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The metallic-field effect at a metal surface is calculated in a semi-self-consistent manner
using an approximate version of Bardeen's method for the evaluation of the surface potential
barrier. The consequences of the metallic-field effect in relation to field emission, field
ionization, and the capacitance of a parallel-plate capacitor are considered. In field emission
this produces, at high fields, a small deviation from the Fowler-Nordheim formula towards
lower currents. In field ionization it leads to increased ion current and a narrower energy
distribution. It has no significant effect on the capacitance of a capacitor.

I. INTRO DVCTION

The penetration of an externally applied field
into a metal at a metal-vacuum interface is of in-
terest in problems of field ionization and field de-
sorption, ' in field emission, ' and in relation to
the capacitance of a thin-plate capacitor. ' The
similar problem of metal field "penetration" at a
metal-insulator interface is of interest in relation
to the capacitance and tunneling characteristics
of a thin film (less than 30 A or so) sandwiched
between two metal electrodes. '

Tsong and Muller2 attempted an evaluation of the
field penetration factor at a metal-vacuum inter-
face using the Thomas-Fermi model in a manner
analogous to the one used for treating field pene-
tration in semiconductors. The Thomas-Fermi
model is supplemented by the boundary condition
that the electrostatic potential is such that dV/dx
= F at the metal-vacuum interface taken at x= 0
(F denotes the applied electric field). Howeve.",
the Thomas-Fermi model is expected to give good
results when the induced potential varies slowly
over an electron wavelength. This is in fact the
case in semiconductors, because of the small free-
electron density and the consequent large penetra-
tion of the electric field. It is hardly the case with
a metal, where as a result of the comparatively
high free-electron density at the metal-vacuum in-
terface, one gets a small penetration of the elec-
tric field. Moreover, the boundary condition dV/

Cx = E at a mathematical metal-vacuum interface
is a restrictive one because it assumes an abrupt
termination of the electronic charge density at the
interface and in a proper calculation it must be
replaced by

av"
lim

Gx

In practice it will be sufficient to assume that
the limiting value is acquired a few angstroms
away from a mathematical metal-vacuum interface,
which we shall define more precisely in Sec. II.
As we shall see this may lead in the case of a
metal to qualitatively diff erent conclusions. Other
authors "' studied field penetration using a linear
response formalism within the random-phase ap-
proximation (RPA) and assuming an infinite poten-
tial barrier at the surface. Again the imposition
of the boundary condition d V"/dx= F at a sharply
defined metal-vacuum interface is a serious disad-
vantage of these calculations. The use of the RPA
may also be very difficult to justify in the present
problem. In particular, the assumption of a linear
dielectric response to the externally applied field
could be a disadvantage. Our results have shown
that nonlinear effects are significant in this region.

In this paper we present an approximate semi-
self-consistent calculation which avoids the abrupt
boundary condition at x = 0. Section II contains the
basic assumptions and the method of numerical
calculation.
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A model for the calculation of the electronic
properties at the surface of a neutral metal has
been originally suggested by Bardeen' in connec-
tion with the evaluation of the electric dipole-layer
contribution to the work function of sodium. Ac-
cording to this model the metal is taken to be
semi-infinite, extending from —~ along the x axis
to a metal-vacuum interface in the neighborhood
of the origin (x= 0). The positive ions are re-
placed by a uniform positive background which ex-
tends from — to x= 0, where it terminates
abruptly. The electronic charge distribution, on
the other hand, spreads beyond the positive back-
ground edge into vacuum thus creating an electro-
static dipole-layer contribution to the surface po-
tential barrier and the work function for the metal-
lic electrons. The total potential barrier that the
electron sees consists, to a larger extent, of an
exchange (plus correlation) interaction with the
other electrons and the electrostatic potential en-
ergy mentioned above. Except for the correlation
effect (which can be treated very approximately)
the potential barrier can be calculated self-con-
sistently for the above model and this has been
done by Bardeen to a certain degree of approxima-
tion. In the case of the neutral metal the electronic
wave functions satisfy the Hartree-Pock equa-
tions:

2

2
v'~k( ).v'o( ) ~k(F) =E(Kl~k(R ~ (la)

where

V',(x) = VP(x) + Vo'(x) . (lb)

VP(x) denotes the exchange potential which is in-
dependent of y and g. It goes to zero as x- ~.
It does depend on the wave numbers K. The elec-
trostatic part of the potential, Vo'(x), is calculated
using the Poisson equation when the electronic
charge density has been obtained from the elec-
tronic wave functions. We have

d'v"(x)
dx

= -4we' p, (x),

p, (x) = po(x) —p. for x & 0

= po(x) for x&0

p, is the density of the positive background, andthe

In Sec. III we give an approximate analytical
estimate of the field penetration which avoids
lengthy numerical calculations. The full numeri-
cal results based onthe method of Sec. II are given
in Sec. IV. Applications to field emission, field
ionization, and to the capacitance of a thin-plate
capacitor are discussed in Sec. V.

