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An empirical method of separating strong-coupling effects from anisotropy effects in critical-
magnetic-field curves of elemental superconductors is presented. Using Clem's critical-field
expressions for a weak-coupling anisotropic superconductor, together with an empirical scal-
ing of the superconducting energy gap, a set of relations is derived which allows an indepen-
dent determination of the mean squ-ared energy-gap anisotropy parameter (a ) and a strong-
coupling scaling parameter g. These parameters depend on the experimental determination
of two quantities, 2ry(To/H0) and (dk/Ck)t i where To is the zero-field superconducting transi-
tion temperature, Ho is the zero-temperature critical magnetic field, y is the temperature
coefficient of the normal electronic specific heat, and (d)I/dt)t &

is the initial slope of the criti-
cal-field curve expressed in reduced variables. Values of (at) are calculated using published
critical-field data and are compared with those values obtained by independent means.

INTRODUCTION

The critical-magnetic-field curve, H, (T) vs T,
of a superconductor has been calculated by
Muhlschlegel~ using the Bardeen- Cooper-Schrieffer
(BCS) theory. For the elemental superconductors
deviations from this theoretical curve are generally
small, 2-3/~ (the notable exceptions, Pb and Hg,
deviate by only 5/q), but are strikingly apparent
when the deviation function D(t) is plotted for vari
ous elements (see Fig. 1):

duced into critical-field calculations by scaling
the superconducting energy gap to values in excess
of the BCS predic tion. Energy-gap scaling modifies
Muhlschlegel's critical-field expression for an iso-
tropic superconductor in such a way as to give
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where h= H, /Hc; Hs -is the zero-temperature criti-
cal magnetic field; f= T/Tc; Tc is -the zero-field
transition temperature.

Observed deviations from these critical-field
calculations can be attributed to two approximations
made in the original BCS theory. First, the BCS
theory is a weak-coupling theory (So» Tc; en is
the Debye temperature) which ignores the detailed
energy dependence of the electron-phonon inter-
actions. Second, the theory also ignores the crys-
tal lattice structure of the material which produces
anisotropy in the superconducting energy gap.
Strong-coupling effects (i.e. , large electron-pho-
non interactions) generally increase the critical
magnetic field of a superconductor, while anisotro-
py effects tend to decrease it.

The effects of energy-gap anisotropy have been
included in the weak-coupling BCStheory by Clem,
who derived expressions for the critical-field
curve of an anisotropic superconductor. Strict
comparison of his theory to data for elemental
superconductors is uncertain, however, because
of competing strong-coupling effects. These
strong-coupling effects can be empirically intro-
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FIG. 1. Deviation function D(t) for a various elements.
Differences from the BCS prediction, although small, are
strikingly apparent. Experimental data are taken from
Hefs. c, f, h, and p of Table I.
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TABLE 1. Summary of critical-magnetic-field data for various elements. Ualues of (a ) and 6 are calculated from
Eqs. (12) and (14) in the text using these data. The values of (a) thus obtained are compared with values derived from
impurity studies (g )~) when such data are available. [Note: No value of —2'(TO/Ho) (dh/dt)q less than 1.836 can be
explained by this modified anisotropy model; hence, Hg does not fit the model. ]

Al
Cd
Ga
Hg
In
Mo
Pb
Sn
Ts
Th
Tl
Zn

1.179
0.5151
1.083
4.154
3.409
0.9134
7.177
3.722
4.482
1.390
2.39
0.850

TQ

Element (@
Hp

(G)

104.9
28.05
59.2

410.9
281.5
96.23

802.6
305.5
830
159.2
171
54.0

1367
533
512

1312
1088
1956
1705
1086
56oo'
2200

870m
718

1.719
1.680
1.72
2.060
1.882
1.698
2.134
1.842
1.'850
1.775
1.790
1.692

dh
(erg/cm3 K2) dt

1.085
1.129
1.076
0.842
1.002
1.107
0.856
1.013
1.006
1.053
1.068
1.118

1.865
1.897
1.851
1.735
1.886
1.880
1.826
1.866
1.861
1.869
1.912
1.892

3.206
3.186
3.183

3.549
3.192
3.897
3.437
3.443
3.317
3.441
3.201

0.016
0.033
0.008

0.027
0.025
0.00
0.016
0.014
0.019
0.041
0.031

(g2)

