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In a copper crystallite containing many hundreds of atoms the static and dynamic behavior
of point defects is simulated by means of an electronic computer. This follows the lines of an
earlier work by Gibson et al. We have extended their investigation to collisions with subthresh-
old energies using a new computer program particularly suited for low-energy processes. The
atomic interaction is approximated by a-purely repulsive Born-Mayer potential together with
surface forces applied to the boundary of the crystallite. The mechanical equilibrium of va-
cancy, interstitial, and many Frenkel-pair configurations has been determined. There are
74 lattice sites around a (split) interstitial which are unstable for a vacancy. The formation
energy (2. 79 eV) of a stable Frenkel pair turns out to be practically independent of the dis-
tance between vacancy and interstitial. The effect of subthreshold collisions on point defects
has been studied. At low-energy transfers (& 0. 8 eV) only vibrations can be excited. The
(split) interstitial exhibits several localized modes: (i) an axial vibration, {ii) a twofold de-
generate librational mode, and (iii) a twofold degenerate c.m. oscillation perpendicular to
the axis. The energy storage in the axial mode is about 20% of the initial energy transfer.
Jumps of point defects are induced by energy transfers of ~0.3 eV for interstitials and ~ 0.6
eV for vacancies. The directional dependence of these energy threshoMs has been studied.
The cross section for interstitial jumps due to MeV electrons is roughly 10 4 b. Effects of
subthreshold energy transfers to close Frenkel pairs have also been investigated.

I, INTRODUCTION

Since the study of radiation-induced defects in
metals has become an important tool in solid-
state physics, one of the basic questions has con-
cerned the elementary process of defect Produc-
tion: What is the threshold energy which a lattice
atom must be given to be displaced from its lat-
tice site forming a stable interstitial atom and

leaving behind a vacancy? Only recently it was
considered' that not only these above-threshold
collisions might cause physical changes in a crys-
tal but also subthreshold collisions. By definition,
subthreshold collisions cannot produce defects in
an ideal crystal. However, in a defect crystal
they can be effective, for instance by inducing
jumps of vacancies and interstitials by energy
transfers much smaller than those required for
defect production. In an irradiation experiment
with, say, copper with low-energy electrons of
0.4 MeV or platinum with electrons of 1.4 MeV
this implies that no defects will be created; how-

ever, the defects already present can be kicked
by the electrons from one equilibrium position to
a neighboring one. This "playing soccer" of
electrons with interstitials or vacancies phenom-
enologically resembles thermal diffusion of these
defects. There are measurable effects of atomic
jumps if they cause a change of the defect state.

Such a change can lead, e.g. , to mutual anni-

hilation of vacancies and interstitials, which are
close to each other (close Frenkel pairs), s s or to
a change of their mutual distance. '4 Subthreshold
collisions may be important in all collision pro-
cesses where predominantly small energies are
transferred to atoms such as, e.g. , in electron
microscopy or in channeling experiments. Of

course, not only single point defects can be af-
fected but also aggregates like interstitial clus-
ters etc.

Owing to the complexity of experiments in which
such effects have been observed it is impossible
to trace the basic events on an atomic scale.
Hence a calculational approach is highly desirable
to interpret experimental data at least qualitative-
ly.

In this approach one has to deal with a com-
plicated many-body problem which requires an
electronic computer to simulate the elementary
processes taking place in a real lattice. The
methods adopted for this purpose are essentially
along the lines of earlier computer studies con-
cerning above-threshold events. A new computer
program has been set up which is especially
suited for studying subthreshold events where most
lattice atoms show only very small displacements
from their equilibrium positions. This program
has been used to investigate the equilibrium con-
figuration (without thermal motion) of a vacancy,
an interstitial, or a Frenkelpair in an otherwise
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ideal lattice and their response to momentum
transfers to a given atom, which may result in
a jump of the defect in excitation of vibrational
(e.g. , localized) modes of an interstitial or in
annihilation of a Frenkel pair. All calculations
have been performed with an IBM 360/75 com-
puter.

II. CRYSTAL MODEL

A. General Considerations

For simulating subthreshold events in a mac-
roscopic crystal, one actually should treat an in-
finitely large crystal. Since this is not feasible
one has to restrict oneself to treating a "sub-
space" of an infinite crystal, i.e. , a small crys-
taQite of about thousand atoms. In order to be
representative for the infinite crystal, equations
of motion of the atoms in the small crystallite
must contain the interaction with the "rest. " The
coupling of the crystallite to the "rest" can be re-
stricted to the surface of the crystallite if the
atomic interaction is short range. If in addition
the displacements of the surface atoms are small
as compared to the lattice constant, a lattice-
Green's-function formalism could be used in
principle in order to describe the reaction of the
"rest" exactly. Since this is too complicated one
can try to replace a lattice Green's function by an
elastic Green's function describing the re "ponse
of the "rest" by means of elastic-continuum the-
ory. This would be correct if the frequencies
involved were in the elastic range. One must keep
in mind, however, that the elastic Green's func-
tion does not imply a maximum frequency and that,
therefore, strictly stationary localized modes
would not exist. The elastic Green's function es-
sentially represents three effects: (i) constant
forces which compensate surface relaxations of
the small crystallite and restore the ideal lattice;
(ii) elastic response of the surrounding medium to
displacements of boundary atoms; (iii) radiative
forces representing the emission of elastic waves
originating from atomic motions in the crystallite.

