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Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants
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After an outline of the Brillouin effect and of elastic waves in crystals, a method for the
determination of elastic and photoelastic constants is analyzed. The authors propose a set of
conditions with a view to obtaining accurately the numerical values of elastic and photoelastic
constants and to ascertain their sign. The Brillouin-line intensities for scattering angles of
90' and 180' are presented for all crystal systems, except for the monoclinic and triclinic
ones, and for the low-symmetry classes of the rhombohedric system.

I. INTRODUCTION

The measurement of frequency shifts of Brillouin
lines permits the determination of the propagation
velocity of elastic waves; this method has recently
been improved, so that technical applications, such
as the determination of the elastic constants of
crystals, can now be easily performed. The prin-
ciple of the method was put forward by Krishnan in
1955. ' Also, the photoelastic constants may be
calculated from measurements of the Brillouin-
line intensities. The first observation of the Bril-
louin-scattered lines was made by Gross, "and the
first accurate experimental verifications were made
by Benedek et al. , Chiao and Stoicheff, ' and
Cecchie in 1964. Measurements of elastic (see
e. g. , Refs. 7 and 8) and photoelastic constants have
since been performed. ' This method has the ad-
vantage of avoiding the creation of important dis-
turbances in the medium; thermal fluctuations pro-
vide the necessary elastic waves of small ampli-
tude, and the crystal is studied in conditions near
the mechanical equilibrium. Measurements are
not subject to boundaries conditions, i. e., the shape
of the sample, insofar as the usual dimensions
are concerned. The results are obtained at fre-
quencies of about 10 6Hz, permitting dispersion
studies. " Besides, intensity measurements allow
the determination of elasto-optic constants. How-
ever, the necessity of using a transparent material
restricts the application of the technique (although
measurement of elastic constants of a nontrans-
parent crystal by means of the Brillouin effect has
been recently performed by Sandercock' ). More-
over, the usual difficulties accompanying ultra-
sonic pulse methods (i. e., choice of the directions
leading to the most precise measurements and de-
termination of the signs of some of the constants)
are increased by the unobservably low intensity of
some Brillouin doublets.

Our attempt here has been to select conditions
that allow the most accurate determination of the
elastic and photoelastic constants of all crystal sys-

A. Propagation of Small Amplitude Waves in an
Anisotropic Medium

The components of the displacement 0 of an ele-
mental volume of density p satisfy the following
differential equation, "

~ ~ 8 U,
p f f)kl

Xg XQ

with C,», being the components of the tensor of the
elastic constants. (The summation convention is
always implied. )

With solutions in the form of plane sinusoidal
waves, Eg. (1) becomes

U&= I
&& U

with
y= pV

where V is the phase velocity and

r& i
= c&g~i Qy Q~ ~ (4)

I"„is symmetric with respect to an interchange of
the subscripts i and f, and Q&, Q, are the direction
cosines of the unit vector normal to the wave plane.
The three directions of vibration u', eigenvectors
of the matrix 1, are mutually perpendicular, be-
cause of the symmetry properties of I', and are
therefore associated with one given propagation
direction. In general, they are neither purely lon-
gitudinal, nor purely transverse. The three real
and positive associated eigenvalues y' can be ob-
tained by solving the following equation:

deter„-6„yi =0.
Formula (6) links the propagation velocity of

tems (monoclinic and triclinic systems excepted).
They have been applied to measurements of the
elastic constants of crystals belonging to the cubic, "
the tetragonal, ' the trigonal, "and the orthorhom-
bic' systems. Measurements of photoelastic con-
stants are under way.

II. THEORETICAL CONSIDERATIONS
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elastic waves to the elastic constants of the crys-
tal. The tensor I'„ is centrosymmetric; the prop-
erties connected with the propagation of elastic
waves are the same for all crystalline classes be-
longing to the same Laue group.

8. Pure Modes

In the case of some propagation directions called
"first-kind" pure-mode directions, one of the pos-
sible vibrations is purely longitudinal, and the cor-
responding waves are then pure-compressional
waves; the two other possible vibrations are, in
that case, purely transverse (corresponding to them
are pure-shear waves). In the pure-mode direc-
tions of the "second-kind, " one of the vibrations is
purely transverse; the other two can be of any kind.

Some pure-mode directions are determined by
considerations of symmetry. ' As a matter of fact,
a "first-kind" direction corresponds to every prop-
agation direction whose vector is parallel to one
of the axes of symmetry of the Laue group. A de-
generacy in mode frequencies occurs if the axis of
symmetry is of a higher order than 2. ' '~' '

On the other hand, a purely transverse "second-
kind" vibration (whose direction is perpendicular
to the plane of symmetry, the other two directions
of vibration being contained in the plane) corresponds
to every vector Q contained in the plane of sym-
metry. The utilization of these pure modes, de-
termined through symmetry, for the determination
of elastic constants is routine in the usual ultra-
sonic methods.

The general conditions for determining pure
modes are obtained by writing in Eq. (2), @=u for
the "first-kind" modes, and Q u= 0 for the "second-
kind" modes. '~ It is evident that the results con-
tain not only the directions obtained through con-
siderations of symmetry, but also directions which
depend on the numerical value of the elastic con-
stants, and are useful for determining the signs of
some of these constants.

C. Brillouin Scattering

Brillouin scattering is usually compared to x-ray
diffraction from crystals, because of the formal
analogy between the conditions of interference
(Bragg relation). The phenomenon is described as
a selective reflection of the incident electromag-
netic waves on lattice planes in case of x-ray dif-
fraction, or on planes of maximum density in case
of Brillouin scattering. In the latter case, a shift
of frequency due to the Doppler effect is observed
because the planes are in motion. The inelastic
scattering of x rays by phonons is obviously the
same phenomenon as Brillouin scattering.

One of the possible theoretical approaches de-
scribes light scattering as the radiation of polar-
ization density created by the incident electromag-

netic field. ' ' If the size of the scattering volume
is infinitely large with regard to the wavelength,
there is only one "efficient" acoustic wave which
is responsible for the scattering; its wave vector
y~ is determined by momentum conservation. In
fact, owing to the finite size of the scattering vol-
ume, all the acoustic waves whose wave vectors
y are approximately equal to Xo, contribute to the
scattering: Therefore, a broadening takes place
and enhances the classical broadening due to the
attenuation of hypersonic waves. "

%e now define some of the notations to be used:
A and N are the wavelength and the frequency of the
"efficient" elastic wave; X and v are the wavelength
in vacuum and the frequency of incident light, re-
spectively; q and q' are unit vectors of the perpen-
diculars to the incident and scattered light-wave
planes; eq and e~ (e( and e~) are unit vectors of
the two vibrations which propagate without altera-
tion along q (q'), (we are only going to consider
cases which will be sufficiently simple for e2 and

e~ to remain in the scattering plane, and there-
fore, e, and e( are perpendicular to this plane);
n„and n'„, are the indices of refraction of the
medium for the light polarized along e„and
e'„. , respectively; and 8= (q, j') is the scattering
angle.

If the incident and the scattered beams are po-
larized along e, and e'... the "efficient" wave is
defined by

A„.= X( „nn+'„. —2n„n'„. cos8) 'I ~,

Three directions of vibration and three velocities
of propagation correspond to each Q direction. The
frequency shifts are then given by the expression,

»',„./v= ~ (V'„, /c) (n'„+n'„'. —2n„n'„, cos8)"'.
(8)

In case the incident beam is not polarized and the
polarization of the scattered beam is not measured,
each of the six lines is, because of birefringence,
composed of four components separated by a few
MHz. "

The flux of light scattered by an elementary cubic
volume with an edge a is given by (taking into ac-
count the losses due to reflection at the inlet and
outlet faces of the crystal)

(n +1) (n' +I)'
(9)

where k is the Boltzmann constant, T is the abso-
lute temperature, ~ is the scattered-light solid
angle calculated externally to the crystal, and g,
is the illuminance of polarized incident light along
e„. For all crystal systems, except the mono-
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clinic and triclinic ones,
2 2 I 2(jjj jjj8 j B jj 8 , j)

p(~:. )'
S 1

0pp, ' 4 i4

where
IB'jj=pjgkj jjk@j

(10)

n;, n& are the principal refractive indices, e, ,
and e', .

