5Cdoy/dt) +5Coldd, /dt)
+(pg = 01)?/2Ly +(p, +0, — $51/2L,

- (20/®o)((L,y cospy +1 5c08¢5) +1,0,)] .
(B2)
The first two terms we may call the kinetic en-
ergy T and the others the potential energy V. In
a stationary state we would have both d¢, /dt
=d¢,/dt=0 and 8V/d¢,=0V/8¢,=23V/8¢,=0. The
latter three equations give

(1= ¢,)/ Ly + 21/ ®y)L,y sing, =0 , (B3)
((l)z - (Pq - 9,‘)/Lz + (2‘"’/@0)102 Sin¢2=0 N (B4)

($g = D1)/ Ly + (b, +6, = ¢2)/ Ly — 2/ @)L, =0 .
(B5)
These equations, when combined, reproduce the
basic double junction equations (1) and (5) along
with the additional relation

P =1+ sing; =6, . (B6)

Consequently, the energy minima correspond to
the stable solutions of the double junction equations,
e.g., (11), as one expects.

Consider the 1 mnction V as it depends upon the
three variables p;, ¢,, and ¢,. Let ¢1, ¢, and
¢, be a point of minimum V.

For type-A situations, we know that this point
and the conjugate points ¢, +n2w, ¢5+n2m, and
¢, +n2m, where n=+1, =2, etc., are the only
minima,.

For type-B or type-C situations there may be
several minima corresponding to the various stable
solutions, each of which has its conjugate points
at 27 intervals. Inbetweenthese minimathereare
various paths in (¢,, ¢,, ¢q) space, one of which
minimizes the maximum value of V encountered on
the path between the two minima. These are the
saddle points of V and the energy barrier relevant
to Sec. I is the difference in energy between V at
these points and at the higher of the two minima.

Now at the saddle points the relations 8V/8¢,
=9V/8¢,=8V/3¢, = 0alsoapply, which means that
these points also correspond to solutions of (11).
Since the stable solutions all correspond to minima

of V, it is the unstable solutions that correspond to
saddle points of V. Some study of Fig. 5 shows
that the unstable solutions are in one-to-one cor-
respondence with the stable solutions. That is,
between each two neighboring 4, corresponding to
the latter there is a 6, corresponding to the for-
mer, This point is the saddle point corresponding
to the two minima,

The height of the energy barrier can be computed
most easily by noting that at the minima and at
the saddle points we can express V in terms of the
variables 6; and 6; which correspond to the ¢; and
¢4 at these points. We first rewrite V as

V=311, 8in’¢] - (®,/27), cose;
+3L,1, sin’¢ 4 — (/21 )L, cOSPH
—(®¢/21) L[t + (2n L Iy /&) singy],  (BT)

an expression which is only correct at the minima
and saddle points. We can rewrite this in inte-
gral form as

B, [(°1 . 2 Ly],
V=—z-7—TQ[S L1 8ing, (d¢1 +l$:41005¢1d¢1>‘1c1
0

b2
+S Ly sing, (d¢2 +3’%I£& cos, dqbz) -1
0
0

L2} 9
-1 S <d<b1 + ﬂgzlcl cose, d¢1>]

0

o /(% o
=§—:(S 11(91)d91+s 1(6,) d6,
0 0

91
- S L6y~ Iy +1cz))
0

”
o) 1
=§ﬁ<so (1,064, 6,) - I]d6,

gx
+S 1(8,) d6, ~ (L, +102)> . (B8
0

The latter integral is constant and can be ig-
nored. Its appearance here can be traced to the
fact that we have left out any energy factors in-
volved in changes of 6,. The former term is just
the difference between the areas under ,(6,, 9,)
and I, as described in Sec. III. Thus if 9; is a
minimum and ;" a saddle point the energy barrier
between 6; and the subsequent minimum is just
(%/211)&1'[13(91, 6,)—I,]d6,. We reemphasize that
this expression is only useful for calculating V at
the minima and saddle points, but not elsewhere.
To calculate such points as the small oscillations
frequencies one must return to (B1).



6 QUANTUM INTERFERENCE

IB. D. Josephson, Phys. Letters 1, 251 (1962).

B, D. Josephson, Advan. Phys. 14, 419 (1965).

5P, W. Anderson, Lectures on the Many-Body Problem,
edited by E. Caianello (Academic, New York, 1964), Vol.
2, p. 113.

‘P, W. Anderson, in Progress in Low Temperature
Physics, edited by C. J. Gorter (North-Holland, Amster-
dam, 1967), Vol. 5, p. 1.