However, even the elastic-Green's -function
treatment is still too difficult. Hence, one is left
with even cruder approximations:

(a) The attractive forces between atoms [inter-
atomic forces are derived from a. central poten-
tial V(d')] in the crystallite are not treated atomis-
tically but are replaced by boundary forces such
that the lattice of the crystallite is maintained.
Since we treat only interactions between first and
second neighbors, these forces must act on the
surface atoms and their first neighbors. Only
part of these forces would be contained in the elas-
tic Green's function, namely, the terms compen-
sating surface relaxations.

(b) In an infinite crystal the forces on atom i
are given in the harmonic approximation by

«= ~a Tta(st-sa)

Here the tensor T&, represents the harmonic force
parameters of the ideal crystal with repulsive and
attractive forces, and k runs over all first and
second neighbors, i.e. , only first and second
neighbors are contained in T&„. The vector s&

represents the displacement of atom i.
(c) The force K &

exerted by the surrounding
medium ("rest") on atom i in the crystallite is ob-
tained by summing over the atoms k = A, of the rest:

K", (f) =Z„T„(s,s,)—. (I)

To get a crude estimate of the influence of the
rest we assume that atom X is first neighbor to
atom i and that s, is proportional to s;(i —D/c),
where D is the first-neighbor distance and c an
average velocity of sound:

s,(f) =gs; (f D/c) =g—[s,(f) —(D/c) s,(t)] . (2)

Inserting (2) into (l) one obtains

K R FR, el 'fR, rad+

where

(4)

are forces describing the elastic response of the
rest on atom i and

(5)

are the radiative forces acting on atom i. The
proportionality factor g is considered an open pa-
rameter between 0. 1 and 1.0. The value g =1
represents the case of no elastic interaction with
the rest [cf. (4)]. The value g = 0 corresponds to
a fixed atom X(sl, =—0) and therefore to rigid rest.
It turns out that its value practically does not in-
fluence the results. This shows that for all en-
ergies used the size of the crystallite is so large
that the radiative effects are small. Eventually
we obtain for the total force acting on atom i

Pt ——Ft +It
where F

&
is the force exerted by the atoms of the

crystallite (only repulsive interaction) and F, rep-
resents the interaction with the rest. The force
P; contains three terms:

FR ItlR, eoaet ItlR, el+

FR, const ~R

The first term is independent of s& and provides
the ideal structure of the crystallite. The second
term, given by (4), is linear in s;, and the third
term given by (5), is linear in s;.



STABILITY PROB LE MS, LOW-ENERG Y-RE COIL EVENTS, AND. . .
B. Specific Case of Copper

In this paper we treat copper specifically. The
atoms form a face-centered lattice (Fig. 1) and
are supposed to interact by a purely repulsive po-
tential of the Born-Mayer type, cutoff at z=x„

(8)

where r is the interatomic distance.
The constant term in (8) just provides a con-

tinuous behavior of V(r) at x=x,. Together with

the constant surface forces which render the crys-
tallite stable (with the correct lattice constant)
the model is not of a purely central-force type
and the Cauchy relation for the elastic constants
need not be fulfilled. The constants A = 22. 563 keV
and a = ~D, where D = 2. 551 A is the nearest-
neighbor distance, were taken from earlier' cal-
culations. The cutoff distance x, was taken as
z, =1.58D, allowing for second-neighbor interac-
tion. The constants A and a are believed to be
practically independent of slight changes of ~, to
which they are linked via physical properties such
as elastic moduli. For the cubic cell edge the
value ao = Dv'2 = 3.608 A corresponding to 0 ' K was
taken since all pertinent experiments have been
performed at very low temperatures.

It should be emphasized that the constants A,
a of the potential (8) are such (cf. Ref. 5) that the

displacement-energy threshold of copper (= 25 eV)
is reproduced. Also, the three elastic constants
c~~, c~&, c44 are reproduced reasonably well by
the potential (8) although it employs only two pa-
rameters.

A crystallite of atoms interacting with a purely
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FIG. l. Elementary cubic cell of a fcc lattice (e.g. ,
Cu): ao, cubic cell edge; D, nearest-neighbor distance
~= ~oi'~2.

repulsive potential (8) would not be stable. There-
fore, constant forces are applied to the surface
atoms to provide stability. However, one has to
make sure, that the crystallite not only is stable
and shows the correct elastic constants, but also
exhibits the right local response. For this rea-
son we have calculated the Einstein frequency,
i.e. , the frequency of an atom vibrating about its
lattice position if all the other atoms are held
fixed at their ideal lattice sites. Expansion of the
lattice potential up to quadratic terms in the dis-
placement of the vibrating atom yields the force
constant fed. With the mass m of a copper atom,
one obtains

(u,""'= (f,„/m)"'=2. 63x 10"sec-' .
The corresponding calculation for a Morse poten-
tial (the Morse potential was taken from Ref. 7 and

corrected for 0 'K) which inherently provides sta-
bility due to its attractive component without re-
quiring surface forces gives fa simple model with
central forces between first neighbors together
with simple three-body forces (potential depend-
ing on areas of triangles between three nearest
neighbors) can reproduce the lattice constant and
the three elastic moduli; here the Einstein fre-
quency is 3.4x10' sec [K. Breuer (private
communication)]]

(o,"' = (f„/m)"'= 3.6x 10"sec-' . (10)

The reasonable agreement between (9) and (10)
leads us to believe that despite its purely repul-
sive character the Born-Mayer (BM) potential to-
gether with boundary forces is an adequate de-
scription of atomic interaction in copper within a
central-force model.