&
are the i and j components of the e, and

e', . vectors, respectively, and u~ is the k compo-
nent of the u' vector. p', », is the new photoelastic
tensor which is defined by

The solution of Eq. (5) enables us to establish a
system of n equations, the unknown quantities of
which are the n elastic constants, and in which the
coefficients depend on Q, the chosen directions.
Therefore, the values of the elastic constants can
be determined by measuring y in a sufficient num-
ber of arbitrary directions p of Q. The calculations
may be carried out from the n values of y and the
Sp values of the components of Q.

The precision of the measurements of y depends
not only on the intensity of the corresponding com-
ponents, but also on the resolving power of the
spectrometer, on the intensity of the line without
any frequency shift (due to the defects of the crys-

where (5K ) is the variation of the inverse optical-
dielectric constant and SUk/Sx j is the displacement
gradient.

This tensor, introduced by Nelson and Lax in
1970, ' allows one to calculate the change in the
inverse dielectric tensor due to the strains and the
rotations associated with the acoustic waves in an
optically anisotropic medium. The rotational ef-
fect which takes place in shear waves had been
omitted until then. It is convenient to put

I
Pk)0 J Pk»t +Pig (0 l ) ~

where pj»j is the pockels photoelastic tensor (sym-
metric with respect to interchange of )'j and l), and

pj»» is a tensor given by

Pjj jkj&
——~a[(K )jj 6k&+ (K ) jj '5jk —(K ) jk5jj

(K ')kj t jj—j (14)

In all crystal systems where the principal axes of
the dielectric tensor coincide with the crystallo-
graphic axes, we have

pjj &k j) k (~j j ~kj jk ~ jj) (I~+j

We shall use only the above expression since mono-
clinic and triclinic systems have been excluded from
the scope of the present work.

III. POSITION OF THE PROBLEM

A. Elastic Constants

tal and to stray light), and on the intensity and the
frequency difference of the adjacent components,
which can often provoke displacements of the maxi-
mum of a line through overlapping. The problem
finally consists of determining Q, q, jj,, and jj', so
as to obtain the maximum accuracy of the C&& val-
ues.

Putting such a complicated problem of optimiza-
tion into equation form is difficult, and unnecessary
in order to achieve good accuracy. We prefer to
use a semiempirical method similar to the usual;
ultrasonic techniques.

The choice of the angle of scattering can be inde-
pendently based on previous experiments. As a
matter of fact, it is necessary to avoid spurious
light as much as possible in order to carry out
precise measurements on transverse components.
Experience shows that it is preferable to use a 90'
scattering angle instead of having recourse to back-
scattering. Moreover, calculation demonstrates
that P, the scattering factor, is frequently zero for
transverse components in case of backscattering.
However, if the experimental arrangement for 90'
scattering cannot be used for technical reasons,
the backscattering may be attempted. This is the
case for nontransparent materials" or when the
samples are too small to permit the cutting of the
necessary faces.

In the same manner as in the method of deter-
mination of elastic constants through propagation
of ultrasound, "the Q vectors are chosen accord-
ing to the following criteria: (a) The constant which
is to be measured must appear in the characteristic
equation (5) with largest possible coefficient; (b)
this equation should be expressed very simply, so
that the number of measurements necessary for
determining this constant can be as small as pos-
sible, in order to achieve precision of calcula-
tions —such as, in particular, the case when Eq.
(5) can be expressed in factored form.

On the other hand, there exists an infinity of pos-
sible directions of q and q' for a given Q direction,
corresponding to different values of the intensity
factor P'„. of each particular line. Since the tensor
Bkjj has been determined by (11) for each of the
three acoustic modes expressed by Q and uk, the
value of q should be chosen first (which thereby de-
termines q' and the two possible values of e, and
e'„.) depending on the following criteria: The state
of polarization of lines should permit their identi-
fication; the intensity should be maximal for the
line under consideration.

B. Photoelastic Constants

In the same way, P, the scattering factor mea-
sured by comparison with that of benzene or
toluene for a sufficient number of orientations,
allows one to determine the values of photoelastic
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constants from (10) and (11). For the same rea-
sons, 90 scattering will be chosen, with orienta-
tions that give simple relations between P and the
photoelastic constants. Backscattering is used
only when other measurements are necessary for
ascertaining the sign of these constants.

IV. GENERAL STATEMENTS

Starting from these considerations, we have tried
to provide a method for determining elastic con-
stants for all systems, except the monoclinic, the
triclinic, and the rhombohedric group R&. The con-
ditions are as follows: (a) Q must be parallel to one
of the crystallographic axes or the bisector of
these axes (except in a few cases), and (b) for 90'
scattering, the scattering angle must be equal to
90' inside the crystal.

For typographic reasons, the tables are presented
in the following order: Backscattering, and then
90' scattering.

A. Backscattering

Samples. Samples having faces perpendicular
to the crystallographic axes and bisectors are re-
quired. In order to avoid stray light, which is gen-
erally strong, samples with oblique faces with re-
spect to the crystallographic axes are often used,
allowing the use of Brewster's angle to remove
specular reflections. Unfortunately, this technique
requires a high number of samples. Alternatively,
a device for filtering the unshifted line may be
used (see, e. g. , Refs. 12 and 36-38).

Results. For each Laue group, the values of y,
Q, u, e„, e'„, , and the Brillouin intensities are
presented in table form. When necessary, the
values of y and u are reassembled in a distinct
table. The notation refers to one acoustic mode,
i.e., to a given Q, u' couple.

B.'90 Scattering

ExPerimental process. What we call a "scatter-
ing case" is determined by a Q direction, a scat-
tering plane, and a polarization state. Given the
condition q ~ q' =0, the components of q and q' may
be calculated by applying (7) in each scattering case.
Four samples are required for the most general
case (orthorhombic group). These four samples
are cut in the form of rectangular parallelepipeds
with the following faces: (a) (100), (010), (001);
(b) (110), (110), (001); (c) (011), (011), (100); and

(d) (101), (101), (010).
Only two samples are necessary in the case of the

cubic system. If q and q' are perpendicular to the
inlet and outlet faces, the crystal will be positioned
on a spectrometer adjusted for an angle of 90',
This is the case when n, = n'. .. or when the bire-
fringence effect can be neglected within the accuracy
of the experiments. Otherwise, q, q' and the re-

fractive indices being known, the incidence angles
i and i' of the incident and scattered rays are cal-
culated, and consequently, the angle 8' between the
incident and scattered rays outside of the crystal
is also calculated. After having properly oriented
the laser beam, the crystal is arranged so as to
obtain the angle i between the incident beam and the
direction perpendicular to the face.

Results. Table IV shows the q and q' values for
any scattering case of an optically biaxial crystal.
The indices refer to the scattering cases. The table
is used for optically uniaxial crystals with n&= n&.

For each Laue group, a table has been provided
showing the e, and e', . values and the scattering
factor (the same notation of acoustic modes for a
Laue group is used in the backscattering and 90'
scattering tables).

C. Notations

When dealing with the elastic and Pockels photo-
elastic constants below, we will make use of the
usual contracted notation of two indices running
from 1 to 6.

The elements p, &z» are written p &„&
with the

correspondences:

1, 1 1, 2, 1 6, 3, 1 5,
1, 2 6 , 2, 2 2 , 3, 2 4 ,

1, 3-5, 2, 3 4, 3, 3 3.
With the same convention, the elements p', », are
written p' „.