II. BASIC ASSUMPTIONS AND METHOD OF
CALCULATIONS

free-electron density is given by
) Rl & Ey~ lg(vl'.

R

The boundary conditions for the neutral metal
are

V"(x) = 0,
dyei

=0 for x-+
dx (4a)

dVoi =0 for x
dx (4b)

The constant value of Vo' in the interior gives the
value of the dipole-layer potential energy. The
energy eigenfunctions of Eqs. (I) can be written
in the form

21/ 2

qk(rq y0( ) (k2y+Qse

When an external electric field is applied to a
metal a charge density is induced at the metal
surface which screens the interior of the metal
from the external field. The potential barrier at
the metal-vacuum interface changes accordingly.
In principle the calculations of the new potential
can be calculated self-consistently in exactly the
same manner as for the neutral metal except that
the boundary conditions (4a) must now be replaced
by

dV"
dx

-- =E for x

where V" is the total electrostatic potential when
the field E is applied.

We know, however, that to a first approximation
the potential barrier outside the metal when a
weak field is applied is given by

V' (x) = V' (x) +&x . ,

Hence it is reasonable to assume that a proper
calculation will result in a potential barrier of the
form

where L' is the volume of the metal. Inserting
Eqs. (4) into Eqs. (I) one gets an equation for
(~0(x). Because V-„(x)and Vo'(x) become constants
(AK and Vo", respectively) inside the metal, the
asymptotic form of g, (x) inside the metal is given
by

(„'(x)=sin[Ax-yo(k)] as x--~ .
K in Eq. (5) takes the values

e,=(2~/L)m, u, =(2~/L)n, m, n=o, ~I, +2, . . .
and 0 = (v/L)l, where l tends to positive integers
as J - . The energy eigenvalue associated with
gk(r) is given by

E(K) = (n'/2m)(t '+ a,'+u,') + V,'+Ak .
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VI,(x) = Vo (x) + &x+ 5V(x) . (io)

Moreover, one expects that 5V(x), because of the
localization of the induced charge in a small region
around x= 0 (see e. g. , Ffg. 4), will, at a, reasonable
distance (say, 2 A or so) away from the meta, l sur-
face, acquire the form

5V(x) = Fx, (&), x & 2 A

so that

V,'(x) = V', (x)+F[x-x,(F)] . (i2)

Fortunately, in most practical applications one re-
quires knowledge of Eq. (12) rather than the full
potential given by Eq. (10).

In field emission and field ionization the term
I'xo is equivalent to an effective work-function
change. xo will be referred to as the penetration
length. In the remainder of this paper we attempt
to evaluate the induced potential V~(x) as a function
of the applied electric field and the neutral poten-
tial barrier Vo(x). In our calculation we shall make
the simplifying assumptions that Ve(x) can be ef-
fectively replaced by an average potential barrier
in the sense of Slater" which is independent of the
wave number K. This simplification is not as bad
as it may appear at first sight. This has been
demonstrated by Juretschke' and by other calcu-
lations' using the Kohn and Sham approach.
Moreover, the form and magnitude of the potential
barrier Vo(x) will be chosen on an empirical basis
and assumed to be self-consistent.

We have done our calculations using two plausible
forms for Vo(x). Naturally the calculated V~(x)
depends on the choice of V', (x) and this is a dis-
advantage in our calculation. However, the alter-
native of actually calculating Vo(x) self-consistently,
apart from being extremely laborious, could only
result in a very approximate potential anyhow, be-
cause of our limited knowledge of correlation ef-
fects in the surface region. On the other hand,
when we have done the calculation for two differ-
ent neutral potential barriers we hope to be able
to establish semiquantitatively the characteristics
of the field-induced correction to the potential
barrier (the metallic-field effect) and the order of
magnitude of the field penetration. One also hopes
to obtain some indication of the way different
charge distributions react to the application of an
external field.

The two forms for Vt(x) used in our calculation
are shown in Fig. 1. In both cases we have taken
the constant value of the potential in the interior
of the metal to be Vo= —10 eV and the work func-
tion was taken equal to Q =4. 5 eV. These param-
eters were taken to correspond to the free-elec-
tron model employed in studies of field emission
from tungsten. " These two parameters auto-
matically determine k&, the wave number at the

Fermi level, and hence the electron density in the
interior of the metal, which is given by

p, = k,'/3v' .
This value also gives the density of the uniform
positive background. The first neutral potential
barrier (broken line of Fig. 1) is given by

V'„(x)= —(e'/4x)(1-e '") for x & 0

y +AePx for x& 0. (14)

l
-3 0 +1

x (A)

+2 +3 y4

FIG. 1. Electron potentials Vg& and Vp2 for the neutral
metal used for the calculation of the induced potential
Vz(x). The image law (dotted line) is plotted for compari-
son. Broken line Vp~tx) =- (e /4x) (1-e ") for x —0.
Vo~(x) = Vo+Ae""forx~0. (A =2.075eV, 1=2.2A ~, p,

