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A theoretical model of the P'-center absorption band is described. From it are calculated
both the magnetic circular djchroism (MCD) and the spin mixing in the optical-pumping cycle.
Despite the fact that it is based on the sometimes doubtful adiabatic approximation, in general,
agreement with experiment is good. In particular, it shows that a moderately large MCD ef-
fect will be accompanied by a relatively small degree of spin mixing.

I. INTRODUCTION

In this paper two interrelated phenomena, as-
sociated with the optical pumping of F centers in

alkali halides, are investigated from a theoretical
point of view: the spin memory, and the magnetic
circular dichroism (MCD) of the absorption band.
These two phenomena have been discussed in length
phenomenologically and experimentally in the
foregoing work, ' henceforth referred to as I.

Therefore, we shall recapitulate here only those
facts and definitions that are required to make this
paper self-contained. For all details of experi-
mental observation and exploitation of these ef-
fects, the reader is referred to I.

The MCD of the F absorption band in alkali
halides is rather large. a'~ That is, for right- or
left-circularly polarized light propagating along
the externaiiy applied field Ho (o' and o transi-
tions), the fraction f= (o."—n-)/(&'+ & ), where
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&' and & are the corresponding absorption coef-
ficients, can be on the order of several tens of
percent. Now, for optical pumping with (say) o'
light, one has rates u' and u out of the ground-
state sublevels M, =+ —,

' and M, = ——,', respectively.
It was shown in I that these rates are also related
to each other as (u' —u)/(u'+ u)=f~, where f~, the
paramagnetic contribution to f, is nearly as large
as f itself (see I). Thus f also determines the
ground-state spin pol. arization achieved by satu-
rated optical pumping, where by the term "satu-
rated, "we mean that the pumping is strong enough
to overwhelm spin-lattice relaxation.

However, at a given light intensity and wave-
length, the efficiency of the optical pumping de-
pends on yet another property of the system, the
spin-mixing parameter e. By definition, c is the
fraction of pump cycles for which a transition
4M, = +1 occurs. In I, where the rate equations
have been solved, it is shown that the spin-pumping
time T~ is given by T~= [e(u'+ u )] . This means
that a spin mixing e & 0 is required for the optical
pumping to affect the spins. Experimentally, e
turns out to be a few percent in KC1 and KBr; thus
the spin memory is not completely but largely
conserved in the optical-pumping cycle.4

The processes which may lead to spin mixing
are as foll.ows: absorption into mixed spin states
in the band (e,); nonradiative decay into the re-
laxed-excited state (s~); spin mixing in relaxed-
excited state (e~); and finally, nonradiative decay
to the normal ground state (e~). Since the over-all
spin-mixing parameter e is small. relative to unity,
it should be related to these by the following:

6 = 6'g + 6'p + E'3 + 64.

In I it was a,rgued that &3+ &4&(e&+ e~; thus one has
e = c, + ea. Furthermore, the theoretical values for
E, calculated in this paper are nearl. y as large as
e itself. Thus, except perhaps for the case where
e is very small (as in KCl, for example, where
e =0.01),' one probably has e -e, .

Thus the theoretical problem is to produce a
model of the F absorption band, for which e, is
small, while the MCD fraction f is permitted to
remain relatively large. We present such a model,
based on the idea of Henry, Schnatterly, and
Slichter, ' that phonon- induced deviations of the crys-
tal field from cubic symmetry represent a signifi-
cant term in the Hamiltonian. That is to say, the
noncubic terms are often large relative to the spin-
orbit coupling. The principal result of our theory
is that, at least approximately, one has e, = (f~~)2,

where f~~ is the maximum absolute value of f~
across the band.

Perhaps it should be explicitly pointed out that the
large spin memory is completely at odds with the
much-invoked alkali-atom model. In that model,

the band is divided into P»~ and P&+ parts, each
rigidl. y shifted from the other to yield a spin-orbit
splitting. The spin projection is highly mixed in
such eigenstates of the total angular momentum;
for example, one can easily calculate from the
Clebsch-Gordon coefficients that c, = —,

' for the Pj/2
part of the band. Thus, there is a strong and
direct contradiction between the alkali-atom model.
and experiment.

Now it has already been shown by Henry and
Slichter, ' that the alkali-atom model is in disagree-
ment with a careful moments analysis of the MCD.
Thus the comments of the preceding paragraph
may seem unnecessary. However, it is our experi-
ence that the alkal. i-atom model still enjoys a rather
widespread, if undeserved, popularity. After all,
it does correctly explain the first olde-x band mo-
ments E'and E of the MCD, where the + and-
refer to o' and a- transitions. E' is defined by

E'= fb„~Eg'(E) dE,

where E is the photon energy and where g'(E) are
line-shape functions whose integrals over the band
equal unity. The difficu1ty would seem to lie with
the remoteness of argument and the experimental
uncertainties associated with an analysis of higher-
order band moments. On the other hand, arguments
based on the large spin memory wouM seem to have
a great advantage of directness and force. Thus,
perhaps this work will finally put to rest a model
that should have been retired long ago.

