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A change in the rotating-coordinate transformations that are used in making calculations of
magnetic-resonance phenomena with large rf fields permits a definition for the quantization
axis of the spin system which is continuous in both the driving rf field strength and the depar-
ture of the rf frequency from resonance. This modified procedure is used to compute the line
narrowing, which is expected in spin-stirring experiments with inhomogeneously broadened
systems, as a function of stirring rf field strength. The increase in transverse relaxation
time in correlation-time-narrowed inhomogeneously broadened spin systems is calculated.
The behavior of the magnetization in the rotating frame in adiabatic fast-passage experiments
is predicted. The increase in transverse relaxation time in multiple-pulse experiments in
homogeneously broadened systems is calculated. These predictions agree with observations
or with exact calculations made with trace-sum methods. It is shown that previous experi-
ments which were predictable and in accord with the usual procedure are also in accord with
the modified procedure proposed here.

I. INTRODUCTION

The problem of coupled microscopic magnetic
moments in the presence of a strong static mag-
netic field and a transverse rf field is at the cen-
ter of the following discussion. There is certainly
a wealth of understanding of empirical and analyt-
ical aspects of the effect of strong rf fields on the
spin-spin interaction in paramagnetic materials. ' '
However, the theoretical predictions of the be-
havior of the resonant spin system are difficult to
understand physically. In an attempt to under-

stand some recent experimental results of the mea-
surement of spin decoupling in electron paramag-
netic systems, the author developed a variant of
the usual analytical procedure which allows one
to predict some properties of the spin system in a
heuristic and more physical fashion. These pre-
dictions are applicable to nuclear paramagnetic
systems also, and they allow one to make interest-
ing interpretations of some previously reported ex-
perimental observations on nuclear resonant sys-
tems.

This revised treatment of inhomogeneously
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broadened spin systems is a simple modification
of the conventional method of carrying out these
calculations. The modification involves only a re-
definition of the instantaneous doubly rotated axis
of quantization, so that it is determined not only by
the static and rf fields but also by an effective spin-
spin interaction field that is a measure of the in-
teraction of the observed spin with the surrounding,
nonresonant magnetic moments. The spin decou-
pling observed in the free radical diphenyl picryl
hydrazyl (DPPH) may be discussed in terms of the
predictions of this procedure. '

It is conceptually more difficult to extend the
use of the effective spin-spin-interaction field to
a system of equivalent interacting spins. One can
test the suggested modification of the usual pro-
cedure, however, by comparing the prediction of
this effective-field treatment with the prediction of
the exact calculation for the behavior of a spin
system in a rotating-frame adiabatic-demagnetiza-
tion experiment. ' The double-resonance line-
narrowing exper1ments with NaF, x'eported by
Sarles and Cotts, ' may also be compared with the
predictions of this modified procedure, and it is
found that their experimental results are pre-
dicted quantitatively. Finally, use can be made
of the idea of a spin-spin effective field to discuss
the pulsed-NMR experiments of Waugh and his
collaborators, and of others, in which the nuclear-
spin decoupling has been observed in homogeneous-
ly broadened systems. '

The predictions of this effective-field procedure
can thus be checked experimentally for inhomo-
geneously broadened systems with and without
correlation-time nar rowing.

II. GENERAL THEORY

The essential problem encountered in making
magnetic-resonance calculations in the presence
of a nonvanishing rf field has been lucidly dis-
cussed by Wangsness, Bloch, Redfield, Abragam,
and others. ' " In the presence of a radio-fre-
quency field, of any magnitude, an explicitly time-
dependent Schrodinger problem has to be solved
in the laboratory frame of reference. The statis-
tically averaged behavior of the system observ-
ables is therefore difficult to discuss. The ex-
plicit time dependence of the problem can be
eliminated by transforming the variables into a
frame of reference rotating about the static-field
axis at the angular frequency of the perpendicular
rf field. Since the Zeeman energy is assumed to
be la, rge compared with the spin-spin or spin-rf-
field energies, only the secular part of the spin-
spin interaction need be retained; thus the explicit
time dependence disappears from the problem.
This rotating frame is the singly rotating, or pre-
cessional, coordinate system. The statistical

properties of the system are then conveniently
studied by using a second rotation of coordinates
about the axis perpendicular to the rf and Zee-
man field, so that the new z axis of quantization
is in the direction of the effective magnetic field
that remains after the first transformation. This
direction is determined by the applied static field
and the applied rf field. The eigenenergies of the
spin on this axis of quantization are the Zeeman
energies of the spin moment in the presence of
the effective field. The eigenmotion of the mag-
netic moment in the second frame is a preces-
sion about this axis. The second frame is called
the doubly rotating frame, and the motion a nuta-
tion.