0.011

0.021b

0 019'

O. O2O"

0.030 o

1.006
0.999
0.998

1.113
1.001
1.222
1.078
1.080
1.041
1.079
1.OO4
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qualitative agreement. with the observed critical-
field curves of strong-coupling superconductors. '

In this paper, Clem's expressions for the critical-
field curve of an anisotropic superconductor are
similarly sealed to include strong-coupling effects.
The effects of strong coupling and energy-gap an-
isotropy are given in this model by twoparameters-
an anisotropy parameter (as) and a scaling param-
eter &. Since the effects of these two parameters
on the critical-field curve are different at the two
temperature extremes, T=O and T=T0, it is
possible to establish from critical-field data alone two
independent expressions which can be individually
solved for the parameters (a ) and 6. The param-
eter (a ), as evaluated using this model and pub-
lished critical-field data, is consistent (see Table
I) with the (a ) values derived from an analysis of
the depression of To with dilute nonmagnetic im-
purities.

MODIFIED ANISOTROPY MODEL

The shape of the critical-field curve at low tem-
peratures, t & 0. 20, is given by the thermodynamic
relation

where y is the temperature coefficient of the nor-
mal electronic specific heat per unit volume. Ex-
pressing (2) in reduced variables and expanding to
second order in t gives

k = I - 27ry(T, /H, )'t' ——,'[2wy(Tc/H, )s]'t + ~ ~ ~

(8)
The quantity 2sy(Ts/Hc)a is seen to be related to
the curvature of the reduced critical-field curve
as t approaches 0.

To calculate this quantity in the weak-coupling
BCS limit, we begin with the well-known BCS pre-
diction for the ratio of the superconducting energy
gap at T =0 to the critical temperature:

&(0)/kTc= I. 764

The condensation energy at T=0 is given in this
limit by

Hs/8v = —,'N(0) & (0),
where N(0) is the electronic density of states at
the Fermi level. Using the relation for the tem-
perature coefficient of the normal-state electronic
specific heat,

H =H —4myT (2) y = —',s N(0)ks (k —= Boltzmann's constant), (6)



ANISOTROPY AND STRONG-COUPLING EFFECTS ON THE. . .

Eq. (5) becomes

H,(vk'/6r)'" = t (0).

Combining (4) and (7) yields the weak-coupling
BCS value of

2ry (Tp/Hp) = l. 05V. (8)

0.03—

0.02—

~
~ ~ ~

~ ~
~

N ~

STRONG COUPLING

At high temperatures, t= I, the shape of the crit-
ical-field curve is characterized by the initial
slope. In the weak-coupling BCS limit, Muhl-
schlegel shows that

O, OI

D(t) 0
I.O

= —1. '{I'37. (9) -O.OI

To introduce empirically strong-coupling effects
into the critical-field calculations, (4) is scaled to
values larger than the weak-coupling BCS predic-
tion, as is experimentally observed, by the inclu-
sion of a scaling parameter 6:

-0.02

-0.03

&(0)/kTp ——1.764& (&~ 1). (4a)

It follows from (5a), (6), and (11) that

H, (vk /6) ) = a(0)/&'~'.

Combining (4a) and (Va) yields

2my(Tp/Hp) = 1.057/6.

(7a)

(8a)

Figure 2 demonstrates how the weak-coupling BCS
critical-field curve is affected by scaling of the
energy gap in this manner.

Using the scaled energy gap (4a) and M{ihlschlegel's

Using this scaled energy gap and the Muhlschlegel
expression for the critical-field curve of a weak-
coupling superconductor, Finnemore and Mapother
(FM) calculated critical-field curves for various
values of & and obtained qualitative agreement with
the experimental critical-field curves of moderate-
ly strong-coupling superconductors (see Fig. 2).