=8.7174 k, Vo ———10eV, Vz „+,~~ „=1.4eV. ) Solidline:
V02(x) = —e /4x«»x ~ 1 A' V02(x) = Vt&+ (x +Bx + Cx +Dx
+E) forx ~1k. (8=—1.20702, C=0.02696, D=0. 22070,
K=0.65703, Vp= —10eV, V~«„~~=3.58eV. )

The parameters A and p, were determined from
the continuity requirements for Vo(x) and dVO/dx at
x = 0. The parameter E is determined by the re-
quirement of over-all charge neutrality of the
metal. The values of these parameters together
with the estimated magnitude of the electric
double-layer potential are given in the figure cap-
tion. The electronic charge density correspond-
ing to the potential barrier of Eq. (14) is shown in
Fig. 2 (broken line). It has been calculated using
Eqs. (3) and (5) translated into an integral

~ ky

po(x)= ~ I~, (kx-k ) I g~(x) I
dk, (15)

m-0
where P, (x) is obtained from the Schrodinger equa-
tion

d2 0

," +, [V'o'(x) —V, ] g(x) = k'g,'(x), (16)
dx k

with Vo(x) given by Eq. (14) and subject to the
boundary conditions given by Eq. (4). The second
neutral potential barrier employed in our calcula-
tions (solid line in Fig. 1) is given by
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Z(k) =(a'/a )k'+V, , (18b)

using entirely numerical techniques. In doing so
we employed the De Volegaer method. ' The initial
values of. the wave functions were specified, apart
from a multiplicative constant which was subse-
quently normalized by the asymptotic form of the
wave functions in the interior of the metal [see
Eq. (6)], by using the %KB approximation at a dis-
tance sufficiently away from the metal surface.
Thus, in the case of a positive field, the potential
barrier the electron sees increases monotonically
for x» 0 and the corresponding WKB wave func-
tion is given by

C

[Vt() ~(k)]1/4

Vt~(x) = —e'/4x for x~1 A

= Vo+(x +Bx'+Cx +Dx+E) ' for x&1 A.
(»)

The values of the parameters as determined from
the continuity and charge neutrality requirements
are given in the figure caption. The correspond-
ing electronic charge density is shown in Fig. 2
(solid line).

We note that the oscillatory part of the neutral
potential barrier has been neglected altogether.
There is evidence" that these oscillations are
greatly diminished because of the mutual cancel-
lation of the electrostatic and exchange part of the
potential. Once a Vo(x) has been chosen and the
corresponding po(x) has been evaluated, we pro-
ceed with an approximate evaluation of the induced
potential V'(x) as follows.

We start with an initial guess for Vz(x). We
then calculate the corresponding wave functions
(the x-dependent part) from the Schrodinger equa-
tion:

y2 E" + [V'(x)+V (x)]g(x)=E(k)g (x), (18a)

where

d t/'p'
p

dx
= -4ve p'(x) (22)

together with the boundary conditions

d Vp'

dx
-=F for x&x (28a)

dV"
=0 for x«0 .dx

It should be noted that the total electrostatic po-
tential satisfies the correct boundary conditions.

The exchange correlation modification to Vo(x)
induced by the electric field we could only esti-
mate in a semiempirical manner using the fol-
lowing formula:

(28b)

V-() Po() [Vt() Vel()] PE()
Po(x)

(24)
where Vo'(x) is the electrostatic part of the neu-
tral potential obtained from po(x) and the Poisson's
equation. Equation (24) originates from Slater's
formula

f» x»' & I'(k)/~I (20)

The Schrodinger equation (18a) is solved for a suf-
ficient number of values of k to allow an accurate
numerical evaluation of the density p'(x) obtained
from Eq. (15) with (t(x) replaced by (, (x).

The induced charge density is then given by

p'(x) = p~(x) —po(x) .
Vz(x) in Eq. (18a) consists of two parts: anelectro-
static part Vz'(x) and an exchange correlation part
Vz(x). The electrostatic part is determined nu-
merically from the Poisson equation

x exp [V'„(x')—E(k)] dx

for x & x~. We found that we could obtain accurate
results by choosing x, & 5 A.

When a negative electric field is applied electrons
can tunnel through the resulting potential barrier
(field emission) and in this case the asymptotic
form of the WKB wave function to the right of the
second classical turning point is given by

p C
kit(x) [@(k) Vt()]&/4

I

-4 0 +t

2m I I
xexp f — [E(k) —V'(x')] dx

FIG. 2. Electron density pop) for the neutral metal.
The broken line is calculated by using V&~(xb as background
potential and the solid line by using Vpg(x).
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V'*(x) = C p"' (25)

%e proceed as follows. The asymptotic form of
g(x) satisfying Eq. (18) for x«0, i. e. , far in-
side the metal, is given by

(,(x) = sin[kx —y~(k)] as x- —~

The following relation can be established:

f," kcp~(k)dk= svk~~ —(v/4ea)F

The proof of this relation for 8& 0 is given in the
Appendix. For E & 0, the proof is quite simple
and for F = 0, Eq. (27) has been initially proved
by Huntington'~ for a step-function potential and
has been widely used in literature since then.