Corresponding to the range x,=1.58D of the
potential, the constant boundary forces due to the
rest of the crystal act upon the first and second
atomic 1ayers of the sv. ~face of the crystallite.
If all atoms occupy their ideal latti"e sites the
crystallite is in mechanical equilibrium. 3.5
x10' cm/sec was taken as the average value of the
sound velocity c in (2) [the maximum and mini-
mum velocities in copper along low-indexed di-
rections are 5. 32x10' and 1.68x 10' cm/sec, re-
spectively (see, e. g. , Ref. 8)]. Different sets
of atoms were used in the investigations ranging
from 3x 5x5 cubic cells (corresponding to 424
atoms) to 4x 8x 8 cubic cells (1301 atoms). Re-
sults have proved to be practically insensitive to
the size of the crystallite, to the elastic forces
adopted, and even to drastic changes of responsive
forces (0. 1 & g&1) of the surrounding medium.

III. METHOD OF COMPUTATION

Simulation of a physical event taking place in the
crystallite implies solving the classical equations
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of motion of all the atoms with the proper initial
conditions. Rigorously speaking, the atoms should
be treated as wave packets. Due to the forces
exerted upon each atom by its neighbors these
wave packets are believed to remain concentrated
and do not spread in the course of time, as with
free particles. Hence the center of the wave
packet may be identified with the position of the
atom. According to Ehrenfest's theorem, the
center of the wave packet and also other expecta-
tion values obey classical equations. Therefore,
a classical treatment of the atomic motion seems
to be justified. Within a sufficiently small time
interval these coupled differential equations are
approximated by a corresponding set of difference
equations which are solved numerically. Two
standard computational methods were used alter-
natively: the method of the central differences
and the Runge-Kutta procedure. Details are given
in Ref. 6.

Tests on the accuracy of calculation were made
by performing energy checks (cf. Ref. 6) after
each time step. This monitors programming er-
rors and indicates when time intervals have been
chosen too large.

Two different types of computational runs have
been made: "dynamical" and "static" runs. In
a dynamical run one starts from mechanical equi-
librium and one atom is given a certain momen-
tum. In a static run one starts from a nonequi-
librium configuration. In the latter case the po-
tential energy is partially converted into kinetic
energy. Each static run is terminated when the
total kinetic energy of the crystallite falls below
a certain limit, say 10 eV. This is taken as an
indication of a final stable atomic-equilibrium con-

E'0012

FIG. 2. Lattice relaxation around a vacancy [(010)]
plane; e, ideal lattice position;, direction of atomic
displacement due to lattice relaxation; ao, cubic cell
edge; D, nearest-neighbor distance {=ao/W2). fCircles
indicate equivalent neighbors; third neighbors do not lie
a (010) plane. ]

TABLE I. Atomic displacements s around a lattice
vacancy. {The position r of the unrelaxed atoms is given
in units of 2ao relative to the vacancy. )

Neighbor

1st
2nd
3rd
4th
5th

(1,1,0)
{2,0, 0)
(2, 1, 1)
(2, 2, 0)
(3, 1,0)

100(8/ ~~go)

(-2.54, -2. 54, 0. 0)
{+0.36, 0.0, 0. 0)
{-0.53, -0.50, +0. 70)
(-0.9, -0.9, 0. 0)
(-0. 04, —0. 09, 0. 0)

A. Vacancy

Before studying dynamic events which involve
point defects, it is necessary to determine the
stable equilibrium configuration of these defects
since all dynamic runs start from such configu-
rations. The findings of computer calculations
by other authors (cf. Ref. 5) concerning the struc-
ture and the relaxation of a vacancy have been
verified: The vacancy, centered at a lattice site,
has cubic symmetry. The surrounding atoms ex-
hibit extremely small relaxations toward the va-
cancy. The magnitude I ft of the displacements
is only 0.025D for nearest neighbors. Further-
more, second neighbors relax away from the va-
cancy, whichis a well-known feature. Figure 2

shows qualitatively the structure of a vacancy in
a (100) plane. Table 1 gives a list of relaxations
up to fifth neighbors.

B. Interstitial Atom

The results of earlier calculations" have been
confirmed also for the interstitial atom: The only
stable configuration we could find is the dumbbell-

figuration. In many cases the validity of this was
checked by close inspection of the configuration of
the atoms. The computer program was able to
monitor atoms moving away beyond a given dis-
tance from its original site. In static runs artifi-
cial damping (aside from the a,ction of radiation
boundary forces) is used in order to hasten the
attainment of mechanical equilibrium. In this
artificial damping the kinetic energies of all atoms
are set equal to zero when the total kinetic energy
of the crystallite reaches a maximum. This pro-
cess was repeated through many cycles.

In all calculations a Cartesian coordinate sys-
tem has been used with its axes along the princi-
pal lattice directions (parallel to the edges of the
elementary cubic cell) and its origin at a corner
atom of the crystallite. %e have performed about
one hundred runs for dynamical. problems and
about sixty runs for static problems.