The intensity factors relevant to one acoustic
mode have been calculated for two perpendicular
scattering planes. These planes are called a and
5. The components of q are called q, , where o.
refers to the scattering case. The scattering fac-
tors are called P"„,.(6) where the index M refers
to the acoustic mode and the scattering plane, and
the indices p, and p,

' refer to the polarization direc-
tions. The state of polarization of the incident and
scattered beams polarized in the directions e, and
e'„. will be designated as polarization (p, p. '). For
simplicity, the index which refers to the acoustic
modes is omitted for the notation of u.

V. DETERMINATION OF ELASTIC CONSTANTS
BY MEANS OF 90 SCATTERING EXPERIMENTS

A. Orthorhombic Group (Classes 222, mm2, and
mmm)

A good starting point for this study is the ortho-
rhombic group 0(Tables II and III). Equation (5) is
completely factored for the (100), (010), and (001)di-
rections and partially so for any Q vectors lying in
the coordinate planes. C» is thus determined with
the help of measurements made for the modes 1a
and Ib in polarization (1, 1) and Ca~ and C3~ by mea-
surements similar to the ones made for the modes
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4 and 7, respectively. The value of C44 can be de-
duced from measurements made for the modes 5b

and 9a, in polarization (1, 2) or (2, 1), and the val-
ues of C&5 and C66 by measurements similar to the
ones made for modes Sa, 8b and 2b, Ga, respec-
tively. If some transverse intensity factors are
too weak to allow these last measurements, the
'modes 12, 15, and 18 can provide a solution. Each
of these six constants is obtained from one mea-
surement of y only: In this way maximum precision
is achieved.

The measurements for the modes 10, 11, 13,
14, 16, and 17 supply the experimental values of
the sums S, = (C,2+ Css) Ss (C13+ C55) alld S3 (C23
+ C44). On the other hand, the signs of these sums
cannot be directly determined by the measurement
of elastic velocities, whatever the direction of
propagation may be. Moreover, it is not always
possible to lift the indeterminacy when starting
from conditions of stability (positive energy of de-
formation).

The method described by Fisher and McSkimins

does not apply unless one can distinguish a priori
the longitudinal mode from the mixed one, which is
possible by the pulse-echo method. The problem
has been solved by observing the fact that the prop-
agation velocity in the planes of symmetry does not
depend on the sign of the sums S&, S2, and S3. For
example in the plane XOY, the values of y' are roots
of the following equation:

(C55 Ql+ C44 Q2 r) [r' —(Cll Ql+ C22 Q2+ C66) r
+ (C» Q, + Css Q2) (Css Ql+ C22 Q2)

—(Cls+ Ces) Ql Q21 = 0 . (16)

On the other hand, the propagation direction of pure
modes of the first kind exists in this plane and is
expressed by

~Q it
Cll 2Css —Cls 0

Ql I, C22 —2C66 —Cls

The corresponding value of y for the pure-longi-
tudinal mode L is given by

y'=
(C22 —2C66 —Cls) Cll+ (Cll —2Ces —Cls) (2cse+ C12)

C11+ C22 —4C66 —2Cg2

(18)
We should calculate the presumed direction of a
pure mode and the value of y for each one of the

The results for the quadratic group T, (Tables
VII and IX) stated below can be applied to the hex-
agonal group H, by taking into account the supple-
mentary relations relevant to H„

Css= 2 (C,l —Cls) i

use = 2(P» -Pls) .
(»)
(2o)

The only modes indicated in Table VII-as well as
in the following tables, are those that lead to inten-
sities different from zero. C», C», C44, and

Css are readily measured (modes la and 5; '7; Sa,
8, 12; 2b; respectively, with 15 for cross check-
ing). C» is calculated from the measurements of
y' . The measurements of y' or y' give two pos-
sible values for C&3, the above described method
(Sec. VA) may be applied for choosing the correct
val~e. If necessary, the value of —,'(C» —C,2) for
T& can be measured by the mode 11, e. g. , taking
the plane (110) for the scattering plane. The cal-
culation of intensities is tedious and will not be
given here. It should be noted that for H, the mode
10 does not supply any new information as, in fact,

= Cii

C. Hexagonal H Group (Classes 6/m, 6, and 6)

There is no need to distinguish between the hex-
agonal group H, and H, (Table VIII) when studying
the propagation of elastic waves; in some cases of
scattering only the intensities are modified.

D. Quadratic Group T (Classes 4/m, 4, and 4)

The method herein proposed is an adaptation of
the method put forward by Alton and Barlow. " It
is possible to apply it if the velocities of longitudi-
nal and mixed modes for a given direction can be
measured (this case is frequently found in Brillouin
scattering5). The calculations for this group are
given in Tables XI and XII. C» and C44 are readily
measured. C», C», C&, and C6& are calculated
from measurements of y' for the following values
of |4): (1, 0, 0), 2 "2(1,1, 0), and (vS/2, —,', 0). As a
matter of fact, Eq. (5) is factorable if 54) lies in the
(001) plane. Thus

possible values of C&2. Comparison with the roots
of Eq. (12) lifts the indeterminacy. The signs of
S2 and S3 are determined in the same way.

B. Quadratic Groups T, (4mm, 42m, 422; and 4/
mmm Classes) and Hexagonal H, (6mm, 62m, 622,

and 6/mmm Classes)

(C44 —r)b' r(c»+ css) ——[Cls (Ql —Qs)+ (Cle+ CM) Ql Qs]

+(C» Ql+ C66Q2+2C16Q1Q2) (C66Ql+ Cll Qs —2C16Ql Qs))=0 . ( )

y~ and y" (roots of the quadratic equation) are the
values of p V for the longitudinal and mixed modes,
respectively. The sum (y ~+ y") remains constant

1

and a first relation is written,

S= y +y = Cq~+ C66 ~
I N (22)
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lf Q= (1, 0, 0),

(r')'+(r")'= A,
where

A = Cii+ Cee+ 2Cie ~

if Q 2 1/2(1 1 0)

(23)

(24)

Q vector lying in the (001) plane. To each possible
value of the constants, the directions of pure modes,
in this plane, are given by

m = Qa/Qi

k+ 21/2[1+ key k(1+ pa)i/2] / 'y (I p ka)1/2 (31)

(r')" (y")'=A. ,'B—,
where

B= Cia —Cii+2Cee (Cii+ Cia) .2 2

Finally, if Q=(&3/2, —,', 0),

(y ) +(y") =A+(3/4)B —(v3/2)D,
where

D= Cle(Cli+ Cia) .

(26)

(2V)

(26)

Cu, C33y C44, C66&0,

C„&e„, C„C„&C„, C„C„&C„.2 2
(29)

It is thus generally possible to exclude some of
the values found; however the method proposed in
Sec. VA. must be used to complete the determina-
tion. As a matter of fact, the quadratic factor in
(21) may be written

y —$y+ 2DQi Qa(Q2 —Ql) —BQ1 Qaz+ 2' ($ -A) = 0.
(3o)

The values of y and y" are also known for any

After elimination of terms other than C» between
(22), (23), (25), and (2V), a quartic equation is ob-
tained. To each given value of C» there corre-
sponds one single value of C&2, C«, and C«. Sta-
bility conditions for Ta are given by46

q, = (1+m'+ k') «2

q, = m (1+m'+ k') '/'

Q, = k(1+ m'+ k') "'
where )I is arbitrary. With the following choice of
a right-handed rectangular-coordinate system:
OX' parallel to f10'' lying in the crystallographic
(001) plane, Eq. (5) is written '

(C,', -r)[(cl -r)(C'„r)-C-,",]=O,
with

(34)

where

5 = (Cil —2Cee —Cfa)/4C16 .
The corresponding value of y~ is

y =(1+m ) [Cii+m (2C66+ Cia)+m(3 —m ) Cie] .
(33)

A comparison between these values and the roots
of Eq. (30) lifts the ambiguity.