From Eq. (22) we get

f, k[yo(k) —(p~(k)]dk = (~/4e~) E

We shall assume that the density p~(x) is given to
a first-order approximation by

(27)

(28)

pp(x) = po(x+ 8), (29)

where 8 is an average of the displacement in the

wave function because of the phase shifts:

8 = f0~ k 8(k)dk/J ~ k dk = F/4ve p, , (30)
where

8(k) = [yo(k) —rpJ, (k)]/k (31)

It is obvious from Eq. (29) that the induced elec-
tron density p&(x), givenby Eq. (21), is concen-
trated in the region where the derivative of I pp(x) I

is large. This coincides with the surface region
as expected (see also Fig. 4). Using Eqs. (22)

by treating C as a function of x. Following Bar-
deen we assume that the correlation can be ef-
fective1. y taken into account by considering it as a
fraction of the exchange energy. Equation (25)
overestimates' the exchange interaction in regions
of small p(x) which leads us to introduce po(x)/p,
as a correction factor. In this way the exchange
potential in the surface region looks more like the
one calculated by more elaborate methods. ' If
the resulting induced potential Vz(x) .= V~'(x) + V~'(x)
calculated from Eqs. (22)-(24) is not the same
as the input potential V„(x)used in Eq. (18), we

try a different V~(x) and repeat the above pro-
cedure until we get a self-consistent result. Our
numerical results obtained in this way for the two
different neutral potentials given by Eqs. (14) and

(17) are given in Sec. IV. In Sec. III we give an
estimate of the "field penetration" xo(F) defined
by Eq. (12) which avoids this lengthy numerical
procedure. We must emphasize, however, that
certain of the approximations involved in this cal-
culation can be better understood when the results
of the full numerical calculation are already known.

III. ESTIMATE OF THE "FIELD PENETRATION"

and (23) together with Eqs. (21) and (29), we get

V,"(x) = F(x+-,'8)+4''8 f p,(x')dx'

—4vea f„'po(x')(x —x'+8)dx' . (3

By noting that the second and third terms in Eq.
(32) vanish away from the surface we get by com-
parison with Eq. (12)

x,(F) = ——,'8 = —(I/Bme p, ) F= yF-
We note that Eq. (33) is valid for both positive

and negative fields. The slope y of x,(E) vs E is
in good agreement with our numerical results.

IV. NUMERICAL RESULTS

In this section we present our numerical re-
sults obtained using the approximate method de-
scribed in Sec. II. All numerical integrations
were checked by halfing the step of integration
until the desired accuracy was achieved. The
starting point for the integration of the Schrodinger
equation was chosen so as to introduce minimum
error within the limitations of computing time
available to us. The accuracy of this procedure
was checked by varying the position of the starting
point until no noticeable difference in the numeri-
cal results was found. The numerical integration
was carried sufficiently far inside the metal to
allow an accurate determination of the oscillatory
part of the induced charge density and the coi-
responding potential. The initial value Vg (x,) and
d Vz'(x, )/dx of the electrostatic part of the induced
potential were taken from their asymptotic forms
which can be calculated from the asymptotic form
of the wave functions. The accuracy was checked
by shifting the point x, further into the metal so
as to avoid errors larger than 10 eV to the po-
tential.

Our results for the self-consistent induced
charge density for two different values of the elec-
tric field are shown in Figs. 3 and 4. The broken
line in Fig. 3 was calculated by omitting altogether
the exchange correlation correction given by Eq.
(24). The fact that the difference between the two
is small indicates that a more elaborate treatment
of exchange (and correlation) in this particular
problem may not be worthwhile. In calculating
V~(x) for the potential barrier given by Eq. (14)
the exchange correction has been neglected alto-
gether.

The self-consistent induced electric potential
V~(x) for the two different neutral potential bar-
riers is shown in Fig. 5 for a positive field and
in Fig. 6for a negative field. In Fig. 7, the cor-
responding total potential barrier is shown for a
negative field appropriate to field emission in the
region where high-field effects are observed ex-
perimentally (see Sec. V). In Fig. 8, we plot
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/
I
II-4

I

-3

+2 +3

1~~ l

0 +& +2
x (A)

I I

+3 +4

FIG. 3. Self-consistent induced electron density pz(~)
calculated by using background potential V02(x) and I'
=1.6 V/A. The broken line was derived by using the
Hartree calculation whereas the solid line by using the
approximate Hartree- Fock calculation.