Explicitly, the transformations are described
as follows. The Hamiltonian is the sum of Zee-
man, spin-spin, spin-lattice, and spin-rf-field
terms, the rf field being taken on the x axis:

Z + +ss+ sl+ sr' ~

The transformation to the precessing frame is

~8~~= exp(- ~« ~f Sar) ~

where S& is the spin angular momentum at space
position j.

The doubly rotating frame is obtained with the
rotation about the y axis:

A,~= exp(-i&gq S,q),
where tan6= yH, /(ur —yHO), with y the spin mag-
netogyric factor, Ho the static field, and H& the
amplitude of the one circular component of the rf
field rotating in the direction of the spin preces-
sion.

The conceptual difficulty of this last transforma-
tion is that the effective-field axis is always nor-
mal to the static-field axis for ~= yHO= ~0, hence,
unless the rf field is very large compared with K,'„
the secular terms in the spin-spin term, the
quantization axis is quite arbitrarily taken as the
x axis, and the nutational eigenenergies are those
of the spin in the rf field alone.

A. Inhomogeneous Systems: Broadening by Inequivalent Spins

An observation that we would like to make is that
one can derive some of the results of calculations
for this system in a heuristic manner. Consider a
simple system, that of a set of spins interacting
primarily with another set of nonidentical spins.
Such a system, for example, would be the Na nu-
clei interacting with the F nuclei in NaF, or the
free-radical electron spin in dilute DPPH interact-
ing with the two neighboring nitrogen nuclei. In
the presence of a strong static magnetic field, these
two spin systems form nearly commuting systems,
quantized on the z axis, with the Zeeman levels of
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one set of spins being nondegenerate with those of
the second-spin species. The effect of one spin
system on the second spin system can be de-
scribed by an effective magnetic field H~, on the
static-field axis interacting with the second spin
S„to add to the Zeeman energy of this second spin.
To do this analytically, the unit matrix and the
sum of the operators yH J& S„are considered to be
elements of a set of orthogonal operators which
form a complete set of orthogonal vectors in ma-
trix space, and into which X,', is expanded. The
projection of R» on the unit matrix is zero since
it has zero trace. The projection of X,', on S„ is
also zero, but H~; breaks the orthogonality since
it is some function of the other spin states. Thus

H~, has zero trace because S,&
has zero trace. The

tedious calculation of the projection of K,', on H~, S,&

can be avoided if the expansion is terminated with
this term. Then one need only determine the nor-
malization of the expansion, and in order that the
expansion be normalized the square of the ensem-
ble-averaged local field must be taken to be

(H~)= TrX",.'/Tr(y'S', ) .

Truncation of the orthogonal operator set to its
first two elements is not as naive as it may ap-
pear at first sight. The expansion preserves the
tmo invariants of the problem, the traces of the
first hvo powers of K,', . If one asks questions
about macroscopic variables which are simple
enough to require only these two invariants in
their solution, then the prediction mill be exact.
Undoubtedly there are other observables which
depend upon higher-order invariants and for
which this truncated expansion is not valid. In the
calculations which follom, the observables for
which predictions are made are too simple to be
of this type.

Furthermore, one can estimate the projection
of $C,', on H~, S„to be the absolute value of H«.
This exhausts the normalization given by Eq. (4)„
and so the remaining operators in the set may be
assumed to have negligible weight.

In summary, the ensemble average of the local
field (H~) will be taken to be zero, and the ensem-
ble average of the .local field squared will be as
given by Eg. (4).

In the precessing frame the effective field is

H, =iH, +k(~/y, -Ho-H„) .

Expressed in the second rotating frame, this field
ls

H, =i '[H, cos8 —{v/y, -HO-H~, ) sin8]

+ k'[H, sin8+ (~/y, Ho H~;) cos8] . —(6)-
Vfith 8 chosen so that the i' component vanishes,
then '

cos 8 = [1+~g/(6)+ 'y((H y.())]

mith y, H& = &, , and 6, = & —y, HO. The eigenval-
ues of the Hamiltonian in the second rotating frame
are

X = a (,' cP, y', (H', ))"' .