For the measurement of C», we use the follow-
ing property: The planes containing OZ and one of
the first-kind pure-mode directions (given by m)
are planes containing second-kind pure-mode di-
rections. Let us consider such a g direction given

Cll (qi+ Q2) Cii+ 2'Ql Q2 C12+ 2Qs (Qi+ Qa) (Cia+ 2C44)+ Q3 C33+4Ql Qa C«+4Ql Q, (Q,
' —Q', ) C«, (36)

Css 'Q3 (Ql+ Q2) (Ql+ Q2) Cll+ 2Q2 Q3 (Ql+ Q2) (C12+ 2Cee)

Qs(Qi+ Qa) (2C13 Css)+ (1 2Q3) C44 +4qi qaqs(qi+ Qa)- (Qi Qa) C,e, (36)

c'„=2q', q', (q', + q', )-' (c„-c„)+q,' c„+(q', + q', )-' (q', —q', )' c„-4q,q, (q'„q,')-'(q, q', ) c„, (»)

cis Qs (Qi+ Q2) ('Ql+ 'Q2) ctl 2Ql Q2 'Qs (Ql+ 'Q2) cia+ 'Q3 (Ql+ 'Qa) (1 2Qs) (C13+2C44)

+ Qs (Ql + Q2) C33 'Ql Q2 'Q3 ('Ql + 'Q2) C66 4qi Q2 Q3 ('Ql+ Qa) (Ql 'Qa) Cie ~

Qa/Q, = m,

~Q Cii —2C44 —Cis ~= l = (1+m )
'Ql C33 2C44 cls

2(C11 —2C66 —Cia)m (m + 1)
+

(C33 2C44 C13)(m -6m +1)

In this direction one finds

(39)

The measurement of y and y" for this direction
gives two possible values for C„. The ambiguity
must be lifted by the method proposed in Sec. V A,
from the first-kind pure-mode direction given by

y =(1+m +l ) [Cii+m (2C66+Cia)

+ l'(2C4, + C„)+m(3 —m') C«] . (41)

For this class, it is necessary to cut two samples
so as to obtain

Q = (-,' W3, —,', O) ~d Q I) (1, m, k) .
E. Cubic CI (43m, 432, and m3m Classes), Cubic

C2 (23 and m3 Classes), and Isotropic Groups

There is no necessity to distinguish between cubic
groups C, and Ca (Table XIV) for the propagation
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T~LE II. Orthorhombie group 0. 0=90'. The values of y and

1

(1,0,0) 2 (-1,1,0) (0,0, 1)

e

(0,0, 1. )

(
Not.

Longitudina1 made

l

2
31 11

{1,0,0)

(1,O, O)

1 1
(ql, q2, 0)

(ql, q2, 0)
2 2

(O, O, 1)

2 2(a, -al, o)

(-al, -q2, 0)1 1

(0,0, 1)

la Cll

1 1

(1,0,0) 2 (-1,1,0) 2 (1,1,0)

1

2 (1,-1,0)

2 2 4
(nl + n2)

8 8 111 22164 nl n2 fll
1

(1,0,0) 2 {-1,0, 1)7 (0,-1,0) (0,-1,0) 2

(1,0,0)

(1,0,0)

3 3
(al, o,q3)

4 4(al, o,q3)

(0,-1,0)

4 4

3 3(-al, o, -a3)

(0,-1,0)

lb C

1 1

(1,0,0) 2 (-1,0, 1) 2 (1,0, 1)

1

2 (1,0, -1)
2 2 4

8 8 1 11 3 3164 nl n3 C1 1
1

{0,1,0) 2 (0,-1,1) (1,0,0) (1,0,0)

(0,1,0)

(0,1,0)

5 5
(O, q2, q3)

6 6
(O, q2, o3)

(1,0,0)

6 6
{0 $ 03 j 02 )

5 5
(O, -a2, -q3)

(1,0,0)

4a C22

1 1

(0,1,0) 2 (0,-1,1) 2 (0, 1,1)

1

2 (0, 1,-1)
2 2 4

(n2+ n3) 4 4 2
8 8 { 2 22 ~ 32}"4 n2 "3 "22

1

(0, 1,0) 2 (1,-1,0)
T (0,0, -1) (O, O, -1) 2

(O, l, O)

(0,1,0)

7 7
(al, a2, 0)

8 8(al, o2, 0)

(0,0, -1)

8 8(-a2, ql, o}

7 7(-nl, -a2, 0)

(0,0, -1)

4b C22

1 1 1

(0,1,0} 2 (1,-1,0) 2 (1,1,0) 2 (-1,1,0)
2 2 4

8 8 112 22264 .
1 n2 "22

1

(0,0, 1) 2 {1,0, -1) (O, l, O) (0, 1,0) 2

(0,0, 1) 9 9
(Ql o.Q3) (0,1,0) 9 9(-q ,o, -o3)

7a

(0,0, 1) (ql , O, q3 )
10 10

(
10

0
.10) (0,1,0)

1 1 1

{0,0,1) 2 (1,0, -1) 2 (1,0, 1) 2 (-1,0, 1)
2 2 4

(nl + n3)
8 8 1 13 3P33

64 nl n& C33
1

(0,0,1} 2 (O, l, -l) (-1,0,0) (-1,O, O)
2

Pl~/C33

(0,0,1) (O,q2, q3 )
11 11 ll ll

(.o.-Q3 .Q2 ) (-1,0,0)

7h C33

(0,0, 1)

{0,0,1)

12 12
(O,a2 ,q3 )

1

2 {0,1,-1)

12 12
(O, -q3 ,a2 )

1

2 {0,1,1)

(-1,0,0)

1

2 (O, -l, l}
2 2 4

{n2 + n3} 4 4
8 8 {n2 23 3 33}

64 n2 n3 CQ3
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u are given in Table III; the values of q are given in Table IV.

pure shear or mfxed mme
l

pure shear mode

l

Not. Bw' Not. y B„„

2a C66 3a C56 ~

{("2ql) + (")'I2) ~ 1 , 2
12 122

(ql~65)
n2 '55

{( lql) ( 2q2) ) 2 , 2
22 222

(q2PS5)
n2 C55

2b C66

{( 3ql) ( lq3) ~ 3 , 2
32 322

-

4 (qlP6S)
n3 C66

{(nlq)) i (n3q3) ) 4
42 422

(q3P6S)
n3 C66

3b C55

5a C44 6a C66
~

'

{(n3q2) (n2q3) ) 5 2
52 522

-4 (q2p66)
3 '66

{(n2q2) + (n3q)) )
62 622

(q3P66)
3 66

5b

{( 2~1) ( 1~2) ~ 7, 2
72 722

( 2P4~)
nl C44

lql) ( 2q2) ~ 8 , 2
82 822

— (alps))
nl C44

6b C66

8a C55 9a C44

{(n3q, ) + (n, q, ) )
92 922

4
-' —«3P 4'

nl C44

{(nq10)2+(n& 10)2)211 33 (10, )2ql P44
1 44

8b C55
~

32 23 ~ 11, 2
112 1122

(~3 PS5)
2 55

2
12 2 12 2 2

n2 C55

9b C44
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TABLE II.

e Long)tudfnal node

Not. y

1

2 (1.1 0) (-1,0,0) (0,0,1) (0,0,1) . 2
(p31 1 p32 2) /2

1

2 (l, l,o) (ql ,q2 ,0) (0,0,1) ( q13.-q213.0)

1

2 {1'1'0) (ql 'q2 '0) (q2 ' ql '0 (0'0'1)

10

1

2 {1,1,0) (q q 0) (q -q 0) (-q -ql5 P)
lql "q2) ~ ~ 21 12 ~ 1515 4

15 2 15 2 15 2 15 2
4

s 3
— — {gl (2 (u2(D2lul + P22u2) - nl(sllul + P12u2))