IV. STRUCTURE OF POINT DEFECTS AND ASSOCIATED
ENERGIES
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shaped split interstitial having tetragonal sym-
metry. Figure 3 shows qualitatively the structure
of a split' interstitial in a (100) plane. Table 11
gives a list of relaxations of the surrounding
atoms.

C. Frenkel Defect

In determining the structure of a Frenkel de-
fect (vacancy and interstitial) the following addi-
tional parameters enter: (i) the distance between
dumbbell center and vacancy and (ii) the direction
with respect to the dumbbell axis. Up to rather
large separations between dumbbell center and
vacancy all possible cases have been investigated.
There is a region around each dumbbell within
which a vacancy is not stable due to attractive
forces between these two point defects: They
recombine spontaneously and the result of such an
annihilation is a perfect lattice. The region of
instability comprises 74 atomic sites (see Figs.
4 and 5). This value is rather close to the result
of similar calculations by Drittler et al . , who ob-
tained 62 unstable sites for a Morse potential as
atomic interaction.

Gibson et al. ' have calculated the unstable sites
within a (100) plane (containing the interstitial)
only. Their results agree with ours.

D. Energies Associated with Defects

The potential energies associated with the dif-
ferent types of defects discussed above have been
calculated. These energies are taken as the dif-
ferences between the potential energy of the per-
fect crystallite and the crystallite containing the
corresponding defect in equilibrium.

%e first have determined the energies associated
with a vacancy or an interstitial by simply taking
an atom out of the crystallite or, correspondingly,
inserting an atom. Although these energies are

~ ~ 0
( 'L

(X)
'Ly I

p ~ h
E0012

il

=C)002

FlG. 3. Structure of split interstitial (dumbbell): ~,
ideal lattice position; two closed circles surrounded by
dotted line, dumbbell atoms; x, center of dumbbell;
direction of atomic displacements due to lattice relaxation.

TABLE II. Atomic displacements s of and around a
split interstitial (oriented along 1001]). (The position r
of the unrelaxed atoms is given in units of 2~0 relative to
the dumbbell center. )

Atom position

Upper dumbbell
atom (see Fig. 3)

(X, o, i)
(X, ~, 0)
(2, 0, 0)
(0, 0, 2)

i oo(s/-,'«)

(0. 0, 0. 0, 60. 4)
(+1.6, 7, 0. 0, 8.9)
(-4.6, -4.6, 0. 0)
(+2.0, 0.0, 0. 0)
(0. 0, 0. 0, -&.3)

physically not meaningful if considered indepen-
dently, their sum yields the formation energy of
a separated Frenkel pair. For the vacancy one
atom is taken out of the perfect crystallite and
moved, reversibly, infinitely far away from it.
The resulting energy change is E&= —0. 71 eV.
In order to separate the contribution of the relax-
ation of the lattice one proceeds in two steps.
First, one atom is removed with all other atoms
being fixed at their ideal sites. Then the potential
energy changes by E'„=—0. 61 eV. [This value can
also be obtained analytically by summing the en-
ergy contributions of nearest neighbors: E&
=12V(r=D), where V is taken from (6). Contri-
butions of more distant neighbors can be ne-
nglected. ] If these atoms are then allowed to re-
lax, the potential energy is lowered further by
4E„=-0.10 eV [see Fig. 6(a)]. For the split in-
terstitial (dumbbell) an atom far away from the
crystallite is taken and, reversibly, inserted into
the perfect crystallite. The resulting energy
change, once the structure has been thoroughly
relaxed, is E&= 3. 50 eV. Again, this final state
can be obtained in two steps. First, all atoms
eventually surrounding the dumbbell are held at
their ideal lattice sites while the two dumbbell
atoms are held at their final positions. (In con-
trol runs the additional atom has been inserted
also at arbitrary locations. This, however, re-
quires long calculation times because the poten-
tial energy at the beginning is extremely high. )
As a result, the potential energy increases by
EI=9.19 eV. Then the lattice is allowed to re-
lax. This relaxation is associated with a de-
crease of the potential energy of &El = -5.69 eV
[see Fig. 6(b)].

The values of E& and E, have been calculated
for different shapes and sizes of the crystallite.
They turned out to be independent of these param-
eters. However, EI is slightly dependent upon
alterations of the strength of the spring forces at
the boundaries of the crystallite.

From these data of the separated defects (either
a vacancy or an interstitial is in the crystallite,
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Flo. 4. Unstable lattice sites for a
vacancy around an interstitial. Split
interstitial is oriented along [001). Un-

stable sites are indicated for each lat-
tice plane separately: (a) (010) plane
containing split interstitial; (b), (c),
and (d) neighboring planes in natural
order; ~, unstable site; o, stable site.

but not both at a time), the energy of formation
of an infinitely separated Frenkel pair is obtained:

E~p =E~+El= 2. V9 eV .
The above energy values agree well with earlier

calculations. Slight differences probably arise
from the longer range of the interatomic poten-
tial adopted here.

We have also calculated the formation energy
of a Frenkel pair for finite separation distances.
For this purpose, a vacancy and an interstitial
are inserted into the crystal. at the same time and
the energy content of the whole crystallite is com-
puted after mechanical equilibrium has been
reached. The energy difference between the per-
fect crystallite and the one containing a Frenkel
pair, i.e. , the formation energy of a Frenkel pair
at a finite distance, turns out to be practica, lly in-
dependent of this distance and also of the orienta-
tion of the dumbbell relative to the vacancy as long
as the Frenkel pair is stable. This rather astound-
ing result has to be ascribed to the strong concen-
tration of 1arge displacements of each point-defect
structure in the immediate neighborhood of the
defect center. Gf course, there is an (elastic)
interaction between these two point defects at any
distance outside the instability volume, but this
interaction energy is negligibly small compared to
the energy of each point defect itself.