To determine the effect of this rf-field-induced
change of quantization axis on the mean-square-
frequency linemidth and the transverse relaxation
time, one proceeds as follows. The usual source
of inhomogeneous broadening in NMR systems is
the dipolar interaction between unlike magnetic
moments. In the presence of a strong static mag-
netic field, these two spin systems form almost
commuting systems, and the secular part of their
dipolar interaction is

(R )AB=Q +A+BI AlS Bj

There will also be homogeneous -broadening terms
that arise from the secular part of the like spin
dipolar interaction within each spin system which
must be added to the Hamiltonian. The model of
the preceding calculation may be approximated by
taking y~ «y& so that for spin system B the in-
homogeneous term dominates in the broadening.
Adjust the stirring-rf-field frequency to be near
resonance with system B. Then in terms of oper-
ators for system B taken on the quantization axis
defined by 8, and operators for system A on the
axis defined by the static field, the inhomogeneous-
broadening term is written

(Z,',)» = Zr„&3f,„,(S,„~&cos8+ S„;»sin8 ).
fj

(10)
The first term in X„is time independent and

yields a variation of the contribution to the second
moment for both systems which behaves as cos e.
This term me call the central-line broadening. For
8= 0 (~, = 0), this term yields a contribution to the
linewidth of each which is (hoP»). The 8-dependent
contribution from this term will thus be (b~ )„s
cos 8.

The second term has a time dependence of e""',
and it gives rise to a time-dependent frequency
modulation of the resonance of system A. This has
the effect of putting weak satellite sidebands on the
NMR resonance at frequencies +XX, N = 1, 2, . . . ,
removed from the main NMR resonance of system

We ignore this term for the moment, and our
analysis predicts that the second moment for the
central-system A NMR signal will vary as

(AR )A= (6& )AB Cos 8+ ( )AA '

The subscripts indicate the Van Vleck second mo-
ment arising from the dipolar interaction between
the two systems and from the dipolar interaction
within system A. Also me have
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cos'8= [1+(yoffe)'/(«&'&~+ &B)] (12)

in the absence of scalar exchange spin coupling,
since from Eq. (4) one computes (ye H~&e = (s(u')~
+ 3 (+~ )BB= («'&». For yo &~ ' (&~'&A

prediction will seem to be poor, but this is not the

case. For these field strengths, the system-B
nutational frequency is less than the system-A line-
width, and the satellite contribution to the second
moment of system A cannot be separated from that
of the central line in the experimental data. The
sum of the mean-square frequency deviations of a
pair of satellite lines is evidently 2N~X2. The in-
tensity of the satellite lines of harmonic order N

with respect to the central line is given by frequen-
cy-modulation theory 3 as the square of the Bes-
sel function of order N with an argument which is
the frequency deviation divided by the modulation

frequency. This argument is small in the present
case, and so only the first-order term, N= 1 need

be considered. In this case, the relative intensity
of each satellite line is (buF&~(sin 8)/2X . The
intensity-weighted mean- square-f requency con-
tribution of the first two satellite lines is

(2') [(hcoo&~(sin 8)/2X ]= (&(o )„osin 8. (13)

Since the central-line contribution is (4& &~o cos 8,
the total mean-square frequency is constant.
Hence, for weak rf fields, the frequency moment
of the central line will appear to remain constant
because of the overlap of the small but finite
satellite contribution. For larger rf fields, the
satellite frequency is sufficient to put the satellite
lines in the wings of the central line, and they be-
come weak enough so that their contribution is
lost in the noise in the experimental data. The ef-
fect has been discussed in detail by Bloch.

A previous calculation' has shown that the in-
verse of the effective transverse relaxation time
T~', varies as the square of the vector projection
from one axis of quantization to the other. Hence
it varies as cos e.

Now since both the second moment and Ta', vary
as cos28, the line shape must change as the rf
amplitude increases. The ratio of the half-ampli-
tude half-width Tz,' to the rms frequency width var-
ies as (cos~8)"o. This ratio thus becomes small
as the rf field increases, and the resonance curve
is expectedto become more peaked, or of a Lor-
entz form, as the rf-field strength increases.

In more detail, not only the contribution of the
secular terms of K„to the spin relaxation but also
the contribution of the nonsecular terms must be
included. The latter terms account for line broad-
ening by processes involving a change of energy
of the spin system by one quantum of Zeeman en-
ergy. These terms bring the whole system of spin
and environment into thermal equilibrium, and are

called the longitudinal, or spin-lattice, relaxation
terms. In the terminology proposed here, the ef-
fective spin-spin relaxation time is written

1 1 3-
~+

with

cos 8= [1+~f/(6'+ y'(II~~&)] ' .

(14)

Now in the usual method of calculation [Ref. 10,
Eq. (2. 15)], To, is found for the case in which

» y gI~& (the mean-square dipolar linewidth)
to be

(15)

To say that a spin system has a short correlation
time implies that the spin coupling includes a
strong scalar exchange term. Hence the expres-
sion for the local field squared used in Eq. (12)
will be augmented by the term co~. This factor
is much larger than the dipolar contributions, and
it is equal to 7. ; Eqs. (14) and (15) are thus
equivalent.