2 nlh2 Y

lh2(P66ul P6~u2)((ql ) - (q2 ) )~
2 2 , , 15 2 15 2 1

1

2 (0,1,1,) (0,-1,0) (1,0,0) (1,0,0) {P12"2 ' P13"3) ~'y2

1

2 (0,1,1) (O,q2, q3 ) (1,0,0)16 16
(O.-q2 .-q3 )

16 16

13 13

1

2 (O, l, l) (O,q2 ,q3 ) (O,q3 , -q2 ) (1,0,0)
17 17 17 17

1

2 (0,1,1) (O,q, q ) (O, q -q ) (0 -q -q )3 3 ~ 2

~{ 2q2 3q3 ~ ~ '3q2 2q3 ~ 18 18 4
18 2 18 2 18 2 18 2

4
{)2 $3 ("3(P32"2 P33 3) -

2(P22 2 P23 3)}
2 n2n3 Y

h2n3 (P44u2 + P4jP3) ((g2 ) {l3 ) ) J
22, 18 2 18 2 1

1

2 {1,0,1) (0,0,-1) (0,1,0) (0,1,0)

1

2 {1,0, 1) (ql ,Osq3 ) (Oslsp) {-ql spsq3 )

1

2 {10 ~ 1) (ql 0 q3 ) ( q3 0 ql ) (0.1 0)

16 16

1

(q2 0 q 1) { q P q 1) ( q 0 q21) ~("lq3 ) ("3ql ) ~ 21 21 4
21 2 21 2 21 2 21 2

4ss {2331()D133 P111 3 333 311)2 h3nl Y

3 1( 55 3 P551)~(~3 ) ~1 ) ~J
22, , 212 2121
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(Continued)

Pure shear or mi xed mode Pure shear mode

Not. y Not.

ll 11 See rode 10 r(C44 ' '55)
1

)3 2 13 2{( 2~1 ) ' ( 1~2 ) ) 2 13 , 2 13
4 4 ( 1"1 55 2"2 44
1 2( 44 '55)

14 2 ]4 2
1"' 1 2"2 2 14 , 2 14 , 2

4 4
1 2( 44 55)

14 See mode 13

16 2 16 2
2

2 ) ( 2~3 ) ~ 2 16 , 2 16
4 4 ("2'12 P66 ' "3~3 P55)

n2n&(C55 + C66)

17 2 17 2
2"2 3q3 2 17 , 2 17 , 2

4 4 2"3 P&6 3"2 "55
n2n3(C55 + C66)

See mode 16 7('66 ' '44)
1

192 192{(nlq3)(n3ql ))2]92]92
4 4 3q3 P44 1~1 P6~)

"~"1( 66
' C44)

20 2 20 2
1~1 & 2 20 , 2 20 , 2

4 4 3ql P44 1~3 ~68)
n3nl( 66 C44)
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652 R. VAC HER AND L. BOYER

TABLE V. Quadratic T& and hexagonalH~ groups. 8=180.

Not. Type of el = e2
mode

e2 = e2

(1,0,0) (1,0,0) (0,1,0) (0,0,1) 2

(0,0,1) (0,0~1) (1,0,0) (0,1,0) 2
P13/ 33

10

1 1

P(c 1 1
+ C12 + C66 2 (1,1,0) 2 (1,1,0)

1

(0,0, 1) 2 (1,-1,0) 2

13

14

13

14

1

2 (0,1,1} (O, u2 ~u3 )

1

2 (0,1,1) (O,u2, u3 )

1

(1,0,0) 2 (0,1,-1) (p12u2 + p13u3) /2Y
2 2

1

{19 $0) 2 (0,1,-1) (p12u2 + pl3u3) /2Y
2

15 1
~(c44 + cee)

1

2 (0,1,1) (l,o,o)

TABLE VI. Hexagonal group H2. 8 = 180'. The

Not. Type of el el
mode

'+ '+
e2 = e2

(1,0,0) (1,0,0) (0,1,0) (0,0, 1) 2
P12 11

'66 (1,0,0) (0,1,0) (0,1,0) (0,0,1} 2
pie/'ee

{1,0,0) (0,0,1) {0,1,0) (0,0, 1)

'33 (0,0,1) {0,0, 1) (1,0,0) (0,1,0) 2
P13/C33

12

'66

c44

1

2 (1,1,0) (0,0,1)

1

(0,0,1) 2 (1,-1,0)

1

{0,0,1} 2 (1,-1,0)

1

(0,0, 1) 2 (1,-1,0)

2
P31/ 11

13 13
Y

1

2 (0,1,1) (O,u2, u3 )

1

(1,0,0) 2 (0,1,-1) 2
u2 + p13 3) /2

14 14
Y

1

2 (0,1,1) (O,u2, u3 )

1

(1,0,0) 2 {0,1,-1) (P12u2 + p13u3) /2Y

15

1

7( 44
' 66)

1 2 (l,o,o)

1

(1,0,0) 2 (0,1,-1) 2
P16 { 44 66}
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The values of u and p are made explicit in Table IX.

I'12 = t'21

2
P31 11

2
P13i'33

2 2 2

4 4 1P66 3 448 nln3 ~

(n' + n')4
1 3 4

88 (1 112
128 nln3 y

(nl + n3)
8 8 ( 1(P11 2128 nln3 Y

(P 11 P12 P66)
2

4 2 2 I

P13 3) 3(P31 2 P33 3) 1 3(P44 2 44"3))

4 2 2+ P13 3
+ ~3 P31 2

+ P33U3 2 ~1~3 P44~2 P4+3 )

values og u and p are made explicit in Table IX.

12 21 ~22

2

2
p4S"44

2
P13/ 33

2
16 66

2
p45iC44

2 2 2
(nl + n3) 2

2

4 4 ( 1 16 2 3 45 2 3 )
16 nln3 Y

2 2 2
(nl + n3) 2

2

44 1162 345 2 3)
16 nln3 ~

(n + n3)1 3, 2 2 )2
8 n4n4( C )' 1 66 3 44

1 3 44 66

(nl + n3)
8 8 ( 1(P11 2 P13 3)

128 nln3

(n tn)
1 3 4

8 8 ( 1 Pll 2 P13 3128 nln3

4 22
"3(P31"2 P33"3) "1"3(P44 2

+ P44"3))

(nl + n3)

64 n n (C + C )
(np +np )

1 3 44 66

4 22 2

3(P31 2 P33 3) "1 3(P44"2 P44"3))
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TABLE VII. Quadratic T~ and hexagonal H& groups. 0 =90'. The values

e
'+

2e,

Not.

Longitudinal mode

j.

1

(1,0,0) 2 (-1,1,0) (0,0, 1) {0,0,1) 2
P31/ 11

1'0'0) ql'q2'0) (0.0, 1)
1 1 1 1{ ql. q2.0)

la C11

(1,O, O)
2 2

{ql,q2, 0) (q2. -ql. o)
2 2 (0,0,1)

(1,0,0)

(1,0,0)

1 1

2 (-1,1,0) 2 (1,1,0)

1

2 (-1,0,1) (0,-1,0)

1

2 {1,-1,0)

(0,-1)Q)

{Pll P12) 11
2

2
P12/ 11

(1,0,0) (ql, o,q3) (0,-1,0)
3 3 3 3(-ql)0)-q3)

lb Cll

(1,0,0)

(1,0,0)

4 4 4 4
(ql O.q3) (q3»0. -ql)

1 1

2 (-1,0, 1) 2 (1,0,1)

(0,-1,0)

1

2 (1,0,-1)
2 2 4

(nl + n3) 4 4 2
8 8 lP11 3 3164 nln3 Cll

1

(0,0, 1) 2 (1,0,-1) (0,1,0) (0,1,0) 2
P13/ 33

(0,0, 1) (ql, o,q3) (0,1,0)
9 9 (-ql. o.-q3)

9 9

7 C33 ~,

(0,0, 1)

(0,0, 1)