V. DYNAMIC BEHAVIOR OF A VACANCY

Starting from the etluiiibrium (cf. Sec. IVA) the
vacancy can be moved by transferring kinetic en-
ergy to neighboring atoms (Fig. 7). The thresh-
old energy for initiating a jump of the va, cancy de-
pends on the position of the knocked-on atom rela-
tive to the vacancy and on the direction of the
atom's initial momentum.

The easiest way to initiate a vacancy jump is to
push one of its 12 nearest neighbors directly into
the vacancy (see Fig. 7, case 0. =0). The mini-
mum energy E(a=0) for this process can be
roughly estimated by calculating the height of the
potential barrier of the rectangular "window" which
is formed by four atoms and which the knocked-
on atom (starting from its initial position amidst
ll nearest neighbors) has to penetrate in order
to fall eventually into the vacancy. With the po-
tential (8) we obtain

E(n = 0) =48 e ~ -llA e

=1.17 eV-0. 56 eV=0. 6 eV,

if we use the ideal lattice positions; i.e. , if we
neglect lattice relaxations around the vacancy and
the dynamic response of the lattice during the
jump.

The computer simulation yields a value between

F&G. 5. Three-dimensional view of unstable lattice
sites of Fig. 4. The set has fourfold symmetry about
[001] direction. The (001}plane containing the center of
the split interstitial is a mirror plane.
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perfect lattice
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relaxed lattice
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0. 55 and 0.60 eV. With increasing angle n the
threshold energy increases (see Fig. 7) due to the
increasing energy loss to the "window" atoms.
In all cases the knocked-on atom and the vacancy
interchange sites. It takes about 150 time units
until the lattice essentially reaches its equilibrium
again (one time unit to= 3. 27&10 "sec). Second-
nearest neighbors to the vacancy require such a
high threshold that their contribution to inducing
vacancy jumps can be neglected compared with
nearest neighbors. A rough estimate analogous
to the nearest-neighbor case for ~ = 0 gives a
threshold larger than 10 eV and one would not ex-
pect a drastic reduction of this value in the dy-
namic event. Computer runs have been made only
up to 2. 5 eV. They did not show a jump of the
vacancy.

FIG. 6. Potential energies (schematic) of crystallites
a,t different defect states: (a) case of a vacancy (one atom
is taken out of t;he perfect cxystallite and moved infinitely
far away); {b) case of a split interstitial (an atom taken
from infinity is inserted into the perfect crystallite).

VI. DYNAMIC BEHAVIOR OF AN INTERSTITIAI. ATOM

Dynamic processes of the dumbbell-shaped split
interstitial start from the equilibrium configura-
tion (cf. Sec. IVB).

In order to excite dynamic events one can trans-
fer energy to the interstitial directly or to the
neighboring atoms. In the present study we have
restricted ourselves to knocking on the interstitial
only. By interstitial we mean in the following
either one of the two equivalent members of the
dumbbell.

For small energy transfers only vibrations can
be excited. Let us first consider the possible vi-
brational modes of the two dumbbell atoms. From
symmetry considerations (see Table III) one finds
two modes where the dumbbell center is at rest:
a mode (No. 1) where the two atoms oscillate
against each other parallel to the dumbbell axis
(axial mode) and a mode (No. 2) where the two
atoms oscillate with opposite amplitudes perpen-
dicular to the dumbbell axis (libration mode).
There are also two modes where the common
mass center is vibrating: a mode (No. 3) where
the mass center oscillates parallel to the dumbbell
axis and a mode (No. 4) where it oscillates per-
pendicular to the dumbbell axis. Altogether there
are six modes if degeneracy is included (see
Table III). One would anticipate that the frequen-
cies of all these modes are very high, possibly
above the maximum frequency, because the force
constants due to the smaller interatomic distances
(as compared with the equilibrium distance in the
ideal lattice) will be much higher than any in the
ideal lattice. In fact, Gibson et a/. have found in
their computer simulations that mode No. 1 is
localized, i. e. , its frequency does lie above the
maximum frequency. Under the tentative assump-
tion that the frequencies of all modes described
above are localized one can approximately esti-
mate their values: All nearest neighbors of the

-0.60e&)

4(060-0,65eV)
0

35 /0. 90-I.OeV)

,(&z5ev)I

TABLE III. Vibrational modes of the dumbbell. The
frequencies ~ are values from an analytical treatment;
the frequencies ; are computer results. (The maximum
frequency is ~=4. 2 &&10' sec '; the time unit is to=3. 27
x10 '5 sec. )

Mode Degen-
no. Mode e racy 10 sec

I
I fT 2g1 ~~ [u. —cu. I

to ~fto 4

fOOG'

5. 5 1.30

0.85

33 1.37

37 l.25

5%

=f)002
1.8 0.42 = 300 0. 15 & 100%

FIG. 7. Initial directions and minimum starting ener-
gies of atoms near a vacancy which lead to a vacancy
jump (100 plane).