The rest of the paper is organized as follows: In
Sec. II we write down and discuss the Hamiltonian.
Section III is intended to expose the underlying phys-
ical ideas, by considering a particul. ar lattice dis-
tortion and by calculating the wave functions, spin
memory, and MCD in first-order perturbation the-
ory for the case that the distortion term is much
bigger than the spin-orbit term. Although the dis-
tortion arises from a zero-point phonon, it will
be treated as if it were static. In Sec. O'I, the cal-
culations are carried through for all possible lat-
tice distortions in accordance with the symmetry
of the system, and for all values of strength of the
distortion term relative to the spin-orbit interac-
tion. It will turn out that for all possible distor-
tions, with the exception of the so-called "breath-
ing mode, " e, is small whenever the distortion
term is large relative to the spin-orbit term.
Here still the distortions are treated as if they
were static. In Sec. V, finally, the dynamic
chara, cter of the distortion is accounted for, by
taking appropriate averages over the normal co-
ordinates of the lattice vibrations in the frame of
the configuration-coordinate model; that is, the
averages are taken over adiabatic wave functions
and transition probabilities. The treatment is thus
sirr. ilar to the one given by Moran' to calcul. ate the
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line shape of the E absorption in the cesium ha-
lides; in particular, the most basic assumptions
are the same. Their validity for our calculations
will be discussed in that chapter. However, the
adiabatic wave functions must be calculated exactly
in our case, by diagonalizing the perturbation
Hamiltonian. This exact treatment is necessary
because, for potassium halides, the spin-orbit
interaction is genera1. ly not large compared to the
phonon interaction, as is assumed for the cesium
halide s.

Phonons of the alkali-halide lattice may be clas-
sified according to their symmetry properties.
The desired symmetries are those of basis func-
tions of the irreducible representations of the cu-
bic-point-symmetry group 0„. In Ref. 6, it is
shown that only those phonon modes belonging to
one of six symmetry types wil1. lead to nonzero
matrix elements of 3C„ for p states. The irreduc-
ible representations and typical basis functions
corresponding to the required six symmetries are
tabulated:

II. HAMII. TONIAN

In the following we will use notation and a format
similar to that of Henry and Sl.ichter, such that the
reader may more easily compare the somewhat
specialized treatment of this work with their more
general one. I et the E electron have spin 8 and
position r, and let the surrounding lattice be de-
scribed by normal coordinates q, . Then the
Hamiltonian which describes the resultant coupled
system is given by the expression:

x=x, (r)+x, (q)+x„(r, q)+x,.(r, s)+x,(r, s),

1'g or Ai~: x +y +z =fg(r);

r ore
vS (xz —yz) =f,(r);

yz =f, (r),
f'; or 7„: zx=f, (r),

xy =f6(r).

By assuming that the leading terms in the ion
potential arising from a displacement are linear
in the normal coordinates q, , one may write

6

x„=g v, (r)q, ,
i=i

(5)

where q should be understood to represent the
complete ensemMe of q, Xz refers to the elec-
tron without spin-orbit coupling, and with the lat-
tice fixed in the equilibrium positions, q, = 0.
KL(q) is just a sum of simple-harmonic-oscillator
Hamiltonians, one for each of the q, K„(r,Q)
describes the change, due to lattice distortions,
in the electron-lattice potential; hence it is zero
whenever all of the q, =0. X„=XL S is the spin-
orbit interaction where I and 8 are in units of 6,
such that the spin-orbit parameter A will have
units of energy. Approximate values of X have
been deduced from MCD measurements, and they
are typically of order A. -10-50 meV. XE is the
Zeeman term, Xz-—paHO(Lz+2Sz), where p~ is
the Bohr magneton, IIO is the externally applied
field, and again I. and 8 are in units of h. Through-
out this paper we assume K~ to be much smaller
than either X„or 3C„. That is, 3C~ is supposed to
lift magnetic degeneracies, while wave function
admixing due to X~ is ignored in deference to the
much larger effects of BC„.

where each V, in (5) above has the same symmetry
as the corresponding f, in (4).