FIG. 5. Self-consistent induced electron potential Vz(x)
derived by employing the Hartree approximation and elec-
tric field E=1.6 eV/k The broken line was calculated
by using background potential Vo&(x) and the solid line by
using V()24).

separately the electrostatic and exchange part of
the field-induced potential for F =1.6 eV/A. It is
obvious from this figure that the exchange cor-
rection tends to eliminate the oscillatory part of
the potential inside the metal in agreement with a
similar conclusion of Lang' in relation to the neu-
tral metal. This in a way justifies our neglecting
these oscillations in the neutral potential barriers
of Eqs. (14) and (17). In all numerical calcula-
tions we found that the dependence of the induced
potential V'(x) on the externally applied field F
can be put in the following form:

V, (x) =F r(x —yF), (34)

I

-2

-0.2

—0.4

where the function Y(x) is independent of F. This
functional relation was particularly helpful in the
evaluation of the self-consistent potential for dif-

-06

-08

-(.6

-).8

3
I

+4 -20"

FIG. 4. Self-consistent induced electron density pz(x)
,
forF =-0.8eV/A, derivedby employing the Hartree cal-
culation. The broken line corresponds to background po-
tential Vo& Q and the solid line to Vp2(x).

2+2

I"IG. 6. Self-consistent induced electron potential Vz(x)
as calculated by the Hartree approximation for applied
electric fieldE=-0. 8eV/A. Thebroken line was calcu-
lated by using background potential Vpg(&) and the solid
line by using V~02(&).
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x( )
3

-4
~ ~ ~ ~

M7 H

FIG. 7. Total potential barrier for F= —0.8 eV/A. The
neutral metal electron potentials are plotted for compari-
son. Solid line: Vo~(x); dot-dashed line: Vo~(g) + Vz, ~b);
broken line: V02(x); dotted line: Vo~(x) + Vz 2(x) .

ferent values of the field, once the self-consistent
potential for a given field value had been estab-
lished. The parameter y remained constant for
large positive fields (F & 1 eV/A). Its actual value
was approximately —0.057 Aa/eV for the first
neutral potential barrier given by Eq. (14) and
—0.08 A /eV for the barrier given by Eq. (17)
when the exchange correction was neglected. The
value of the parameter y remained the same with
the exchange correction of Eq. (24) taken into ac-
count for the evaluation of Vz(x), whereas the
value of xo(F) increased by 0. 1 A for all fields.
The above values compare reasonably well to the
value of y= —0. 05 obtained from Eq. (33). The
value of the "penetration" length x,(F) as defined
by Eq. (12) and as determined from our numerical
results is shown in Fig. 9. A striking feature of
these curves and one which is not expected by our
approximate formula (33) is the fact that xo(F) does
not vanish for a zero field for either of the two

neutral potential barriers used in our calculation.
This fact is a direct consequence of our choosing
the origin (arbitrarily) where the positive back-
ground charge of the metal ends abruptly. One
can always take the origin (zero of the x axis) at
xo(0) which is the "center of gravity" of the in-
duced charge for E -0 and subsequently express
the analytic formula giving the neutral potential
barrier with respect to the new origin. The image

I

8

I

0
s-

/

I

I
I3

I

-02-

-5 -4 -3 ~-I I 0 4
xQ)

+2 -03-

FIG. 9. Field penetration go(F) vs I". The solid line
was calculated by using the Hartree calculation and

V02(x) as background potential. The dot-dashed line corre-
sponds to the approximate Hartree-Fock calculation for
the same potential. The broken line corresponds to the
Hartree calculation for Vo&b).

FIG. S. Electrostatic part (broken line) and the ex-
change part (solid line) of the induced potential Vz(g) de-
rived by using background potential V02(g).
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Al
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I 3

0
0

&5 2Q 25
F (ev/)()

3

FIG. 10. logfo) vs-F ~ curves for the various calcu-
lations. Dotted line: Fowler-Nordheirn theory; solid
line: results of our calculation (metallic-field effect),
when the space-charge effect was neglected. The results
for the two background potentials used coincide in the
figure. The broken line was calculated by correcting the
solid line for the space-charge effect. The chainlike line
shows the experimental results of Barbour and co-
workers. The solid line with dots was calculated by ne-
glecting the metallic-field effect altogether, i.e. , by
taking as potential barrier VQ) = V&2(x) —(I' )x. For low
fields the broken line and dot-dashed line coincide with
the solid line.

law would still be valid asymptotically for x» 0
since

4x 4[x'+x,(0)]
(in old coordinates)

+ xo' ' (in new coordinateS).