Such calculations, however, increase the value
of the critical fields at low temperatures too much,
as is seen by the fact that the condensation energy
at T=0 is still given by the weak-coupling BCS
formula, Eq. (5). For strong-coupling supercon-
ductors, (5) should be replaced by

H /8m=-'N(0)tr (0)(l —e t ' '
), (5a)

where V is the BCS interaction parameter. Equa-
tion (5a) follows directly from the BCS theory if
the usual weak-coupling approximation

sinhIl/N(0)Vl= —'e ~"' ' (N(0)V« II

is not used. For strong-coupling superconductors,
where N(0) V& 0. 25, this weak-coupling approxima-
tion is not valid.

Sheahen showed that the quantity (1 —e ""'
)

is related to the parameter & introduced in (4a) by

(1 . -2/N (P &v)-1

-0.04

-0.05

{8=l.0, (oa)=0.04)

expression for the critical-field curve near t= I,
the initial slope becomes

= —I. 73'7~. (9a)

This result agrees with that given by FM but differs
slightly from that given by Sheahen, ' since Sheahen
did not use the exact BCS expression for the energy
gap. His result for (dk/dt)1 does not reduce to the
weak-coupling BCS limit for &= I as does (9a).

Effects of anisotropy produced by the crystal
lattice structure of the element are introduced into
the weak-coupling BCS theory by using an energy
gap of the form

+a= &p(I+t1a) (12)

where co is the average energy gap and a~ is an
anisotropy parameter for an electron in the k
state.

Clem' shows that (4), (7), (8), and (9) transform

FIG. 2. Changes in the BCS prediction for the deviation
function due to the inclusion of anisotropy and of energy-
gap scaling. Finite values of {a ) lower the deviation
function, while the scaling modifications, used to intro-
duce strong-coupling effects, increase the deviation func-
tion. The dashed lines represent an interpolation between
the calculated values near the two temperature extremes.
The dotted lines show the scaling modifications used by
Finnemore and Mapother, Ref. 4.
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to
~, /kr, = l. 764(1--', (a')),

H,(vk'/Gy)'" = c,(1+-', (a')),

(4b)

(7b)

2~y(r, /H, )'=1.057(1+2(a')), (sb)

~

~

~

=1 737 1 —0

where (a ) is the mean-squared anisotropy. These
equations describe an anisotropic superconductor
in the weak-coupling limit. Figure 2 shows how

the weak-coupling BCS critical-field curve is af-
fected by anisotropy.

Combining the scaling modifications with the
anisotropy expressions gives as a final result

eo/kT0=1. 764&(1 ——,'(a )), (4c)

H(v k'/6y)'~'= (eo/6"')(I+-,'(a')), (7c)

2'(TO/Ho) = (1.057/&)(1+ 2(a )),

(9b)

(Sc)

= —1.7376(1- (a')).dh

dt
(9c)

o 'dh
2wy 0 —= -1.836(l + (a~))

Bo dt g

(13)

2' — — = 3.188&. (14)

From (13) one can calculate the (a ) value of an
elemental superconductor and from (14), 6 can be
determined.

DISCUSSION

Table I lists the pertinent experimental data for
some of the more accurately measured elemental
superconductors. Values of (a ) and 6, which
are predicted using (13) and (14), are shown as
well as values of (a ) obtained by independent meth-
ods.

Determination of (a ) from (13) requires that the
quantities 2wy(TO/Ho) and (dh/dt), be known to a
high precision. A 1/o uncertainty in their product
leads to an error in (a ) of 0.01, which for most
elements is comparable to the absolute value of
(a ) itself. Since the product depends on four ex-
perimental quantities [y, To, Ho, and (dh/dt)~], it
is necessary to know each of them to an accuracy
of about 0. 2% in order to obtain a reliable value

Equation (Bc) describes the shape of the critical-
field curve near t=0 including both the effects of
strong coupling and anisotropy, while (Qc) describes
the shape near t= 1. The left-hand sides of these
bvo equations are experimentally determinable
from critical-field data. They provide a set of two
independent equations involving two unknowns, (as)
and &, which can be solved to yield

for (a~). Systematic errors are reduced if all of
these quantities are determined self-consistently
from the same set of data on a given sample as
from a complete mapping of the critical-field curve.