III. EFFECTS OF STRONG QUASISTATIC DISTORTION

In order to illustrate the basic idea of this paper,
let us first consider the effects of a single mode.
That is, in Eq. (5), let all the q,. be zero but one.
For example, let us choose qz, associated with the
function f~ of (4). There is no z motion in this
mode, and when the surrounding ions move in a1.ong
the x axis, they move out an equal amount along
the y axis. The matrix representation of K„(r, q~)
will be diagonal in the p-state basis set lx+ &,
Ix- ), ly+ &, ly —), Iz+ &, lz -&, where the + and
—r«er to m, =+ —,. K„(r,q, ) raises the lxs&
state energies by an amount ,'D (this defin—es D for
the qz mode); it does not affect lz+&, and it low-
ers ly+& by &

By calculating the matrix elements of $C„with
respect to the above basis, we then obtain the fol-
lowing representation of y+ $(.„:

2 2

I
x.&

I

x- &
I y;& I y —

&
I
z+ &

Ix+& ~D 0 —i'& 0 0

I
x-& o —,'D

Iy+& i-,'& 0 ——,"D 0 0

Iy —
& 0 —i'1 0

Iz+) o --,'~ o i-,'~ o

Iz& —,'~ o i '~ o o

1
2

~ j.—z —A.2
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By treating as a perturbation that pa, rt of the ma-
trix (6), which represents K„, we obtain the fol-
l.owing wave functions to first order in the param-
eter X/D:

I

g= f'x+&+--
l
y+&+—lz-&,

g~-= l.—&-- —
l

y-&--
[ "&,x 2D D

g= ly+&+- —
l
x+) -i —

l
z-),

(
2D D

j X

2D D

q', =
l

z+&+—
l

x-) —i —
ly —),

q;= lz-&- —lx+& —i —ly+&.

For convenience in calculating o' and a transi-
tion probabilities, the wave functions should be
rewritten in terms of the states ~x+ iy&, as, for
example,

1 —6 I.— y, -&-»I "&, (3}

where 5= —X/2D. For transitions out of the m,
= ——,

' ground state only (corresponding to absorp-
tion at zero temperature), by using the selection
rule 4M, =0, we obtain

a correct one.

IV. EFFECTS OF I 3 AND I'5 DEFORMATIONS: DETAILED
STUDY

In a more realistic treatment, one must calculate
the effects of a given mode on the spin mixing for
all possible values of D/X in the range, ID&l =0
to )D~)»1, and not just in the limit )DX)»l.
To make such a calculation, we proceeded as fol-
lows; For each of the I 3 and I", modes, the per-
turbation matrix K„(Q;)was calculated for the
p-state basis set Ix+&, ly+&, [z+&.used in Sec.
III. The matrix sum 3C„(Q;)+X„was then diag-
onalized exactly by a CDC 6400 computer, for
many values of the paramenter D/A. For .each
value of D/X, the computer printout listed three
distinct energy eigenvalues, and the components
of six distinct eigenvectors. The eigenvectors
were degenerate in pairs, and they mere such that
the degeneracy couM be lifted by a, magnetic field,
without the production of any state mixing in zeroth
order. That is, &~ was already diagonal in the
resultant eigenvectors.

Now let us designate the eigenstates with the
notation P'; where the subscript (i=1,2, 3) indicates
the associated energy level, and where + (or -)
indicates that member of the degenerate pair that
has nearly pure m, =+ —', (or m, = ——',} spin character
in the limit D/X» 1. By writing the wave functions
g,'in the form

&E=E' —E =2—
(', = a', lm, =+-', )+ b', lm, =- —,'), . (10)

= 2'= —X

Taking D as a crude measure of the absorption
bandwidth, we then obtain f~

- X/D, whereas the
fractional spin mixing in any part of the band is
z, = (~/D)'-(f, ')'.

It will be shown explicitly in the next section
that in the limit X/D « 1, one obtains essentially
the same result for each of the I'3 and I", modes;
that is, one always obtains z, - (f~~}'. On the other
hand, a pure "breathing" mode (I"~ or Q,) does not
destroy cubic symmetry, and hence the orbital
momentum of p states is completely preserved.
Thus for a pure-Q, mode, one obtains the same
large degree of spin mixing as for the alkali-atom
model. However, the probability that the E center
will be subject to a pure-Q, mode should be very
small. Therefore, it is not unreasonable to main-
tain (f~) as a rough estimate of z, .

In Table I, we compare the z, estimated as (f~~)z

with the experimental values of e listed in I. In
view of the crude approximations that are invol, ved,
the close agreement between e, and e,~, isprobably
somewhat fortuitous. But it is quite significant that
that z, , scales with (f~~}z in just the manner pre-
dicted by the simple perturbation cal.culation. %'e

are thus led to believe that the basic idea is indeed

the fractions of rn, =+ —,
' and m, = ——,

' states in the
wave function can then be written down dix ectly.
g and g are complementary to each other in the
sense that la',

~

=
~ h, i . Hence it is meaningful to

speak of the degree of spin mixing e,. associated
with each pair of states (';. We define z, by setting
&&= la& )

= )b', ( . Thus c,. represents the degree of

m, = ——, state admixed into (;, or equivalently, it
represents the degree of m, =+ —,

' state admixed
into (,.