(35)
It is worth noting that the new image plane at xo(0)
is situated further to the right of the background
positive charge edge for the neutral barrier given
by Eq. (17) for which the electronic charge dis-
tribution stretches more out of the metal in com-
parison to the one corresponding to the potential
barrier given by Eq. (14) (see, e.g. , Fig. 2). It
is also worthnoting that the potential barrier as
given by Eq. (35) is identical to the corrected
image potential barrier for zero field as given by
Sachs and Dexter. '8 The value of xo(0) according to
Sachs and Dexter appropriate to the value of p, that
we used in the present calculation is approximately

V. APPLICATIONS

A. F&eld Emssston

According to the Fowler-Nordheim (FN) theory '
the current density of field emitted electrons is
given by

&='—e~(-f y"'/~F ~),
where a and b are numerical constants and &f& is
the work function of the metal. A plot of loggop vs
1/~ F ~ gives a straight line which has been verified
experimentally except for high fields (F 5&&107

eV/cm) where a deviation towards lower current
densities is observed. Equation (36) is evaluated

(36)

0. 41 A and it is therefore in reasonable agree-
ment with the values resulting from our calculation
and Eq. (35).

The most important qualitative result for xo(F),
as demonstrated in Fig. 9, is the fact that for a
negative field (appropriate for field emission from
a metal) xo(F) shifts outwards from the metal as
the field increases in magnitude. According to the
approximate equation (12) this increa. ses the ef-
fective work function. This result is in qualitative
agreement with the conclusions of Smith who
studied this problem using the Kohn-Sham ap-
proach. However, our detailed numerical evalua-
tion of the current shows that this increase in the
effective work function is very small to account
for the difference (of about 0. 6 eV) between the
work function of certain crystallographic planes
of tungsten as measured by field emission and
thermionic emission, respectively. This is demon-
strated in Fig. 10 where no noticeable change in
the slope of the Fowler-Nordheim formula is ob-
served except for very high fields. This is in
agreement with a, similar result obtained by Kap-
lit. 3o %'e note that the above result could not have
been obtained with a boundary condition, such as
dV~/dx=0 at x= 0, which does not allow for the
spread outwards of electronic charge at the meta, l-
vacuum interface. We would also like to emphasize
the obvious variation of xo(F) with the electric field
in contrast with the corresponding result of Tsong
and Muller' who find xo(F) as practically constant.
We note that Fxo(F) of our equation (12) must be
compared with V(0) =F & of Tsong and Muller [see
Eqs. (17), (20), and (6) of their paper].

A noteworthy result of our calculation is the non-
linear response to the externally applied field.
This is evident from Eq. (34) and the constant part
of the asymptotic form of the potential Eq. (12)
which according to our calculation (see Fig. 9) is

—Fx,(F) = -Fx,(0) —yF' .
Qf course, such a, result could not be obtained by
a linear response formalism.
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F=~ ~an (38)

where ~ is simply a geometrical factor. Equation
(38) is valid when space charge due to the emitted
current is neglected. At high fields and hence large
currents one cannot altogether neglect the space
charge which results in a smaller effective field
at the emitter surface and hence in a smaller
current than that predicted by Eq. (36) with F given
by Eq. (38). Barbour and his co-workers attributed
the deviation of the log~o j vs I/F from the FN plot
entirely to space-charge effects. Other authors33'+
attribute the high-field deviation from the FN
plot to the inadequacy of the image law at small
distances from the surface and they suggest that
replacement of the first term in Eq. (3V) by the
improved version [see Eq. (35)] suggested by Sachs
and Dexter can explain at least partly the observed
deviation at high fields. A nonquantum correction
to the image law has also been suggested, 'due to
surface irregularities, which, however, tends to
cancel partly the effect of the quantum correction.
We note that in all the analyses mentioned above
the transmission coefficient is calculated by the
%KB approximation. It is possible that this ap-
prcmimation overestimates the tunneling probability
for thin barriers (i. e. , high fields) in which case
Eq. (36), itself calculated by the WEB, overes-
timates the current at high fields. In this case the
observed deviation will be partly due to a calcula-
tional error. In order to avoid this possibility we
calculated the field-emitted current density entire-
ly numerically for the total self-consistent poten-
tial barrier, formally given by Eq. (10). We re-

on the assumption that tunneling occurs through
the barrier

V(x) = —8'/4x —
i Fi x,

where F is determined from the applied potential
V,„and the geometry of the cathode emitter (usual-
ly a hemispherical tip). One usually gets

call that this barrier depends on our choice of the
neutral potential barrier and the electric field. It
takes into account both the zero-field correction
to the image law and the metallic-field effect.
Since $ (F) = xo(E) —xo(0) is positive in the present
case it is equivalent [see Eq. (12)] to an increase
in the effective work function for high fields and
could be an extra factor contributing to the experi-
mentally observed deviations at high field. This is
contrary to the conclusion of Sidyakins who finds
$(E) negative in which case the metallic-field
effect would tend to produce a higher current.
According to Sidyakin this is neutralized by the
quantum correction [second term in Eq. (35)] of
the image law. In Table I we give log, oj»/j for
the two different neutral potential barriers used in
our calculation for different values of the electric
field. j» is the Fowler-Nordheim value and j is
the result of our numerical calculation. %'e ob-
serve that the results for the two cases are prac-
tically identical. This remains true for the total
energy distribution (see e. g. , Fig. 11). Thus,
the measurable quantities, current density and

TED are not very sensitive to the detailed struc-
ture of the potential barrier when the self-consis-
tent potential is calculated according to our ap-
proach. This can be seen by the dotted solid line
of Fig. 10 where the current was calculated with-
out calculating self-consistently the potential, but
taking it simply as V,'~ (x) +Ex. Since the neutral
metal potential Voz (x) (see Fig. 2, solid line) was
chosen so as to result in a more transparent po-
tential when the external potential —

l F j g is added,
the log~oj-vs-F curve differs significantly from
the FN curve. When the calculation was carried
out with the total potential V03(x)+E[x —xo(0)] the
log«j-vs-F ' curve deviated only slightly from the
FN law.