4. 1 0.97 38 1.21 20%



820 A. SCHOLZ AND C. LEHMANN

dumbbell are considered to be fixed at their ac-
tual sites (taken from Sec. IV 8) and the two dumb-
bell atoms vibrate within the rigid cage of these
neighbors. For the potential (8) one obtains the
frequencies ~&, (d~, co,', and ~4 listed in Table
III. The maximum frequency ~ was taken ap-
proximately as the Debye frequency corresponding
to a Debye temperature of 320'K. One obtains
&u„=4. 2&10"sec '. From the ratios u&I/cu„(see
Table III) one can expect that the mode Nos. 1,
2, and 4 will be localized. Mode No. 3 will be
not localized since ~', is far below ~ .

In our computer simulation we have investigated
the case of small energy transfers. Especially,
we have determined the frequencies co&, ~2, ~3,
and co4 of the above-mentioned modes, and com-
pared them with the values from the analytical ap-
proximate treatment (see Table III). The com-
puter values are higher than the approximate val-
ues because in the approximate treatment all
neighbors are fixed, whereas in the computer sim-
ulation the neighbors vibrate in antiphase to the
dumbbeQ atoms, thus increasing the effective
force constants and, hence, the frequency (the
approximate treatment can be viewed as a varia-
ti,onal procedure taking the dumbbell displace-
ments as variational parameter; here the varia-
tional frequencies must always be lower than the
actual frequencies) Since .with increasing fre-
quency the vibrations become better loca1ized
(less participation of the environment in the vibra-
tion), also the assumption of fixed neighbors be-
comes better. This explains (see Table III) why
with increasing frequency the discrepancy between
computer values and approximate values becomes
smaller.

If the interstitial starts with a momentum along
the dumbbell axis (8=0', 180', Fig. 8) the axial
mode (No. 1) is excited. Figure 9(a) shows the
variation of distance between the two dumbbell

f0012

,.y ~

I

(

L I
Pg

=11002
4

FIG. 8. Position of dumbbell at beginning of dynamic
event (0 is the starting angle of the interstitial rvith dumb-
bell axis).

atoms vs time (f = 0 is the starting time). This
relative motion of the dumbbell does not show any
attenuation within these first 30 oscillations (of
course, if pursued sufficiently long it would be at-
tenuated in our model since our radiation forces
do not become zero for ~ &&a„asthey should).
The motion of the mass center is strongly at-
tenuated [Fig. 9(b)j. Evidently, it does not show
an eigenfrequency.

Figure 10 illustrates how the energy is dissi-
pated into the vicinity of the interstitial and even-
tually emerges through the surface. In this case
an interstitial has received 0. 25 eV at the be-
ginning. After 900 time units an energy of about
0. 04 eV is still concentrated in the axial dumbbell
vibration ("localized mode"), whereas about 0.08
eV are shared by all the other atoms of the crys-
tal1ite. Therefore these atoms practically have
come to rest. %'e have made manyruns with initial
energies ranging from 10 up to 0.35 eV without
inducing jumps. These are the characteristic fea-
tures which all runs have in common:

(i) About 20/0 of the initial energy (imparted to
one dumbbell atom) is stored in the axial mode of
the two dumbbell atoms. For the dumbbell with
fixed environment a fraction of 50%%uo would be
transferred to the axial motion. The difference
of 30%%uo is shared by neighboring atoms participating
in the localized mode. There is no attenuation to
be seen within 1000 time units.

(ii) The period of the axial mode is about 33
time units (one time unit = 3.27x 10 "sec) and in-
dependent of energy (and amplitude). This is about
25/o larger than reported in Ref. 5. The differ-
ence might be caused by a larger cutoff ~, in the
present work. In order to describe this mode cor-
rectly a time step of at most two time units has to
be used in integrating the equations of motion;
this corresponds to at least four calculational
steps per quarter cycle.

(iii) The amplitude of the axial.mode goes up
to 8% (maximum energy) of the equilibrium dis-
tance A. (A, = 1.2ao/2) between the two dumbbell
atoms. For such small amplitudes the dumbbell
behaves as a harmonic oscillator consistent with
the amplitude independence of its eigenfrequency.

(iv) The vibration of the dumbbell center is
much slower than that of the localized axial mode.
Its period is about 400 time units. Its amplitude
mounts up to 0. 3X (for 0.35 eV) and decreases
very fast due to anharmonic effects.

For starting directions off-axis (640', 180',
Fig. 8) we have investigated several cases in a
(100) plane. The axial mode of the dumbbell is
present in all cases with the same period of 33
time units as found for 8= 0. In addition to the
axial mode [No. 1, Table III and Fig. 9(a)] a li-
bration mode (No. 2, Table III) is excited by the
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have attained their final positions, exhibitingonly
vibrations about these positions. The "new" dumb-
bell shows the localized modes as in all cases
above where the interstitial was given an energy
without leading to a jump.