In Figs. 1(a)-l(c), z,. is plotted as a function of
D/A, for the two mod. es of I'; and for one of the
I'; modes, the zx mode. Since the results for the
other two I", modes are essentia11y the same as
for the zx mode, those results have not been shown
separately. Note that in all cases, z, ~ 2(D/X)~, —

for D/X»1.
A curve labeled f~o is also given in Figs. 1(a)-

l(c), where f~ois the MCD fraction referred to
in the Introduction. I,et 4E= E'p —Ep, where
E p and Ep are the first-order band moments
for absorption of v' and v- light, respectively, at
zero temperature and finite field Ho. [E' and E
are defined in Eq. (2)].Once again, as in Sec. III,
we calculate f~o as the ratio of ( 4E i to the width of
the absorption band. Now, our calculations con-
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firm the prediction of a more general theorem, '
that hp = —A., independently of the phonon mode
acting on the F center, or of the magnitude of D/A. .

As a measure of the bandwidth, we use twice the
square root of the second moment. With D defined
for each mode as indicated by the inserts in Figs.
1(a)-1(c), the bandwidth is always given by the ex-
pression [2(D'+ &')]'~~. Thus, the MCD curve is
just a plot of the quantity f&~

—-(2 [(D/A)2+ 1]]~~~.

Note that for D/X»1, we have essentially f~~= v'
—,
'

x 0/D).
There are a number of important conclusions

to be drawn from the above. First, we can con-
firm the statement made near the end of Sec. III,
that for D/X»1, one always has e, = (f~o) . Sec-
ond, an inspection of Figs. 1(a)-1(c) reveals
that the average spin mixing, and the frac-
tion f~, are both nearly the same for all modes,
except perhaps in the immediate neighborhood of
D/X=0. Thus, it is not unreasonable to suppose
that a linear superposition of these modes will
produce essentially the same result as any one of
them alone. Only the 1", mode fails to reduce the
spin mixing. But since the I', represents only one

out of six possible modes, the probability that the

system will see a 1; mode, sufficiently pure to en-
able the system to retain an alkali-atom-like char-
acter, should be very small indeed.

V, DYNAMiC TREATMENT

In this section we attempt to account for- the dy-
namic nature of the lattice distortions, in the fol-
lowing manner: The effect of a superposition of
lattice distortions is calculated. Again, the dis-
tortions are described by the normal coordinates

Q, introduced in Sec. II. The calculation is re-
peated for many combinations of the various Q, ,
and an appropriate average is taken of the results.
By appropriate average, we mean that each of the
displacements Q, is weighted according to the
probability distribution of a simple-harmonic
oscillator in its ground state.

As we have already indicated in the Introduction,
the calculation is in many respects similar to one
made by Moran' on the structure of the E band in
the cesium halides. Both are based on the adia-
batic approximation. But not all of the approxi-

mations that may be used for the cesium halides
are suitable for the potassium halides as well.
And, of course, we are primarily concerned here
with the calculation of the spin memory, a question
that Moran did not consider. The differences and
similarities of the two calculations are discussed
in greater detail below.

A. Underlying Approximations

(i) The validity of the adiabatic approximation
has been discussed in Ref. 5 for the case of E
centers. By introducing typical quantitative values
for the parameters of their model, the authors
derive as a very rough criterion for adiabatic mo-
tion that the quantity (X/0. 01 eV)'~~ be large com-
pared to unity. This condition is fairly well ful-
filled for the cesium halides and for KI. (& of KI
is 22. 8 meV, &for CsBr is 28 meV. )9 But for
KBr and KCl, where X=12.& and 7. 6 meV, respec-
tively, the criterion is not satisfied. Hence, the
model is probably not too reliable for these latter
crystals. On the other hand, the results of Sec.
III indicate that calculations based on the adiabatic
approximation give the right order of magnitude
for e, despite the fact that the use of the adiabatic
condition is not truly justified. Therefore, in this
section, we will apply the calculations to KBr, al-
though we will focus mainly on the more justifiable
case of KI.

(ii) In Moran's calculation, only the breathing
mode and the two distortions of 1', symmetry were
taken into account. That is, Moran used the fol-
lowing electron-phonon interaction Hamiltonian:

X., = C, (x'+ y'+ 2)S+ C, (2z'- x'- y')Z

+ C,W8(x'- v')&, (lla)
where S, Z, T are the normal coordinates (Q,) of
the vibrations. It is useful to express (I la) in
terms of angular momentum operators:

K„=—yg( —,'L ~ L)S —ys(3I,,—L-L)Z- y3vS (I,„—L,)T.
(11b)

Using the p-state basis set [J,Mz), where the
states ~Z, Mz) are eigenfunctions of the total angular
momentum operators, one obtains the following
matrix representation of the operator 3C„+BC„:

~&+z+s

~ ~+8+ S

(12)
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TABLE I. Value of & calculated according to Sec. II,
compared with experiment.