As it can be seen by Table I the logarithms of
the currents obtained by the self-consistent calcu-
lation for the two different neutral potentials differ

TABLE I. Logarithms of the current density j(j in A/cm ) for various values of the electric field Il. The values of
log&p j obtained for V(x) = Vp(x) +I'x are included for comparison. The space-charge correction is not included.

Background potential

jpI
(eV/A)

0.25
0.5
0, 7
0. 8

Fowler-
Nordheim

theory

logto j
—0.39

5.59
7.36
7.94

Self-
consistent
calculation

logio j
—0.665

5.283
7. 000
7.51

Vo&
t

V()
=V,', (x) +ex

logip j
—0.42

5.562
7.33
7. 90

Self-
consistent
calculation

—0.611
5.32
7. 04
7. 55

Vp2
t

V()
= V,', ( )+ex

logip j
-0.152

5. 848
7.619

V()
=v,', ( )

+E b; -xp(0)]

log&p j
-0, 546

5.44
7.214
7. 777
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only slightly so that in Fig. 10 they are drawn as
one curve (broken line). The same holds when only
the metallic field (i. e. , without the space-charge
correction) was taken into account (solid line in
Fig. 10).

Qne would expect that the normal energy distri-
bution should be more sensitive to the detailed
structure of the barrier but unfortunately it has
not yet been possible to obtain experimentally.
We observe from Fig. 10 that when only the metal-
lic field is taken into account the log, oj-vs-F plot
resulting from our calculation (solid line) is dis-
placed slightly downwards in relation to the FN
plot. This is equivalent to a small change in the
preexponential term of Etl. (36) which is always
very difficult to determine accurately from experi-
ment. A small deviation towards lower currents
occurs at high fields (see Table II), but it is not
sufficient to explain the experimentally observed
one. However, when the space charge was taken
into account the resulting curve (broken line on
Fig. 10) gives sufficiently large deviations from
the FN theory so as to explain the experimental
results of Barbour and co-workers ~ which are
exhibited by the chainlike line of Fig. 10.

By comparing the various curves in Fig. 10 we
conclude that the experimentally observed deviation
from the FN plot at high field is basically due to
space-charge effects and to a lesser degree to the
quantum correction of the image law and the metal-
lic-field effect.

B. Field Ionization

TABLE G. Values of log&()(jFN/j), where j is the value
of the current density obtained by our calculation.

f+I
(eV/A)

0.25
0.5
0,,7
0. 8

Values for Vp&

0.275
0.307
0.36
0.43

log10~ jFN~j)

Values for Vo~&

0. 221
0. 27
0. 32
0.40

In this case our results are qualitatively similar
to those of Tsong and Muller. $(E) is negative and
hence leads to a smaller critical metal-atom dis-
tance for field ionization. A smaller critical dis-
tance results in increased ion current and a narrow-
er energy distribution in comparison with the re-
sult one obtains by neglecting field penetration
altogether. This conclusion is in qualitative
agreement with experimental observation. For
values of the field appropriate to field ionization
(F &1.5 eV/A), [$(F)1 is of the order of 0. 5A
which is in agreement with the result of Tsong and

-20

-)2 o

CI-8

~ 4

I09 &o
k Ot')

FIG. 11. Total energy distribution of emitted electrons
for applied field Il = —0.7 eV/A. The pl~t is vs k = [(2m/I )
x (g —y, )]'~2.

Muller who take X= 0. 5 A for tungsten. For lower
fields the calculation of Tsong and Muller overesti-
mates the field penetration according to our calcu-
lation.

C. Capacitance of a ParaHel-Plate Capacitor

The capacitance per unit area of a parallel-plate
capacitor is given by

C= Fp/4vV, (39)

where Ep/4v is the surface charge density and V
the potential difference which when the metallic-
field effect (field penetration) is taken into account
is approximately given by