(ql, o,q3 ) (-q3 ,O, ql ) (0,1,0)
10 10 10 10

1 1 1

2 (1,0,-1) 2 (1,0, 1) 2 (-1,0,1)
2 2 4

'(nl n3) 4 4
8 8 ( 1P13 3P33)

64 nln3 C33
1

2 (1,1,0) (-1,0,0) (Q, o, l)

1

2 (1,1,0) (ql, q2, 0) (0,0, 1)

(0,0, 1)

(- 13 - 13 0)
10

2
P31/y

1

(1 1 0) (ql q2 ) (q2 "ql ) ( )

1

2 (1,1,0) (-1,0,0) (0,1,0)
2

1

2 (0,1.1) (0,-1,0) (1,0,0)

(1,0,0)

(1,0,0)

2
p66/y

2

1

2 (O, l, l) (0,-1,0) (1,0,0) (0,1,0)

1

2 (0,1.1) (O, q2 ,q3 ) (O, q3 ' 2 ) (1,0,0)
2 17 17 17 17

1

2 (0 1 1) (0 q2 q3 ) (0 q3 -q2 ) (0 -q2 -q3 )

13 y
13

((nlq2 ) w (n3q3 ) ) ((n3q2 ) (nlq3 ) )
18 2 1S 2 18 2 1S 2

4
88 (2 3 ~ 3)312 )333 1 112 133'2 nln3

18 2 18 2 2 2+ ((q2 ) - (q3 ) ) 1 3(P44 2 P4g 3))
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of y and uare given in Table IX; the values of q are given in Table IV.

Not.

Pure shear or mixed mode

l

Not.

Pure shear mode

2a '66 3a C44

1, 2
(q,p44) /C4

(q2P4&) /C44
2 2

'66

(( 3ql) ( lq3) ~ 3 2
32 32'

4
3 66

42 42
3q3) ) 4

(q3p66)
n3 C66

3b '44

Pure shear degenerated mode

8/9 '44

92 92
(( 3 ll) ( lq3) j 9 2

(q3p44)
nlC44

((nlql) + (n3q3) ) 1P
92 92

4 1 44
nlC44

ll 12I
12 '44

13 13
(«1 q2 )P44~ 44

((ql -
q2 )p4g) /2C44

14 14

14
14

Y See mode 13 7( 44
' 66)

1

2
p66«C44 ' '66)

17 2 ~ 17 2 2

217, 2
4 4 1 3 P66 3"2 44

2 nln3
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TABLE VIII. Hexagonal H2 group. 8 =90'. The values of p and

e,

Not. y

Longitudinal mode

l

1

(1»0»0) 2 ( l»l»0) (0»0»l) (0»0 1) 2
P31 11

(1,0,0) (ql, q2, 0) (0,0, 1)1 I (-ql, -q2, 0)1

la C]1

(1,0,0) (ql.q2.0)2 2
(q2»-q]. 0)2. 2 (0,0,1)

(1,0,0)

1 1

2 ( 1»l»0) 2 (1»1»0)

1

2 (1,-1,0) (Pll P]2) / 11
2

1

(l»0»0) 2 ( l»0»l) (0» l»0) (0» l»0)

(1»0»0)
4 4

(ql»0»q3) (q3»0 -ql)
4 4 (0»-1»0)

(1,0,0)

1 1

2 (-1,0, 1) 2 (1,0, 1)

1

2 (1,0,1)

(1.0,0) {q],O, q3) (0,-1,0) (-q].O.-q3)
3 3 3 3

lb C11
~

2
P12 11

((h3q]) + (nlq3) ) 3
32 32'

3 11

((h]q]) (h3q3) ) 4 2
42 42

-- (q3P]6)
n3 Cll

2 2 2
(nl + n3) 4 4

44 111 33164 nln3 C]1

1

(0»0»l) 2 (1»0» 1) (0»l»0) (0,1,0) 2
P13/ 33

(0,0,1) (q],O, q3) (0,1,0)9 9 9 9{-q].0 -q3)

7 C33

(0,0, 1)

(0,0, 1)

1 ,O, q3 ) ( q3 ,O,q] ) (0,1,0)10 10

1 1 1

2 (1»0» 1) 2 (l»0»1) 2 ( 1»0»1)

2 2 2
(nl + n3) 4 4

88 ] 13 33364 n]n3 C33
1

2 (1,1,0) (-1,0.0) (0,0, 1) (0.0,1)
2

1

2 (1,1,0) (ql, q2, 0) (0,0, 1)13 13 (-ql .-q2 .0)13 13

1

2 (1 1 0) {qy q2 0) {q2 -ql » (0 o »
10 C]1 ~

1

2 (1,1,0) (-1,0,0) (0,1,0)

1

2 (0»1»]) (0» 1»0) (1»0»0)

1

2 (0 ~ 1 ~ 1) (0,-1,0) (],0,0)

(1,0.0)

(1,0,0)

(0,1,0)
13

2
p66/v

12 2 ]3 3
2

(p]6u2} /2V
2

1

2 (0,1,1) (O,q2, q3 ) (O.q3, -q2 ) (1,0,0)17 17 17 17

1

2 (0,1,1) (O, q2 ,q3 ) (0 q3 -q2 ) (o.-q2 .-q3 )

17 2 17 2
1 2 3"3 2 17 2 17 2

4 4 ~ ]q3 P]6 2 3q2 45{ 2 3)~
2 nln3 y

((h]q2 ) (h3q3 ) ) ((h3q2 ) + (h]q3 ) ) ]8 18 4
18 2 18 2 18 2 18 2 2

4
8 8 q2 3 ~ 3 31 2 33 3 1 ll 2 . 13 3 ~

2 nln3 y
2 2 , , 18 2 18 2 )+ n]h3(P44u2 P4jfu3)((q2 ) - (q3 ) )I
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u are given in Table IX; the values of q are given in Table IV.

(—
Not.

Pure shear or mixed mode

B i Not. y

Pure shear mode

B I

3a C44

1, 1 2
(q1p44 ' q2p45) / 44

2 2 2
(q2 44 1P45) '44

2
P16/ 66

2b C66

2
P16/ 66

{(n3q1 ) + (n1q3) «332 32'
4 (q1p66)
3 66

42 42
.{(n1q1) t (n3q3) «4

4 (q, p66)
n3 C66

(n +n)1 3 2
8 P16

64 n3 C66

3b C44

Pure shear degenerated mode

I

{( 3q1) ( 1q3) «332 32'
4 (q3P45)

n1 C44

((n,q1) (n3q3) « 4
42 42

4 (q1p45)
n1 C44

8/9 '44

92 92
3ql 1 3 « 9 2 , 2 2

4 3 44 45
n, C44

10 2 10 2
(( 1q1 ) ( 3q3 ) ) 10 2

4 -(q, ) (p44 p45)
n1 C44

'66 12
44

{(q, q2 )P44 (q2
- q1)P45« /2C44

13 13 , 13 13

{(q2 -
q1 )p4$ ' (q1 ' q2 )p45« / 44

14 14 , 14 14

2
P,6/y

2
16'('44 ' '66)

14 14 See mode 13 r(C44 ' '66) '1

2
P66'('44 ' '66)

17 2 17 2
lq2 3 3 2 17 2 17 , 2

4 4 ( 1 3 P66 3q2 P44)
2 n1n3 Y

18 2 18 2 18 2 18 2 2
1q2 3 3 « { 3 2 1 3 « 2 18 &8 2 18 2 18 2

4 8 1q2 q3 P16 3 {(q2 ) ("3 ) «P45
2 n1n3 Y
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TABLE IX. Quadratic T&

Not.