For the opposite extreme T «y (II2D) and for
&u, &y IPo& ~ 7, Tomita's result is approximated
at resonance, 4= 0, by

&o.= 7 (~f/y' 8',&),

while Eq. (14) reduces to

7'o. = 7'oo(1+ ~i/y' (IIi&)

(16)

(17)

In this extreme these two results differ by a fac-
tor of - Too/~. Thus experimental measurements
of the variation of T, with applied rf field in para-
magnetic crystals for which this factor should be
large would be decisive in determining the valid
expression.

Measurements of the variation of T2 in strong
rf fields have been made on the paramagnetic free
radical DPPH. ' ' The correlation time can be
varied in this substance by dilution in polystyrene.
The measurements on samples with strong corre-
lation-time narrowing are limitedby the rf-field
strength, but it does appear that they do behave as
predicted by Eqs. (14) and (15). The samples
showing little correlation time narrowing yield re-
sults which cannot be said to disagree either with
Eq. (16)or Eq. (17)since the correlation time is un-
known. Furthermore, though the samples are
homogeneous, the paramagnetic sites may be dis-
tributed randomly rather than uniformly. Hence,
the relationship between the observed linewidth
and the effective local field or effective correja-
tion time is unknown.

B. Homogeneous Systems: Broadening by Equivalent Spins

The application of this procedure to systems in
which X„is a dipolar interaction between identi-
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cal spins is more difficult to justify. The dipolar
contribution now transforms like a rank-two ten-
sor, while the Zeeman terms transform as vec-
tors. A simple rotation of axes to the second ro-
tating frame cannot be used to obtain a quantiza-
tion axis for which the effective Hamiltonian is
diagonal. Furthermore, one spin ca,nnot be looked
at alone; all spins must be looked at, and this de-
generacy of eigenstates is awkward to hand1e. In
this sense, the Schrodinger equation for the sys-
tem is not solvable. We are reduced to talking
about quantities that are defined by trace sums
such as the frequency moments of the absorption
line. The eigenenergies on this second axis take
a simple form only in extremes of the rf field. In
more detail, the wave functions for the coupled
identical spins must be symmetrized products of
single-spin wave functions in order to have the two

spins indistinguishable. The simplest extreme of
this problem is two spins of spin & with wave func-
tions

4i=(++), 4=(- -), 4s.~=(~r)f.(+ -)+(-+)J.
(18)

The spin-spin and rf Zeeman terms couple the
three symmetric states. The eigenenergies are
thus determined by a cubic equation and are those
of a linear combination of the symmetric states,
plus that of the asymmetric state. The choice of a
particular direction of quantization does not diag-
onalize the Hamiltonian, as inthe case we discussed
above -that of inhomogeneous broadening.

Discouraging as it may seem, however, we can
still try an effective field phenomenologically and

test its predictions on some problem that can be
solved in terms of trace sums.

Stated in these terms, the idea is made to seem
overly naive. On the contrary, the basic motiva-
tion here is to find some nontrivial way to inter-
polate between the simple eigenstates of the sys-
tem in the two extremes for which the system is
simple to understand. For Hj - 0, the quantiza-
tion axis is definitely the static-field axis and the
eigenenergies are those of the spin system pro-
jected on that axis and measured by (H~~). These
are perturbed slightly in the limit H&- 0. This
situation, in any case, is the one that we sup-
posedly understand. For Hj»(H~2) ~, the eigen
axis is the axis defined by Hj and &, and the eigen-
energies are the Zeeman energies of the spin in
the effective field, perturbed slightly by (H~a).
Introducing the random effective field simply al-
lows us to bridge the gap between two regions of
known behavior for the spin system in a reason-
able simple manner.

To try out this approach, assume, as above, a
local field, H~, at spin i. The ensemble average
of H~; is zero, and its mean-square ensemble
average is given by Eq. (4). Define the angle of

the quantization axis as before in terms of H„H~,
and this local field.

We can check this model by comparing its pre-
diction with that of a trace-sum calculation for the
behavior of the spin-system magnetic moment with
adiabatic fast passage in the rotating frame. '
The thermodynamic trace-sum calculation predicts
that the component of the magnetic moment on the
rotating-frame field axis defined by the direction
of the conventional effective-field vector, zH&

+ kh/ y= H, should be related to the initialmagne-
tization by

M(H) =M, [~ H ~/(H'+ (H'))"'] . (19)

cosP= ~H~/(H + gl))'~ (20)

in agreement with the trace-sum calculation.
One can thus think of the loss in magnetic mo-

ment that occurs in rotating-frame fast-passage
experiments as being due to the essential indeter-
minacy of the magnetization axis once it is ro-
tated away from the large-static-field direction.
The magnetization axis is determined at reso-
nance only by the x-axis rf field, and hence the
loss in coherent magnetization observable on the
x axis must be large when the rf field is small
compared with the field (H~l)l'~, and vice versa.
The formula says this by stating that the reduc-
tion in the rotating-frame magnetization is the fac-
tor given by the ratio of the mean effective field to
the rms effective field.