Crystal

KCl
KBr
KI

0.01
0.04
0.24

0. 0025
0. 022
0. l6

where s = - yqS, t= - ysT, z = —yap.
For our calculations as well, it would be very

convenient to include only the 1, and I', modes.
The reason is that in the course of the calculations
the above interaction matrix (12) must be diag-
onalized for a large number of points (s, t, s). As
seen from Eq. (12), only one 3&&3 matrix must be

diagonalized, if only those two types of mode are
present. However, taking into account the I', dis-
tortions introduces two additional complications:
First, the matrix (12) no longer splits into two

identical 3&&3 matrices, and second, we obtain
complex matrix elements. This l.eads to an in-
crease, by a factor of at least 8, in the already
considerable computation time.

It can be shown" that the effect of the F, dis-
tortions on the band shape can be included in good
approximation by introducing an effective mean-
squared interaction

(E,'&.„=«,'&.«,') (i3)

instead of using the mean-squared interactions
(E~ ) and (E, ) of the I', and I', distortions as dis-
tinct parameters of the theory. The physical rea-
son for the validity of this approach is that the
degeneracies of the p states are already lifted by
j. 3 distortions. In fact, this simplication leads
only to minor changes in the fourth and higher
moments of the band. The same argument holds
for our calculation of the MCD effect, since the
MCD is, of course, just the difference between two
absorption curves.

It is not at first obvious that the above approxi-
mation will be valid for the calculation of spin
memory as well. On the other hand, Figs. 1(a)-
1(c) show that all the various noncubic modes
result in a very similar behavior of e as a func-
tion of D/A for D/A. & 1. Thus the calculations
of Sec. IV strongly suggest that it does not make
much difference whether all the noncubic modes
are included, or whether only I"3 modes are con-
sidered, as long as one introduces the effective
interaction o& Eq. (13). To cheek this assumption,
in a few typical cases, e was calculated both by
including the F, modes explicitly, and by just us-
ing (E~&,«. No significant difference in the re-
sults for e was obtained. Thus the approximation
was used for the bulk of the calculations, and we
shall discuss the theory within that framework.

(iii) In his treatment of the cesium halides,
Moran was able to use first-order perturbation
theory. That is, it is not a bad approximation for
the cesium halides to assume that (R )»(K„&.
However, that approximation is not at all valid
for the potassium halides, where the linewidth is
due largely to phonons. In the potassium halides,
the quantities s, t, s of matrix (12) assume values
larger as well as smaller than X. Thus, as we
have already asserted in the Introduction, the
adiabatic wave functions must be calculated by
exact diagonalization of the matrix (12).

y, = a,' (s, t, s)
~

-'„-2 &+ a2(s, t, s)
~

—,', ——,')

+a,'(s, t, s)i —,', ——,'), (14)

with eigenvalues E;, i=1, 2, 3, and

P, =t,'(s, t, s)
~

—,', ——,')+f3(s, t, s)~ —,', —,')

+5,'(s, t, z)l-,', —,'&, (15)

with eigenvalues E,', i =1, 2, 3. Because the two
submatriees are identical, g, and P, are the Kra-
mers degenerate; i.e. , the following relations
hold:

E;=E
(i6a)

(16b)

for all i and j. However, for the purpose of fur-
ther discussion, we consider the degeneracy (16b)
to be lifted by a small magnetic f~.eld in the sense
described in the context of Eq. (3). Hence, we
now have E, WE„but also E,—E, .

To calculate the transition probabilities for a'
transitions, which are governed by the selection
rules ~m, = a 1, it is convenient to switch from the
above IJ, Mz& representation to the Im„m, ) repre-
sentation, as, for example,

(-,', ——,'&=~[O, ——,'&+a —,
[

—1, +-,'&, etc.

By substituting expansions of the form (17) into (14)
and (15), it is easy to compute the following vela
tive transition probabilities. For o' absorption
out of the m, =+ —,

' ground-state sublevel, one has

u', = ~a,
' ~' into q„

Q$=0 into all g, .

B. Calculations

For a given set of normal coordinates s, t, z, the
adiabatic wave functions of the absorption state
are calculated by diagonalizing the Hamiltonian.
As the Hamiltonian consists of two 3~ 3 subma-
trices, we obtain two sets of wave functions g and

Q, which are superpositions of I 2, 2), I 2, —2),
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For 0' absorption out of the m, = ——,
' ground-state

sublevel, one has

u, = 0 into all g„
(19)

[By time-reversal symmetry, o absorption
probabilities out of m, = ——,will be given by (18),
and o probability out of m, =+ —,

' will be given by
(19), if the roles of g and Q are interchanged every-
where. ] Thus, we can calculate the MCD fraction

with the symmetric mode and with either of the
I'3 modes, respectively. That is, the three dis-
tortions make a contribution 8",+ 2$'3 to the
second moment of the line.