Critical-fieLd data for the elements Al, Sn, In,

Th, and Zn are accurate enough to provide a good
test for (13). Values of (am) obtained from the
critical-field data compare favorably with values
obtained independently from an analysis of the de-
pression of To caused by dilute nonmagnetic im-
purities. In studies of such dilute alloys, the
quantity derived is not (a ), but rather &'(a ). X'

is an impurity-dependent constant of order unity
which is not experimentally determinable and is
usually set equal to unity for at least one impurity
with the ~''s for other impurities chosen to give
consistent values of (a~). Since X ~ 1, one would

expect (a ) determined from critical-field studies
to be equal to or greater than that obtained from
impurity studies. For Al and In, (a ) obtained
from critical-field data is slightly greater than
that obtained from alloy studies; however, even
with these excellent critical-field data, the error
in (a ), determined from (13), is still about the
size of the discrepancy (a 0. 005). The (a ) com-
parisons of Sn, Th, and Zn all agree within the
experimental accuracy of the data.

Critical-field data for Cd and Mo, both of which
are weak-coupling superconductors, are also ac-
curate enough to provide good tests for (13)and (14).
As expected, no strong-coupling scaling is needed
to explain the shape of the critical-field curve.
Values of (a~) obtained from impurity studies are
not available to check the predictions of (a ) ob-
tained from Eq. (13). Critical-field data for Ga,
Ta, and Tl are not precise enough to give reliable
values for (a ); however, the values calculated
from them show no inconsistencies.

Pb and Hg provide extreme tests for the scaling
model since they are the strongest-coupling super-
conductors. The scaling modifications necessary
to explain the critical-field data of these elements
push the original BCS theory far into a region where
the BCS approximations do not hold. For strong-
coupling superconductors, the superconducting
properties are affected by the details of the phonon
spectrum. These details cannot be accounted for
by the simple scaling concept employed here.
Critical-field data for Pb, however, do appear to
be interpretable by the scaling modifications giving
a value for (a ), obtained from (13), of zero This.
prediction of small anisotropy is supported by di-
lute-nonmagnetic-alloy studies. ' Hg is the only
element listed in Table I which does not fit the
scaling analysis. The reasons for this discrepancy
are apparently connected with the unusual shape of
its phonon spectrum. ~

The results of Pb and Hg provide a clue as to
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where the scaling model can be applied. The pho-
non spectrum of Pb is fairly typical of most ele-
mental suyerconductors containing two dominant
peaks corresponding to transverse and longitudinal
acoustical modes. ~ The phonon spectrum of Hg,
however, contains just one dominant peak at a very
low energy T.hus, because of its atypical phonon

spectrum, Hg appears to be an isolated case whose
superconducting properties are not susceptible to
generalization to other elements. The scaling
theory therefore appears applicable (i) for weak-
coupling to moderately weak-coupling superconduc-
tors where details of the yhonon spectrum are un-
important and (ii) for strong-coupling superconduc-
tors whose phonon spectra are not radically dif-
ferent from that of Pb.

As an example of applying these criteria, con-
sider the element Tl. 71 is a moderately strong-
coupling superconductor (Sn/Ts= 35) with a phonon

spectrum similar in shape to that of Pb. It there-
fore satisfies both conditions (i) and (ii) and is ex-
pected to fit the modified anisotropy model just

presented. From data available, a (a') value of
0. 04+ 0.04 is obtained which makes Tl potentially
one of the most anisotropic superconductors. The
large uncertainty is due to the inaccuracy of the
critical-field data. The value of (a ) obtained
from alloy studies is 0. 06, while (a ) obtained
from an analysis of strain-induced effectS ' is
0. 01. An accurate measurement of the critical-
field curve of Tl could clear uy this uncertainty
in (as).

CONCLUSION

An empirical method of separating strong-coup-
ling effects from anisotropy effects in critical-
field curves of elemental superconductors has been
presented. It is demonstrated in this paper that a
meaningful evaluation of (a ) can be obtained from
accurate critical-field data on elemental supercon-
ductors without resorting to other, sometimes
more ambiguous, methods of estimating this quan-
tity.
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