With this empirical "proof" for the validity of the
concept of a local field in the case of homogeneous
broadening, we proceed to examine the spin-spin
problem in more detail. For the discussion, it
will suffice to consider a pair of equivalent spins
dipolar coupled in a strong Zeeman field. We are
trying to understand some properties of this sys-
tem, and though two spins do not have all of the
properties of N coupled spins, they do have most
of them. The N-spin system can be approximated
by an ensemble average over two-spin systems.
We have said that if the spins are equivalent, then
the representation must be as given before in Eq.
(18). This representation forms a singlet spin
state with odd parity and a triplet spin state with
even parity. These two systems can be coupled
only by an operator that is odd with exchange of
electrons. Since no such operator exists, we need
to consider the triplet-state properties only. It is

The local-field model would have the magnetiza-
tion adiabatically follow the field axis:

H, =iH, +$(h/y —HI. ) .

The magnetization would have a projection on the
axis H which is 18, cosp where p is the angle be-
tween H and H, . Since cosP= H H,/ I H I lR, I, it is
readily seen that the local-field model predicts
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easy to show that the singlet-state spin-spin ener-
gy is always zero, so it does not even contribute
to the trace sum of the spin-spin operator. Since
K,', is a rank-two tensor operator, its trace sum
is zero.

Explicitly, on the static-field axis, the truncated
spin-spin Hamiltonian with only dipolar or pseudo-
dipolar exchange terms (scalar exchange assumed
to be negligible) is written

X.', 4=n[S,'S.' —,'-(S',S'+ S'S,')]h,
where

S,= S„+iS„, a = y h+R, & (3 cos28,
&

—1) .
ig

(21)

In a frame rotated an angle 8 from the z axis
about the y axis, this term takes the form

X,'Jh= 2n [S,'S,' ——,'(S,'S'+ S'S', )](3cos'8 —1)

+12a[s',(S,+S )+ (S', +S')S,]sin8cos8

+ 12a (S,'S,+S'S )sin 8. (22)

Another great simplification of the triplet sys-
tem is possible at this point by choosing as rep-
resentations the combinations W[(++) + (- -)],
since in this case the last component of the trans-
formed X,', can be made diagonal.

With quantization on this rotated z axis, in the
symmetrized spin representations described
above, the effective Hamiltonian becomes

This expression is exact for 6 = 0 or for ~& = 0.
By hypothesis, if these eigenenergies are aver-
aged over many spin pairs, the terms linear in o.'

vanish and there remain

x, , 2= + [a'+ u)', + (ga') s'(3c+ I)]'",
Q 4=0.

The triplet states behave in the limit of high rf
fields or on resonance as a simple S= 1 Zeeman
system; the mean-square effective field is thus
defined to be

y (H~) = 4 a sin28(3cos 8+1);
the trace-sum definition yields ~a, and it in-
cludes no dependence on the degree of resonance.
The agreement is exact at the magic angle, sin38

The resonance factor varies from 1 to 3 to 1
as 4 varies from 0 to 2&~&. The agreement with
the trace sum is probably satisfactory for the
present purpose of investigating why an effective
field might make sense in the case of a homoge-
neously broadened system.

The diagonalization here is a rotation in function
space. For example, for the solution with 4= 0,
the eigenrepresentations are the basic set rotated
by an angle

—sin cos ) 3 j

M+ co&s

(3c —2) a
3scQ

0

—M+ +pc 0
3scu 0

—(3c2 —1)a 0
0 0

where

t»2& = 2(1 I~'. I3)/[(3 l~.'. I3) —(1 I&:.Il) ]=Hi/H'

The diagonal contributions of the spin-spin terms
are

Ci= ~r [(++)+(- -)j, t2 ~a [(++)- (- -)j,

6= ~2 [(+ - ) + (- +)], 4 = v 2 [(+ - ) - (- +)j .

(23)

(24)

The only awkward part that the spin energy in-
troduces is the one off-diagonal term 3sc from
the S,'(S.+ S )+ (S'.+ S')S, term The eig. enenergies
of this Hamiltonian are simple in four cases:
when b = 0, H, = 0 (a case of no present interest);
when b = 0 (on resonance) and v~ &0; for h, &u~

» n (that is, for quantization on the direction de-
termined by 6 and ~~); and for A2= 2 co, + a2. In
each of these cases the determination of the eigen-
energies reduces to the solution of a quadratic
secular determinant.