Calculation of the MCD fraction for light of en-
ergy E begins with evaluation of the following
quantities:

V'(E)=Q, f U', (s, t, z) P, (s)P (t)P (z)

x5(E, (s, t, z) —E) dsdtdz. (28)

f= (u' —u ) /u'+ u ) (20)
The MCD fraction f(E) is then just given by

for any adiabatic wave function. [In I, the symbol
g was used to designate an actual transition ~ate.
However, since we deal here only with ratios of
rates, as in (20), we need consider only the di-
mensionless quantities given by Eqs. (18) and (19).]

We define the spin-mixing parameter e, for the

(; states to be the probability that the spin has
projection m, = ——,

' in these states. This is a
reasonable definition, since two of the three g,.
states go over to pure ng, =+ —,

' character, whenever
t or z becomes very large relative to A.. In the
same limit, the third of the states (, becomes the
state )0, —z) in the )m„m, ) representation; but
since this latter state never participates in a a'
absorption from the ground state, its m, = —2

character does not affect the value of expression
(26) for the average value of z. For the Kramers-
conjugate states P;, we define s, =e,. Thus, by
writing Eq. (14) or (15) explicitly in terms of the
[m„m, ) representation, one calculates immedi-
ately that

z,.= ~v-,
' a,'+&a,'~'= ~v-,' g+v-', b,'~'. (21)

It will undoubtedly be noted that the above defini-
tion of e, is not identical to that given in Sec. IV of
this paper. However, in the calculation of an
average s, as by Eq. (26), the two approaches
should yield the same final result.

Now that we have expressions for the MCD ef-
fect and for the spin mixing, in terms of the pa-
rameters s, I;, z, and X, it is time to calculate the
"appropriate averages" mentioned earlier. As
normal coordinates of simple-harmonic vibrations,
s, t, z show Gaussian probability distributions in
the ground state. Using the notation of Ref. 7,
we write

P (s) ds = — s- ~' i ds,
1

(2m'', )'"

(22)
sWS '

Ps(z) dz
(

z yyz s dz&
mS'3

where the quantities P are probability densities,
and where S', and 8'3 are the rms interactions

v'(z) —v-(z)
U'(E)+ U (E)

(24)

For easy comparison with experiment, it is often
convenient to work with the following quantity:

v'(z) —v-(z)f ( ) U+(E) V (E) (26)

1 if E ——,'b, &E, &E+ —,'6.F;s, t, z =
0 otherwise. (27)

This means that the quantities U'(E) and z (E) were
calculated for photons within the energy interval ~
around E. The multiple integrals were calculated
by Monte Carlo integration. Thus, the computer
program proceeded as follows: First, random
points s, t, z were created by ihe computer within
the integration area:

where E~ is some fixed photon energy in the band,
usually at the band center.

The spin-mixing parameter e is computed from
the following expression:

e(E) =[+, f U';(s, t, z)P, (s)P, (t)P, (z) s, (s, t, z)

x 6(E;(s, t, z) —E) ds dtdz](V')-'. (26)

Equation (26) was derived by consideration of a o'
absorption out of the m, = —,

' state. (By time-
reversal symmetry, an identical expression re-
sults from consideration of a o absorption from
the m, = ——,

' state. ) Thus, the e; (s, t, z) will be
weighted according to the probability that the cor-
responding g, (s, t, z) will be the actual terminal
state of the transition.

Consideration of a 0' absorption out of the m,
= ——,

' state (or of o- out of m, = —,') will yield an ex-
pression for e the same as (26) if u',. and U' are
replaced with u,. and U-, respectively. It is not
clear that the two expressions will have the same
value in all cases, but at least they ought to be-
come equal in the limit that E is very small. Un-
fortunately, only the e given by (26) was evaluated
in the computer calculations.

In the actual calculations of expressions (23) and

(26), the F band is divided into small energy inter-
vals of width 4, and the 6 functions are then re-
placed by the functions
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TABLE II. Values of e and f' for potassium halides,

calculated according to Sec. V, and compared with ex-
periment.

Crystal

KBr
KI

Ifexyt

0. 15
0.4

fcalc

0. 188
0.31

exyt

0.04
0.24

1 calc

0, 107
0.202

—SWi &s &+SWg, —SWs &z, f &+SW). (28)

Contributions from outside these domains can be
neglected, because P, and P, are small there. For
the random points s, f, z, the matrix (12) was diag-
onalized and the wave functions g, and P, were cal-
culated. From the wave functions then are obtained
the quantities u', (s, I, z) and s, (s, t, z), according to
Eqs. (18), (19), and (21). The program then deter-
mines the energy interval of width & to which the
eigenvalue of the wave function belongs, i. e. , it
determines the value of F, (s, f, z). Finally, the
Monte Carlo integration is carried out by averaging
over the values of the integrands and multiplying
by the area of integration.