10 1
r ('11 ' '12) ' '66

13

14

1

C11 C33 2C44 ((C11 C33) 4(C13 C44) )
1 2 22

1

C11 + C33 + 2C44
— {(C11 —

C33) + 4(C13 + C44) )
1 2 22

TABLE X. Quadratic group &2. 8 = 180'. The

Not.
'+

)Type of e = e'
mode

'+ '+1
e2 = e2

(1,0,0) 1 1
(u1, u2, 0) (0,1,0) (0,0, 1) 2

P16u2) ~Y

2 (1,0,0) 2 2
{u1gu2, 0) (0,1,0) (0,0, 1) 2

P12 1 P16 2) ~Y

o4 {1,0,0) (0,0, 1) (0,1,0) (0,0, 1)

10

'33

10
Y

11
Y

(0,0, 1)

1

2 (1,1,0)

(0,0, 1)

10 10(u1,u2, 0)

(
11 11

0)

(1,0,0) (0,1,0)

1

(0,0, 1) 2 (1,-1,0)

2
P13 33

(P31(u1 + U2)j /2Y
2

(P31(u1 + u2)) /2Y
2

12 '44

1

2 (1,1,0) (0,0, 1)

22 Y (Q1 Q2 ~ 0)
22

(
22 22

0) (0,0, 1) {Q2,-Q1,0) (P31(u1Q1 + u2Q2)) /Y
2

23 (Q1 Q2 0)23
(

23 23
0) (0,0.1) (Q2, -Q, .O) (P31 "1Q1 2Q2

2

24 G@4 (Q1'Q2'0) {0,0, 1) (0,0, 1) (Q2, -Q1,0)



BRILLOUIN SCATTERING: A TOOL. . . 659

and hexagonal H~ groups.

U1

1

22

U2

1

22

U3

1

(C13 C44)((C13 + C44) (2Y - Cll -
C44) )

2 13 2 2

1

11 44 ( 13 44)
13 2 13 2 2

1

(2Y - Cll - C44)((C13 + C44) + (2Y - Cll - C44) )
13 2 13 2

1

(C13 C44) ((C13 C44) (2Y Cll C44) )
2 13 2

values of p and u are made explicit in Table XII.

B12 B21 B22

~P31 li
2

(P3101) iY
2

2
P45i'44

2
P13ic33

8y( ll 12 66)( 1 2 61 1 2 )
1 2

1 2
Ej( 11 P12 P66 1 2 61 1 2 i

2
P45"44

1 2 2 3 3 ]2
((pll -

2p66)Q1Q2 p16(Q2
- Ql)) (ulQ2 u2Q1) p12(ulQ1 u2Q2)

-
2Q1Q2p61(ulQ1 -

u2Q2)i

1 2 2 3 3 f2
((pll p22) 1Q2 p16(Q2 Ql)) ( 1Q2 2 1) 12( 1 1 2 2) 1 2p61( 1 1 2 2),i

&'Q1Q2p46 (Ql Q2»4z»'44
2 2 I 2
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TABLE XI. Quadratic T2 group. 9= 90'. The values of p and

(1,0,0)

e

1

2 (-1,1,0) (0,0, 1)

+
ge,

(0,0, 1)

l

Not.

Longitudinal mode

(P31ul) /y
2

(1,0,0)

(1,0,0)

(1,0,0)

(ql. q2. 0)1 1

2 2
(ql. q2. 0)

1

2 (-1,1,0)

(0.0,1)

2 2
(q2. -q1.0)

1

2 (1,1,0)

(-ql. -q2. 0)
1 1

(0,0, 1)

1

2 (1,-1,0)

la y

11 12 1 16 2~
2

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

3 3
(ql, o,q3) (0,-1,0)

(q1.0.q3)

1

2 (-1,0, 1)

4 4
(q3 0 ll)

1

2 (1,0, 1)

1

2 (-1,0, 1) (0,-1,0)

(-ql. o.-q3)
3 3

(0,-1,0)

1

2 (1,0,-1)2

lb y
1

2
P16"2) /"

((nlq3) + (n3ql) ) 3
32 32'

2

4 ~q1(P66 2 P61 1)~

n3 Y

((nlql) + (n3q3) )
42 42 2

4 ~q3 662 P611~
n3

2 2 4
(nl + n3) 4 4 2

(nl(Pllul P16u2)
- n3P31ul)

64 nln3 y

{0,0,1)

1

2 {1,0,-1) (0, 1,0) (0.1,0) 2
P13/ 33

(0,0,1)
9 9

(ql. o.q, ) (0,1,0) (-ql, O, -q3)
9 9

7 C33

(0,0,1) 10 0 10) (-q3 ,O, ql ) (0.1,0)10 10

(0,0, 1)

1

2 (1,0,-1)
1

2 (1,0, 1)

1

2 {-1,0, 1)

2 2 4

4 4 { lp13 3P33)
64 nln3 C33

1

2 (1,1,0) (-1,0,0) (0,0, 1) (00001) (P31(ul + u2)) /2y
2

1

2 (1,1,0) (ql , 2 ,0) (0,0, 1) (
13 13 0)

1

2 (1 1,0) ql 'q2 ,0) 2 ' 1 ,0) (0,0,1)

10 10

1

2 (1,1,0) (-1,0,0) (0, 1,0) (1,0,0) ~P66( 1 2) P61{ 1 2)~
2

(&].Q2.0) (ql .q2 »0) (o.o.1)
22 22 (0,0, 1) 31 1Q1 2Q2 ) /Y

2

(Q1,Q2, 0) {ql,q2, 0) (0,0, 1)23 23 23 23

22 Y22

(Ql Q2 0) (ql .q2 0) (q2 .-ql 0) ( ql "q2»0)

22 22 22 22 - 22 22
Ql' 2' 1

' 2 ' 2 ' 1 ' 1 ' 2 {22 22
ql q2 ~(p» - P12)("2Q2 1 1) P16{ lQ2

((ql ) - (q2 ) )(&61( 1Q1- 2Q2) P66{ 1Q2 2Q1))) /y
22 2 22 2
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u are given in Table XII, the values of q are given in Table IV.

Pure shear or mixed mode Pure shear mode

Not. Not. y

2

y 3a C44

(qlp4$ q2P45» / 44
1, 1 2

2 2 2
(q2 44 qlp45 44

~(pll P12)ul P16"2~ /4Y
2

2b y
2

12 1 16 2
2

((nlq3) + (n3ql) ) 3
32 32'

2
4 ~ql(P66 2 P61 1)~

n3 Y

((nlql) + {n3q3) ) 4
42 42

2
4 ~q3(P66"2 P61 l)~

n3 y

3b C44

((n,q3). ( 3ql) ) 3
32 32'

4 (q3P45)
nl C44

((nlql) + (n3q3) ) 3
42 42

4 (qlp45)
1 44

Pure shear degenerated mode

8/9 C44
~

(( 3 ll) ( lq3) ) 9 2
92 92

4 ((q3) (p44 p45))
n, C44

1 1 3q3 10 2 , 2 2
)0 2 10 2

4 ~(ql ) (P44 ' p45»
nl C44

~P31{"1' "2» 'y2

12 C44

({ql q2 )P4g (q2
-

ql )P45) /2C44
13 13 , 13 13

((ql -
q2 )p44 + (ql + q2 )p45) /2C44

14 „ 14 i 14 14

(p66(ul t u2) + p61(ul - u2)) /2Y
2

(P31(ulg1 u2Q2)) /y
2

23 23. 24 y
24

IP4)«1&1 ' qP2) ' P45«2')1 -
ql&2»~ "44

~P4«1~2 q2~1) P45(ql~l q2~2»~ 44

1 2 ~ Pll . 12) 2~2 l~l "16 ) 2 2~1~
22 22

((ql ) - (q2 ) ) (P61(u101 - u202) P66(uP2 ural)) I /y
22 2 22 2
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TABLE XII.

Not.

10

1
1 2 2 2

11 66 (( 11 66 16)

1
1 2 2 2

11 66 I ll 66 16~

1
1 2 2 2

11 66 I 12 66 16

Not.