V = y, /I+ [x,"'(E)+t+ x,"'(E)P, y, /&, (40—)

where $ denotes the work function and f the distance
between the electrodes. The indices 1 and 2 refer to
the two electrodes, respectively. According to our
calculation xpi'(E) and xpa'(F) have opposite signs
and hence practicaQy cancel each other, hence the
effect of "field penetration" on the capacitance is
negligible according to our calculation. This is in
qualitative agreement with the arguments of Mott
and Watts- Tobin, ~6 and it is contrary to the result
of both Tsong and Muller~ and Ku and Ullman.
According to these authors xP'(E) and xp2'(E) have
the same sign so that when xpt~'(E)+xps'(E) becomes
comparable to t, the capacitance should be modi-
fied according to Etl. (40). As we have already
mentioned this difference results because the
above authors assume an abrupt termination of the
electronic charge distribution at the metal-vacuum
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interface. Similar considerations apply to the case
of a dielectric sandwiched between two metal elec-
trodes. In that case Fo is replaced in Eq. (40)
by Eo/e. where e is the dielectric constant. If
our conclusion is right the explanation of the ob-
served deviation from the geometrical capacitance
in metal insulator-metal sandwiches based on
field penetration of the electrodes must be serious-
ly reexamined. The same comment applies to a
similar analysis of tunneling data'6 using the field-
penetration model of Ku and Ullman.

so that it is allowab'le to divide both sides by
(k -k ) and take the limit as k -k. The result
is

G,(k, ()-G (k, x)= f leak(x')l'dx', (A6a)

eg(x) ey, (x)
( )

8'y*, (x)=
2k ek sx '" sxsk

(A6b)
By using Eq. (A2) the first term of Eq. (A6a) for
x- — can be calculated. The result is

0

APPENDIX

Ne shall show that the relation

m 2 m
k(/)P(k)dk= —k/ —

k F
8 4e

G1(k, x) = ——cos 28 sin2[kx —(/) r(k)]+ — x—I 1 dyF
4k F 2 dk

(Av)
For g & Vo/E, we get, by inserting Eq. (A3) into
Eq. (A6b),

T= & sin28,

u(x) = (2m/@') [V(x) —V,] .
(A3b)

(A3c)

By a proper choice of the point g, (k) the phase fac-
tor e'" in (A2) can be set equal to unity.

The following relation for the wave functions
(k(x) and gk. (x) can be easily established:

=(ka-k ') g (x ) (k(x)dx'. (A4)
4X

By noting that the Wroskian 8'(x) is

W(x) = (,"(x) ' —gk
"- =ik sin28(k) (A6)

l

'(k,'-k')k(2 /a')F ' 2edk
6(k&+ (2m//I ) [V —V($)]}

holds for negative fields, when the asymptotic
form of the potential for large x is —

I El ~ (x -xo)
and F =dv/dg, where f is a point in the interval
(VJF, 2VQE).

Proof

The solution of the Schrodinger equation for
x «0, where the potential V(x) assumes its con-
stant value V0 can be written in the following
form:

]t)k(x) = e"(cose sin[kx —V)~(k)]

—jsinecos[kx —//)F(k)] j . (A2)

For $, t'1 & [(N~/2m) k + Vo]/E, the solution is

k 1/8 Z1/2
4)4(()= (i4 ()],44 ex)4 i) [)' ()]"4'dx-Ixxk -u$ (A')I

(A3a)
he

k . du
Gz(k, p) 6

sin28
d5 [k — (5)]'

p4'

[k'-u(x)]1"dx, («)
4j (0)

~k " 4y(k)

[k -u(x)] dx-
[ 3

( )]1/k

Ik -u[g, (k)]]'/' . (A9)

Since the choice of (1(k) is such that the phase fac-
tor e' in Eq. (A2) is unity, and the wave function
for g & V()/E is rapidly oscillating, a point g(k)
can be found in the region (Vo/E, 2VO/E) so that
the right-band side of Eq. (A9) is equal to 0, then

/'
ky x 4(k&

dk(k,'-k')
l l

q„(x')l'dx

~ ky

dk(k, » sin2 8(du/dg ), l dk(k~dk ky-k
[ 2

( )]5/k +!

By taking into account the relation

4~e' [p(x') —p, a(- x')] dx' = —= E, (A12)

x —cos28 sinI 2[kx —(/)„(k)]]——
l
x—d+F

l 4k dk
(AIO)

But since all points g(k) are in the region (Vo/E,
2V0/E) an average ( can be found lying in this re-
gion so that

f ' dk(k' k.') f„ l
-ck(x')

I

'dx'

= f ~ dk( ,'k- k) f' ' leak(x')l'dx'. (»I)

and subtracting 8'(x) from both terms in the pa-
rentheses in Eq. (A4), we can modify this equation

where H(x) is the Heaviside function, we find, after
calculating the integrals in Eq. (AIO) for x- —~,
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k (k)dk=
~ k~ — & F 2m F (ks k)k
8

4 g

sin 2g de I

fk~+(2m/k')t V —V(g)]j

For the fields and electron densities of interest

the term under the integral sign on the right-hand
side of Eq. (Al) is very small. In addition, the
charge density in the region (Vo/F, 2VO/F) is
practically zero so that in applications the choice
of the average point is not of any significance.
Therefore, Eq. (Al) for all practical applications
is identical to the equation for positive fields.
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