Finally, it should be mentioned that the I',
modes can be included very easily in this program.
If the normal coordinate of such a mode is cal.led v,
we have only to take the Gaussian probability dis-
tribution P(v) as an additional factor into the inte-
grand, include the matrix elements of the mode into
the interaction Hamiltonian (12), and let the com-
puter choose random values s, t, z, v in the now
four-dimensional integration space to perform the
Monte Carl. o integration. However, as discussed
earlier, this was done only for a few selected val-
ues of the parameters, on account of the large in-
crease in calculation time caused by the higher
order of the matrix.

periments on the I band. From Ref. 6 and the
relations:

W,'=(Et}, W3 z ((E,'&+(E', }), (29)

we obtain the ratios W, /Ws = 1.63, 3.0, and 2. 15 for
KCl, KBr, and KI, respectively. To show the de-
pendence of f and s on the relative strength of
phonon interaction and spin-orbit coupling, we
varied W~/X for a fixed "typical" ratio W, /Ws; that
is, we set W, /Ws=2. 15, the value appropriate to
KI. The results are shown in Fig. 2, where f and
c have been calculated for a photon energy cor-
responding to one of the peaks in the f curve.
Qualitatively, f and s show a behavior similar to
that expressed in Fig. 1, However, the decrease
with increasing W, /X is less pronounced. This is
to be expected, since the vibrations, treated as
quantum-mechanical oscillators in their ground
state, show a maximum in their probability distri-
bution for small distortions.

But X is also known, as discussed previously.
Thus, in fact, there are no adjustable parameters.
For KI, we have X=22. 8 meV and W3=27 meV,
corresponding to Ws/X= l. 2. The corresponding
values of e and f can then be obtained from Fig.
2, and they are listed in Table II. Similar values
for KBr are also listed there. According to Table
II, agreement with experiment is good for KI, but
for KBr, the theoretical e is too high. It is not
cl.ear at this point to what extent the disagreement
is due to uncertainties in W, and Ws, or to the mea-

C. Results

The mathematical model given above has been
used to calculate the spin memory, the MCD frac-
tion f, and the total absorption. All three quan-
tities were calculated as a function of the incident
photon energy, and for appropriate values of the
parameters W„W„and ~. Thus, the theory may
be compared in a very complete and meaningful way
with the experimentally known MCD and absorption
band shapes. Although s (E) is known experimentally
for only a narrow range of energies, comparison
with the theoretical curve is still quite meaningful,
since the curve is essentially flat over the middle
of the absorption band. In general, agreement be-
tween theory and experiment is quite good. Selec-
tion of input parameters, and comparison of theory
with experiment are discussed in detail below.

The parameters W, and Ws have been determined
by Schnatterly in a mement analysis of stress ex-

0.5

of KI

I I I l

I 52

w, /p,

FIG. 2. f and e as calculated by the method of Sec. V.
The values shown are appropriate to a peak of the dichro-
ism curve; they are plotted as a function of Wt/A, where
S'3 is the effective rms value of the noncubic-phonon vi-
brations, and where g is the spin-orbit coupling parameter
(see text).
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TABLE III. Values of & and f' for cesium halides,
calculated according to Sec. V.

Crystal

Cs Cl
CsBr

w(/x whelk fH

1 08 1 34 0 50
2. 0 1.85 0.40

0. 10
0. 1.1

fL ~L

0.36 0.15
0. 29 0. 15

sured value of e, or to a breakdown in the adiabatic
approximation. The explanation may well lie with
the last of these, as mentioned earlier.

In this paper we are primarily concerned with
the potassium halides. However, it was easy to
repeat the calculations with input parameters suit-
able to the cesium halides as well. Therefore, for
the sake of completeness, we list in Table III val-
ues of f and e computed for the E center in CsC1
and CsBr. Since there is considerable asymetry
in the results, separate values must be listed for
the low-energy (L) and high-energy (H) dichroism
peaks. In view of the large values of f', e is sur-
prisingty small for the cesium halides. The cal-
culated values of f agree rather well with the ex-
perimental data of Figs. 14 and 15 of Ref. 6. Un-
fortunately, e has never been measured for the
cesium halides.

Finally, we demonstrate the various band shapes
that may be obtained from this model, calculated
for the case of KI. Figure 3(a) shows a comparison
between the observed MCD curve [f (E)] and the
calculated one. The calculated curve is rather
sensitive to 8", and W,'; thus a good fit could be
made by slight adjustment of these two awa.y from
the values taken from experiment. However, such
a fit was not undertaken because of the large com-
puter time required, and becuase such a precise
fitting was not our major interest here. Instead,
the values for S", and 5'3 of Table VI in Ref. 6 were
used. The calculated curve reproduces rather
well the general features of the experimental MCD
curve. In particular, it shows the same asymmetry
as the measured one, the positive peak being some-
what more pronounced than the negative (long-
wavelength) peak.