Among all cases under investigation there was
none in which a genuine rotation of the dumbbell
into another equivalent direction occurred. Every
rotation (types II, III, Fig. 13) is accompanied by
a translatory motion of the dumbbell. Despite the
high anisotropy of the lattice the threshold energies
for inducing a single step vary only by a factor
of 2 between the easiest and the hardest direction.
Taking a rough average value of 0.40 eV for the
(100) plane and assuming it will be also represen-
tative for the unit sphere we can estimate a cross
section for initiating a jump of an interstitial by
energetic electrons. According to recent calcula-
tions (see Fig. 4inRef. 1) the cross sectionfor an

energytransfer of 0.4 eV by MeV electrons to cop-
per atoms is about 1&&10' b, being almost inde-
pendent of the incident electron energy. Since
there are two equivalent atoms in a dumbbell we

obtain 2&&10' b as a cross section for inducing a
jump. Qf course, this rough estimate provides
(within this model calculation) only a lower limit
because we have considered energy transfers only
to the dumbbell atoms. Contributions to the cross
section by knocked-on neighboring atoms might
be of the same order of magnitude. It is true that
more energy will be required (leading to a smaller
cross section per atom) to displace the dumbbell
by energy transfers to neighboring atoms but, on
the other hand, there are many atoms surrounding
a dumbbell.

VII. DYNAMIC BEHAVIOR OF A FRENKEL PAIR

After having investigated the dynamic behavior
of a vacancy and an interstitial separately the
question arises how this behavior is modified if
vacancy and interstitial form a Frenkel pair.

By small energy transfers again only vibrations
can be excited. As in the case of the separate
dumbbell, one sees unattenuated localized modes.
Even if the vacancy is very close, as in configura-
tions which are illustrated in Figs. 14 and 15, the
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FIG. 12. Normal com-
ponent of mass-center
motion of dumbbell. Start-
ing angle 0=22. 5' and
starting energy =0.25 eV
(time unit to=3. 27 x 10
sec, T =46 fo, length unit

50 —2ao —1.80 && 10 cm).
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dynamic behavior of the dumbbell is unaffected as
long as only vibrations are excited.

At higher-energy transfers either a jump of the
vacancy or the interstitial may be induced, result-
ing in a new configuration of the Frenkel pair, or
the energy transfer leads to annihilation. Of
course one has to study many initial configura-
tions: The configuration of a Frenkel pair is char-
acterized by the distance vacancy interstitial and
by the angular position of the vacancy relative to
the dumbbell axis, hence adding another multi-
plicity of variables to the problem. From the
(static) structure of a stable Frenkel pair we have
learned (see Sec. IV C) that a vacancy and an in-
terstitial in a Frenkel pair behave as if they were
separated. Thus, one would expect that the en-
ergies for a jump of either a vacancy or an inter-
stitial would practically not be affected in any
stable Frenkel-pair configuration. However, a
jump is a dynamic event whose result cannot be
anticipated on the grounds of static considera-
tions. It is not even possible to predict whether
the threshold for an interstitial jump with a va-
cancy present is smaller or larger than without

a vacancy. In fact, this depends on the particular
Frenkel-pair configuration. Figures 14 and 15il-
justrate two specific examples. One of these (see
Fig. 14) is a configuration where the threshold
for a dumbbell jump in the axial direction towards
a vacancy amounts to 0.75 eV. %'ithout vacancy
a jump requires only 0.4 eV. Thus, due to the
presence of a vacancy the threshold energy in-
creases by a factor of 2. In the second example
(Fig. 15) the vacancy is a little off the dumbbell
axis. The threshold for a dumbbell jump in this
case is 0.08 eV with a vacancy present, and about
0.35 eV without vacancy; i.e. , the presence of a
vacancy /oseers the energy threshold by a factor
pf 4. In both examples the dumbbell jump results
in the annihilation of the Frenkel pair. It might
well be that jumps which do not lead to annihilation
require a minimum energy which is independent
of the presence of a vacancy. The annihilation of
a Frenkel pair is a rather dramatic event: The
relatively small threshold energy (of about 0. 1
eV) triggers the release of a large fraction (& 1
eV) of the large potential energy stored mainly
in the dumbbell. Figure 16 shows the sudden in-
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crease of kinetic energy in the crystallite when
the dumbbell starts to decay into the vacancy.

A further and more systematic investigation of
vacancy jumps and interstitial jumps within a
Frenkel pair is continuing.

Recently Drittler et al. 9 have in a similar study
investigated threshold energies of Frenkel-pair
annihilation induced by low-energy transfers using
a Morse potential and a smaller crystallite. At
the present state our results cannot be compared
with theirs since they have investigated different
Frenkel-pair configurations. However, they have
found also energy thresholds of about 0. 1 eV for
annihilation.

VIII. DISCUSSION AND COMMENTS

coo/2

ti
I(0)
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FK". 14. Frenkel-pair configuration (schematic) in a
(100) plane, where dumbbell atom A starts toward the
vacancy (see text).

The results presented in this paper have to be
scrutinized from two points of view: a numerical
one and a physical one.