For large L and/or +&, the spin-spin-term cou-
pling between states 2 and 3 can be treated as a
perturbation, and the eigenenergies are found to
be

X~ 2- ,'a(3c2 —1)a—[b2+uP+ (~a )s (3c + 1)j'~',

g= —a(3c2 —1), X4= 0, (25)

c2= ~2/(a2+ A)2), s2= &u2/(a2+ (uf) .

(A IK,', IA)= (3 cos2$ —2) a,
(B IR,', IB)= —(3cos'Q —1) n .

(23)

The finite trace makes the asymmetry here.
Eliminating the trace from these terms (for the
same reason that we argued to do so in the eigen-
values), these contributions vary as
+ a(3 cos'g ——', ) = + —', cos2$. Now in real space we
have argued that tan8=H, /(H'I)' =tan2$. Hence
in terms of 8 these spin contributions transform as
~ —', ~cos8, as would be necessary jtf the effective-
field picture is to make sense.

A more precise or formal analysis of this sys-
tem can be carried out, but the results are ap-
proximately the same. Ne find that the secular
equation for spin-spin Hamiltonian is

X —(3a2+ &ui2+ 62) X+ a(vf —2CP+ 2a2) = 0 . (29)

This can be simply solved for 4~= &~&+ a, with
roots X= 0, + (3a2+ (u, + 6 )'~', as we have re-
marked before.

In the following discussion, it will not be neces-
sary to compute the roots precisely, and second-
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D»g = cos»t»» sing»

D,a= sing» sing, ,

D,3= cos

(30)

with (i= (++), 4~= (- -), (3=v"-,'[(+ -)+(-+)j .
The angles p» and f» are determined for each root

I

order perturbation will be used for co& & Sa, or the
solution in Eq. (25) will be used for»0, &So.

The diagonalizing transformation is in function
space. The actual transformation can be readily
determined once the eigenvalues are known. The
zeros in the secular determinant make the ele-
ments of the transformation matrix simple in form
and similar to the ones that we have already de-
termined; that is, the diagonal elements of 3C,',
project as cos8 times the effective local field, as
vectors and not as rank-two tensors. The diag-
onalizing matrix D, &

is conveniently written in the
form

X& by the equations

tan@» = (a+ 4- X»)/(o! —b, —X,),
(cosP»+ sing;) tan&;= v2 (2»».'+ X,)/&u, .

(31)

(32)

+ A(cos P» —sinai;) sin~g; .

Now, for example, for b, &(u,/12n, ~, &Sa, we
f ind

cos&, z
=- ~,/ v 2 (3a a L),

sing» 2= +(-1 —~ cos &q,z),
sinl~=-So. '&a&»/[(So.') + b, ],

l 142=--r»», 4's=- 4»» .

(34)

Hence the spin-spin contribution to the eigenener-
gy varies as

The diagonalized Hamiltonian has elements

K»»= a(l —3 cos l»)+ v2 ar» sing, cosg»(cosQ»+ sing»)

(K,',)„=(Ã,', )&a= a[1 —3&v,/2(3a + &) J
- »»'[I —3»d»/2(Qa + h )],

(X,', )33= o'[1 —3+3(u~/[Sa+(n /3»»')] j- —2»».'[I 3»d~/2(Qa + 2dP)] .
(35)

In the expressions on the right-hand side the en-
semble average has been made. These all trans-
form nearly identically. We observe that the trans-
formation of X,', is the same as a real-space vec-
tor transformation o,'cos8, where cos8 = 1 —N&an 8,
8«1, and sine= ~q/(3&'+ —,'b, )'»; that is, Su is
the effective local field squared.

The appearance of the spin-spin transformation
is the same as that of the diagonal part of a rank-
two tensor, but its properties are different. As
&& varies from zero to» 3&, g& varies from &m

to &m, gz varies from —&m to —~m, and (3 varies
from 0 to ——,'m.

The mean-square line frequency and the mean-
square local field are simple to determine from the
Hamiltonian in the form of Eq. (23). The mean-
square frequency may be determined by using the
expression

(auP) = [Tr(X, S„)/Tr(S„) ]—&o .

If we evaluate the trace sums for the Hamiltonian
transformed to a frame rotating with an angular
frequency ~= ~0, it is obvious that we obtain (&u ).
For Hz-0 and 6 0, S„has matrix elements be-
tween levels 1 and 3 and 2 and 3, and they are
equal to v —, ; hence

Tr [X,S„]= [(X,—g) S„,3+ (Xz —Q) S„~s] =

Trs'„= [(v -, )'+ (v™a)']= 1,

and so (4»d')= Qo.".
The mean-square local field is defined as

(ff'I) = Tr[X,',j'/Try'S', .

by inspection we have

Tr[X,', ]'= sa', Tr[S'„+S'„]'=2 .
Hence the mean local field squared is So /y .