Figure 3(b) shows the computed absorption
curve, and most importantly, it shows the corn-
puted values of e(E). As mentioned earlier, e is
fairly constant over a wide range of the band. How-
ever, a sharp decrease of e takes place in the far
wings. The predicted behavior can be understood
in terms of the different roles played by the cubic
vs the noncubic modes. That is, in the middle of
the band, the energy excursions are provided
mainly by the cubic modes, and the nearly con-
stant value of e is obtained by averaging over all
allowed values of the noncubic modes. But in the
wings, the averaging process can extend only over
large values of the noncubic coordinates, since

large energy shifts of the absorbing state are
mainly achieved by the combined extreme action
of all the modes, Thus, in the far wings, we ob-
tain the small c that is associated with large non-
cubic distortions.

0.4— (a) M C D expe r imental

0.3—
f

0.2— MCD calculated

0.1—
l

5500 650
I

7500

hape,
ted

units)

&, cal

0.2—

O. I—

0 —0 0
I

5500
I

6500
0

Light wavelength A

l

7500

FIG. 3. (a) Experimental and calculated curves of
the MCD fraction f' as a function of the light wavelength,
for the E center in KI. Here f' has been normalized to
the gross absorption at either of the peaks of the f' curve
itself. (b) Calculated shape of the gross absorption, and
calculated values of q, as a function of light wavelength,
for the I' center in KI.

VI. CONCLUSIONS

The MCD effect and the spin memory in the op-
tical-pumping cycle of I' centers in alkali halides
can be understood qualitatively by calculating the
wave functions for various static distortions of
the lattice that have nonzero matrix elements with
the p-like absorption state. The important param-
eter is the strength of the interaction with the lat-
tice distortion relative to the spin-orbit coupling
parameter X. By taking into account the dynamic
character of the distortions in the frame of the
adiabatic approximation, we obtain results in rea-
sonably good agreement with experimental values;
this is especially true for the heavier halides,
where the conditions for the adiabatic condition
are more nearly satisfied. Qualitatively, the cal-
culations indicate that an MCD effect of moderate
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size is accompanied by a relatively small loss in

spin memory. However, details depend on the
relative strength of the cubic and noncubic modes.
The usefulness of the model could be further

checked by measuring the spin memory in the opti-
cal-pumping cycle of the E band of the cesium ha-
lides, and by investigating the change of e with the
photon energy.
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The trigonal-field splitting of E into K and 2X states is found to be Z -2X = -120 cm ' by
identifying 2X. The no-phonon lines of deuterated samples are isotope shifted 6 cm to the
red. The following generalizations suffice to relate the spectra of the Cr-alums: (i) They
are due to 4A2 E, 2XPE) transitions The s.plitting of 2E is large for the P-alums, small
for the &-alums. (ii) Sulfate-group disorder, found in all &-alums, complicates their spec-
tra by adding inequivalent Cr ' sites.

Sugano and Tanabe' have repeatedly called atten-
tion to the "difficulties in the problem of the Cr-
alums. " This is ironic because modern crystal-
field theory, otherwise successful, originated in
the work of Finkelstein and Van Vleck which "laid
down the method of calculation employed by all in-
quiry that followed. "' We present new data on Cr'
in pure CsCr(804)a. 12HaO/DaO, a P-alum. We
conclude with the main point, a speculation on the
relationship between structure and spectroscopy
in all Cr-alums which proposes a resolution of the
apparent "difficulties" using conventional crystal-
field theory.

The formula of the alums is A'B '(RO4)~' 12HaO.
g'isamonovalentcation(K, Rb, . . . ); B'isa
trivalentmetalion(Al, Fe, . . . ); andRisS, Se,
or Te. The unit cell contains four formula units.
The space group is cubic Pas(T ~a). Lipson4 showed
that the alums exhibit three types of structure
which he named a, P, and y. The structure is

shown in Fig. 1. The caption summarizes the dif-
ference between the z, P, and y structures. These
have been refined by Cromer ef g/. who find, in
addition, that all n-alums show sulfate-group dis-
order consisting of some sulfate groups in re-
versed orientation along the threefold axis.
Hausiihl' classifies 65 alums: 40 (n), 24 (P), 1(y).
The only known y alum is NaA1(804)a 12HaO.

There are four equivalent Cr ' in the unit cell:
one on each of the four body diagonals. The near-
est neighbors of Cr3', 6H~O's, are arranged about
the Cr' in a perfect octahedron. ' The crystal
field due to them is therefore cubic. However,
the "distant" atoms, i. e. , those other than nearest
neighbors are arranged about Cr ' in trigonal sym-
metry (C ) 3Thsese are bonded to the oxygens of
the Cr ' waters by hydrogen bonds as shown in
Fig. 1.

In spite of the fact that the Cr '-6HzO octahedron
is undistorted, next-nearest neighbors may deform