The numerical calculations have been performed
with high precision. Truncation errors are neg-
ligible. A large number of checks such as ana-
lytical control calculations, energy conservation,
and variation of time steps in the integration pro-
cesses rule out serious numerical errors. A

principal error might arise from using a discon-
tinuous force function dV/dr [cf. Eg. (6)] in inte-
gration schemes, such as Runge-Kutta, which ac-
tually require continuous functions even up to
higher derivatives. We are rather confident,
also, that such an error is negligible, since the
step height of dV/dk is very small. In addition,
the checks mentioned above should have indicated
such an error.
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FIG. 15. Trajectories of atoms involved in annihilation
of a Prenkel pair. [Dumbbell atom A starts with 0.10 eV
under 11.25 off-axis at &=0. The numbers along the tra-
jectories indicate the time (in time units) for different
positions. Dumbbell atom B eventually takes the position
(&&) of the initial dumbbell center. ]

The main critique of this, as with any com-
puter simulation of dynamic events in a crystal
lattice, will focus on the physicalmodel. First
we have approximated the response of the infinite
rest crystal by boundary forces at the crystallite.
These boundary forces have been varied within a
wide range. All results are practically not influ-
enced by the choice of the force constants, as long
as the size of the crystallite is sufficiently large.
(The force constant of the radiation forces affects
only the rate of energy loss, i.e. , the time until
the kinetic energy of the crystallite has dropped
to essentially zero. ) Indeed, we encountered some
cases in which the crystallite was too small and
its size had to be increased. As an example, the
energy threshold for a dumbbell jump in axial di-
rection in a crystallite containing 3~ 3x8 cubic
cells turns out to lie between 0. 45 and 0.50 eV,
whereas with 5X 5X V and more cubic cells this
value approaches 0.35-0.40 eV. Fortunately,
due to the small energies used in subthreshold
collisions, rather small atomic sets are sufficient.
In addition, jumps take place within times smaller
than those required for a back reaction of the
boundary if the defect is sufficiently far away. All
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FIG. 16. Kinetic energy of crystal-
lite containing a Frenkel pair before
and after annihilation |'t ~ 170tp. onset
of decay of dumbbell. ; run as in Fig.
1S).
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results given in this paper stem from runs on suf-
ficiently large crystallites.

Next, no thermal vibration of the lattice atoms
has been included. This is probably a rather
severe restriction in all static runs, e.g. , for de-
termining the instability volume of a Frenkel pair.
But also with dynamic events the absence of
thermal vibration may influence the results: It is
true that dynamic events are accompanied by a
strong lattice agitation simulating in some sense
thermal vibration. However, this agitation is
fading away much too quickly to provide a substitute
for the many vibrational modes which are present
in a real crystal within a time span corresponding
to the duration of a dynamic event. At the present
state no general predictions can be made as to
how the inclusion of thermal vibration will change
the results given here. It is one of the objectives
of our future work to investigate the influence of
thermal vibrations with the ultimate goal of simu-
lating temperature-dependent recovery of close
Frenkel pairs.

Presumably, the most serious reservation against
the model concerns the atomic interaction. We
have adopted the same two-body central repulsion
between atoms together with a constant surface
force as did Gibson et al. A recalculation of
many of their results provided us with many
thorough checks on our new computer program,
which will be used for more and similar studies
in the future. In principle, a two-body force is a
rather poor description of atomic interaction in a
metal for small kinetic energies (as in our runs
here) Even at .higher energies the picture of two-
body forces does not become better if an event
has to be followed until its end, because all even-
tual processes are determined by small energies.

For instance, in producing a stable Frenkel pair
the interstitial has to reach a final position outside
the instability region. Whether or not a final po-
sition is stable will be determined in the low-en-
ergy part of the history where the tail of the inter-
atomic forces and the cohesive forces are im-
portant. Thus even threshold energies as high as
25 eV for damage production depend on forces
which possibly are not of a two-body type.

Nevertheless, there seems to be hope that an
effective two-body force is a rather good descrip-
tion of atomic interaction in the particular case
of copper (and in similar metals) where ionic cores
are large. This was pointed out by DeWette et
el. ,

~ who successfully employed a Morse potential
in lattice-dynamical calculations for a perfect cop-
per crystal. This opinion is supported by our
findings that the local response as checked by cal-
culating the Einstein frequency for a Born-Mayer
potential has the right order of magnitude. It
might be that in a copper crystal containing point
defects, where smaller interatomic distances oc-
cur (e.g. , as in an interstitial structure), a two-
body force is an even better description of the
atomic interaction than in a perfect crystal. We
plan to extend the present investigation by involving
such a potential which in addition to the merits
just mentioned makes the lattice inherently stable,
i.e. , without applying constant surface forces for
reasons of stability. There is some indication that
our calculations, if repeated with a suitable Morse
potential, will have about the same results as with
a Born-Mayer potential together with constant
surface forces, because recent investigations
with a Morse potential yielded about the same num-
ber of unstable Frenkel-pair configurations as in
our calculations (cf. Sec. IVC) and, furthermore,
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also the displacements of nearest neighbors of a
split interstitial are comparable. '

We have made
some preliminary runs with a Morse potential:
The structure of interstitial and vacancy are prac-
tically the same as in this paper and the axial
mode turns out to have a slightly higher frequency
than with the Born-Mayer potential.

Recently, severa1. authors" have investigated
the influence of specific properties of various ad-
justed (two bo-dy) interatomic potentials upon
point-defect calculations. Unfortunately, their
very detailed studies did not include the sensitivity
of these calculations to the rather restrictive
boundary conditions: In one ca,se ~ the computa-
tional cell of atoms was imbedded in an isot~opic
elastic continuum and in the other case the movable
atoms of a crystaQite were surrounded by a mantle
of immovable atoms. Thus, at the present state

of the art there is really no interatomic potential
which has a preference for physical reasons. Un-
fortunately, there are no experimental data avail-
able to be compared directly with any of the atom-
istic data calculated in this paper. There is some
hope for determining the structure of single point
defects by diffuse x-ray scattering. It would be
equally challenging to measure the frequency of
localized modes.
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