In the presence of a nonvanishing rf field, S„
will have matrix elements given by

(S„);»= W[(cosp;+ sing») sinl » cosg»

+ (cosp»+ sing») cosf» sing&] . (35)

Since S, commutes with the rf-field Zeeman
term and TrS„= TrDS„'D ', it is evident that the rf
field will not change (4~ ) when computed in this
manner. Although the transition- inducing mo-
ment S„&J varies with rf field, the rf-f ield con-
tribution to the nutational eigenenergies keeps (&&a )
constant. On the other hand, if we ignore the var-
iation in nutational energy with &&, and compute
the mean-square moment arising from the con-
tribution of R,', to the nutational energy, there will
be a change in (d(u') with rf-field strength. Call
this component of (b&u ) the dipolar component
(b»d»), and the rf-field component (h&u~„), then Qo2
= (&O'D)+ (b.&u'„). The rf component will arise from
the splitting of the dipolar line produced by the nu-
tational energy contributed by the rf field.

Explicitly, we find the random line broadening
contributed by the dipolar coupling to be

(d»d~) = QQ Q (cos f» —cos l'») cost» cos)»
~

a 2
2

&=i,a
g=S

(3V)
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For &ott &3t1s, 6 &tctt/12a, we find

&a(van)=9n cos 8,
and for +&»3&, the same procedure yields

&suan) = Qns( &)' cos' 8.

(38)

(39)

It thus seems that the dipolar contribution to
the mean-square linewidth should vary as cos 8,
and that the splitting by the rf field should vary
as Qas(1 —cos4 8), 8- 0, or Qas(1 —~s cos4 8),
8- &w. The usual considerations lead one to ex-
pect the rf-field dependence of T3, to be the square
of the transformation of X'„or cos 8. For the
case considered here, that of the solid lattice in
which the dipolar field correlation time v is long
compared with (y' &ff1,)"') ', Tomita obtained a
result which may be approximated at resonance
and for tot &)'&H1, ) g as

1/T,.= ', r '&H-'. &/~b .

The present result is

1/Tz, = (1/Tso) cosa 8,
which reduces on resonance to

(4o)

(41)

1/T2. = (1/Tm) I&'&Ifs~)/(~1+ &' &Hi))] (43)

These expressions differ by the large factor
~/TM "

If we look to experiments for guidance, there
seem to be no useful data on the behavior of the
spin-spin relaxation time in homogeneous-broad-
ened systems. Experiments on systems with both
homogeneous and inhomogeneous broadening are
of little use. For example, if, according to our
predictions, the homogeneous contribution to T2,

varies as eos 8, it will always be masked by the
inhomogeneous contribution which also varies as
cos'8.

The spin-stirring experiments of Sarles and
Cotts' using NaF can be discussed in terms of
the calculations presented above. If Na NMR
resonance is observed with a weak rf field, and
the F nuclei are subjected to a strong rf field near
the F NMR resonance, then one expects the Na
inhomogeneous broadening to be reduced accord-
ing to the expression

&&~ )N = &&& )N -N + &&(d )N -z cos Hz

with

Cos eF= «+ L 2 2
3 F++F( J)F~

The factors &btca) „,„,and &Ates)„, F are the con-
tributions to the Van V1eck second moments of Na
from the homogeneous Na broadening and the in-
homogeneous Na- F interaction. The quantiza-
tion angle 8F of the fluorine nuclei is determined
primarily by the local field arising from the F-F
homogeneous broadening. Explicitly, using Eq.
(4), one finds

&F& ~i)p=-'&d~')F F+ &&to')N. F

= (2m)' 40. () )tHz' .
Using these values, the predicted variation of the
Na second moment of the central resonance is
found to be that shown by the solid line in Fig. 1.
This figure also presents the experimental data
of Sarles and Cotts. As we have noted previous-
ly, the experimental data do not separate the con-
tribution of the central-line moment from the

OBSERVED
SODIUM RESONANCE
SECOND MOMENT AGAINST H)

H 0

8N

Cl
6

M

Ld

A.
OJ

FIG. 1. Measured second
moment of the Na resonance
vs the amplitude of the rf-
field stirring fluorines with
prediction calculated from
Eq. (43). [Experimental
data from Sarles and Cotts
(Ref. 18). Note that their
(Av) corresponds to (M) /
(2g)2 in the notation of this
paper. ]

0
0

+{au) P
fga-Na

I

H (6)
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satellite-line moment for H& ~1 G. At higher
rf-field strength the data lie consistently above
the predicted curve, as if the Na resonance
homogeneous broadening were greater than that
computed from the Na-Na interaction alone. The
addition of 1 kHz~ to the Na homogeneous broad-
ening brings the experimental data and the the-
oretical prediction into very good agreement.