P, W. Anderson and J. M. Rowell, Phys. Rev. Let-
ters 10, 230 (1963).

J. M. Rowell, Phys. Rev. Letters 11, 200 (1963).

"R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E.
Mercereau, Phys. Rev. Letters 12, 159 (1964).

8R. C. Jaklevic, J. Lambe, J. E. Mercereau, and
A. H. Silver, Phys. Rev. 140, A1628 (1965).

%J. E. Zimmerman and A. H. Silver, Phys. Rev. 141,
367 (1966).

10T, A. Fulton, Solid State Commun. 8, 1357 (1970).

Up, W. Anderson and A. H. Dayem, Phys. Rev. Let-
ters 13, 195 (1964).

27, A. Fulton and R. C. Dynes, Phys. Rev. Letters

PROPERTIES OF DOUBLE... 875

25, 794 (1970).

3R, A. Ferrell and R. E. Prange, Phys. Rev. Letters
10, 479 (1963).

Y¢c. Owen and D. J. Scalapino, Phys. Rev. 164, 538
(1967).

15A, Th. A. M. De Waele and R. De Bruyn Ouboter,
Physica 41, 225 (1969); 42, 626 (1969).

6w, C. Stewart, Appl. Phys. Letters 12, 277 (1968).

"p, E. McCumber, J. Appl. Phys. 39, 3113 (1968).

185, Clarke, Proc. Roy. Soc. (London) A308, 447 (1969).

3, Swihart, J. Appl. Phys. 32, 461 (1961).

Lpultiple I’s in large-inductance double tunnel junc-
tion have been observed by previous workers, e.g., J.
E. Mercereau, Proceedings of the U. S.-Japan Seminar
on Low Temperature Physics, 1967 (unpublished); A. M.
Goldman (private communication).

%j, Clarke and T. A. Fulton, J. Appl. Phys. 40, 4470
(1969).

2 These authors have independently suggested the
mechanical analog of Sec. III. D, B, Sullivan and J. E.
Zimmerman, Am. J. Phys. 39, 1504 (1971).

PHYSICAL REVIEW B

VOLUME 6, NUMBER 3

1 AUGUST 1972

Electron Correlations at Metallic Densities. V *

P. Vashishtal and K. S. Singwi?
Physics Department, Novthwestern Univevrsity, Evanston, Illinois 60201
and Avgonne National Laboratory, Avgonne, Illinois 60439
(Received 20 December 1971)

In this paper we present a modification of an earlier theory of Singwi et al. of electron cor-
relations at metallic densities. The modification consists in allowing for the change of the
pair correlation function in an external weak field via the density derivative of the equilibrium
pair correlation function. This results in a new expression for the local-field correction. The
present theory has the merit of satisfying almost exactly the compressibility sum rule and of
giving a satisfactory pair correlation function. Results of self-consistent numerical calcula-
tions for the static pair correlation function, correlation energy, compressibility, and plas-
mon dispersion relation for the electron liquid in the metallic-density range are presented.
For those interested in the application of the results of the present paper, numerical values of
the local-field correction as a function of wave number have been tabulated in the density range

7s=1-6.

I. INTRODUCTION

In a series™? of recent papers Singwi et al. have
presented a theory of wave-number and frequency-
dependent dielectric function €(q, w) of an electron
liquid in the metallic-density range (1 <»,<6).

This theory attempts to take into account in an ap-
proximate manner both the exchange and Coulomb
correlations through a local-field correction (as
defined by Noziéres and Pines®) which depends on
the pair correlation function. The latter is related
to the imaginary part of the inverse dielectric func-
tion through the fluctuation-dissipation theorem.
Thus, it is a self-consistent theory. The first
version of the theory,! hereafter referred to as I,
yielded a physically acceptable pair distribution

function g(»), but the compressibility sum rule was
only poorly satisfied. Although this deficiency was
rectified to a considerable extent in a latter ver-
sion® of the theory, hereafter referred to as II, by
screening the Coulomb potential entering the local-
field correction, the compressibility was not very
satisfactory. The theory has since been applied to
a variety of calculations®~" for free-electron-like
metals with a fair degree of success. Results for
the generalized paramagnetic susceptibility derived
on the basis of this theory have been no less en-
couraging.®-1°

Although the local-field correction in the theory
of Singwi ef al. is static, it will in general depend
on frequency. The importance of the frequency
dependence of the local-field correction in the di-