The variation of the Na second moment as the
frequency of the strong rf is removed from reso-
nance 4&40, determined experimentally by Sarles
and Cotts, fits Eg. (43) equally well; that is, if
1 kHz is added to the homogeneous-broadening
term, the prediction of Eg. (43) is in agreement
with the experimental data.

There is also one indirect experimental ob-
servation with which the prediction for the varia-
tion of the mean-square linewidth (b,uF) and T2,
with && and 4 may be compared. Waugh and his
collaborators have demonstrated that the effective
T, decay in spin-echo experiments in homoge-
neously broadened systems can be lengthened by
an order of magnitude by using a series of 90
pulses spaced at time intervals less than Tao.

The proper pulse analysis of this experiment
can be avoided by examining the Fourier decom-
position of the pulsed rf field. For a pulse inter-
val between equivalent pulses r, less than T~o,
and with the carrier frequency at NMR resonance,
the pulse sidebands will be outside NMR reso-
nance and may be ignored. The experiment is thus
essentially a cw experiment, with pulse operation
allowing the observation of the decay of the nu-
clear magnetization.

For this case, our arguments, using the effec-
tive field, would predict that the second moment of
the NMR line should vary with rf field proportional
to cos 3.

The induction decay in a short interval after the
first pulse may be written in terms of the second
moment as "'

F(t) ~ 1 —2(b.cu'), f', (44)

(k(d ),=- (6(d )016 Cos V,

cos'8= [I+ 'tds/(y'(H~)+ 3&')] ' .
After N pulses spaced at intervals of 7. in time,
we expect

E(¹) ~ (1 ——,
'

(LuP), ~2)"- exp(- —,
'

(h&u ),NY ) .
If we write the mean-square field in terms of the
peak x-axis field, one circular component will have
a mean-square amplitude

(Hi &
= -'(&'6')'H 'f, (45)

with ~' the pulse length and r the pulse interva, l.
For large (H, ),

cos'8= (H~)/( H,') .
Taking NY = t, introducing these factors and the
fact that the pulse is a 90' pulse, we find

P(t) exp —Il'~(
( (

(46)

(47)

with y2(H~~)= 52/3T~20= —,'(4(o ). For a Gaussian
line 5 = (ln4) '= 0. 72. First we note that the ob-
served decay varies as 7'. This experimental ob-
servation can be taken to indicate that the second
moment does indeed vary as cos48, in agreement
with our predictions for the strong rf-field depen-
dence of the mean-square-frequency moment.

For one experimental result with enough data to
compare the quantitative prediction, that of Co
(NH&)6(BF4)s, we note that Tzo= 45 psec, v=10
psec, the induction signal decays exponentially to
e ' when t=4 msec. Equation (47) predicts the de-
cay to be down to e ' in 2800 msec for a Gaussian,
in poor numerical agreement with the experiment.

On the other hand, the effective transverse re-
laxation time would be predicted by the arguments
we present here to be

I'3m r2OTae= Taa cos 8= T20~, q q ——2. 3 msec.I4v5 (48)

This is in good agreement with the observed de-
cay time. Possibly the numerical factors in our
calculation of the induction-signal decay are in
error, or the calculation itself is at fault. The in-
duction-decay rate in our calculation will always
differ from the effective transverse relaxation
time by a factor

T2,/Td„, „=95 w cos 8/32T20= (54/2@2)(v/T20)

= (&/2Tao)' (49)

At this point, it can be said that we have quantita-
tive agreement only about the variation of the sec-
ond moment with cos48. NMR multiple-pulse ex-
periments, or induction-decay measurements,
would seem to be the ideal experimenta1 method
for the study of strong-field effects at exact reso-
nance.

No truly homogeneously broadened EPR system
has been observed in second-harmonic experi-
ments, ' so there is no guidance to be had from
those exper iments.

There are other observations that do not dis-
agree with the predictions of the procedure sug-
gested here for analyzing the behavior of T2,
with intermediate rf-field strength. '"' Unfor-
tunately, all of the observations are on systems
with some inhomogeneous broadening, and so it
must be said that it is not altogether certain wheth-
er the effect of strong rf fields on homogeneously
broadened systems may be completely understood
through the use of the heuristic approach which
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has been described in this paper.
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