10

Ul

1

C16((y Cll) C16)
1 2 2 2

1

(y - Cll) r(y - Cll) + C16)
1 1 2 2 2

1
10 2 2 2

( 1Z' 66)~(Y 11 66 16) '(1Z' 66) ~

1
10 10 2 2 2(2y - Cll -

C66
- 2C]6)((zy - Cll -

C66
- 2C16) + (Clz + C66) )

22

23

1

( 16(Q1
-

2 ( 12 66)Q1QZ) (Y -
11Q1

-
C66QZ

-
2C16Q1Q2) (C16(Q1 -

Qz) + (Clz + C66)Q1QZj
2 2 22 2 2 2 2 2 2 2

1
22 2 2 22 2 2 2 2 2 z~ 2(y -

C11Q1
-

C66Q2
-

2C16Q1QZ) y(y
-

C11Q1
-

C66Q2
-

2C16Q1Q2) + tC16(Q1 -
QZ) + (Clz + C66)Q1Qzj I

TABLE XIII. Cubic groups

Not. Type of
mode

el = el eZ = ez

10 1
11 12 44

(1,0,0)

1

2 (1,1,0)

1

2 (1,1,0)

(1,0,0)

1

2 (1,1,0)

1

2 (1)-1jo)

(0,1,0)

(0,0, 1)

(0,0, 1)

(0,0, 1)

1

2 (1,-1,0)

1

2 (1,-1,0)

2
P13/ 11

12 P13)
2

(P12 13) ( 11 12)
2

25

1 1

3(C11+2C12+4C44)3(1,1,1)3(1,1 ~ 1)

1 1

6 (1,1,-2) 2 (-1,1,0) 1 2
ll 12 13 P44)

26 1
11 12 44

1

3 (1,1,1) D(111)
1 1
2 1 2 26 (1,1,-2) 2 (-1,1,0) 216Y

3
12

+
13

+ 4p44
- 2pll) + (pl3 -

plz) j

a/ D( 111) : degenerated in the ( ill) plane.
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Quadratic group T2.

Not.

1
1 2 2 P1
r 'ii ' 'e6 [(Ciz ' Cee' ' Cie~ J

1

22 p Cll + Cee ((Cll - Cee) (Ql -
Q2) + 4(C12 + Cee) Q1Q2 t 4C16 + 8C16(C11 + C12)Q1Q2(Q1

- Q2)j
1 2 2 2 222 2 2 2

1
1 2 2 2 222 2 2 2 2

23 P Cll + Cee
- ((Cll - Cee) (Ql -

Q2) + 4(C12 + Cee) Q1Q2 + 4C16 + 8C16(C11 + C12)Q1Q2(Q1
- Q2))

U2

1

'll) «Y 'll) ' '16~
1 1 2 2 2

1

'le~(Y '») ' 'le~
1 2 2 2

1
10 10 2 2 2

(2Y - Cll -
Cee

- 2C16)((2Y - Cll -
Cee

- 2C16) + (C12 + C66) )

1

(C12 + Cee) ((2Y - C
1 1

-
Cee

- 2C16) (c12 Cee) j
10 2 2 2

1
22 2 2 22 2 2 2 2 2 2 2

(Y -
C11Q1

-
C66Q2

-
2C16Q1Q2)~(Y

-
C11Q1

-
C66Q2

-
2C16Q1Q2) + (Cle(Q1 -

Q2) + (C12 + Cee)Q1Q2)

1

~16Ql 2) 12 ee 12& CY 111 662 1612~ ~16(1 2) 12 66) 12~
2 2 22 2 2 2 2 2 2

U3

C2 and C~. 8=180'.

~12
= '21 '22

2
P12/ 11

11 44 P12 13)
2

(P12 13) ( ll 12)
2

1 2
11 12 p13

- 2p44)

12 13) P12 P13 44 11 ~
Tery 12 13 12 13 44 11

1 2 2 1 2 2



664 R. COACHER AND L. BOYER

Ol

$

OP

4P
S

CL

4P

OE
S

OP

'e
4P

ICI
L
OP

4P
CA 4 CD
4P'a
L
IIS
OP

Vl

4P
S

OX

N
CPNC

CL

N
CPNC

CL

N

NW
A.

N
cl'

N ct
CL

N

CL

NQ clN4

0
CD
Cb
II

OP
S

CL

Oz

b0
Q

~&

U c
~p'e
~fa
gll

O

N
CL

P)NH
CL

N

CL

N

CL

N
CL

NQ

O

W

QADI
a

CDa
CD

CDa
I
a

~IN
I N

a

CD
a

I
a

~IN
I

N

CD
A

a

~+III

a
CD

~IN
I

N

CDa
a

a
a

~IN
I N

a
CDa
CD

CD
a

CD
A

a
CDa
CD

CDa
CDa

a
a CD

CD
a
A

~IN
I N

a

CD

CD

a
CD

a
CD

I

~IN
I N

a
CD

I

~IN
I N

a
CD

C)

a
CD

a
CD

CD
a
a

CD

a

CD

C)a

I

~IN
I

N

a

I

~IN
I N

CDa
a

I

~IN
I N

CDa
a

I

~IN
I

N

I

a

I

~IN
I N

I
a

CD
a

I

~IN
I

N

I
a

C)
a

I

~IN
I

N

Ia
CDa

I

~IN
I

N

a
I

CD
a

CDa

CDa
CD

A

I

CD
a

I

CDa
CD

CDa
CD

CD
a

CD

CD
A

CD

CD
A

a

CD
a

CDa

CD
A

CDa
a

CD

a

~IN
I

N

CD

~IN
I

N

CDa
a

I
N



BRILLOUIN SCATTERING: A TOOI. . .

N

N

CL

N

O.

N

CL

Q
~A

cd

8

$U'

0

cd

N 0)
CL

N
Pl

CL

Pl

CL

N
N

CL

Pl

N ~
CL

4P

cf
a

Pl

a
N

c

NP) Co@ic c
CO ~

+ c
Co

C N

I+
a
N

'Ita
N PlcNM

CL

N

fVj
CL

N

CL

N

C:

N N CCI Plc c
Co ~

+ c
Nu Co

C N

a+a
N PlcN ac

N

CL

CV

CL

'Ct P)c

N

CL

c

N R Co Plc c
QCI A

+ c
C N

N

Cta
N Wc

cN

N

Pl
CL

c

CL

c

N P) CCJ thc c
+ c

Nw COC N

ICt'

CL

N
~t'

a
N Ac
N ~c

CL

N

CL

N

CL

CL

N R
C

CL

N Rc

N Ct
CL

ICI

N C
CL

Q
~A

CL

N wc

N 6)
C %Plc
+

N~
C ClPt

'CI
CL

N ~c
N
N 0c ct p)c+ %g' tHcN Hc e

N
N N

N
N

N ~
CL

N
N

CL

N
N

CL
N ~

CL

'Ct

CL

N

Cl.

N

CL

CL CL

Pl
CL

N
N

N
TH

o
o

o
o o

~i
o

o
Ao

~1

o
I
A

Ao
&IN

I
N

I
A

o
A IN

I
N

I

Ao
~IN

I
N

I

I

o
~IN

I
N

I

I
~Io

~IN
I

N

I
A

I
Ao

~IN
I

N

g4

be

~W

Q III

O
4JI

CL

Ao

o
o

o
~I

o

~I

ct' N
Ao

LCI P)
A

IJl N
Ao

CD
~I

o

CD
A

o
~1o

o
Ol

o
~Io

f/)

o

Ao
A

a
ctw N

o

o
o

~I

o
o

o

Cti

W N

o

o
Ao
A

N 8)
AoNN
llo

o
A'

o
l1

CD Clc
II/

CL

CD
~I

~1o
Ol

~l

Ao

A

o
~IN

I
N

A

o
rt IN

I

A

o
WIN

I
N

I
A

Ao
~IN

N

I

o
~MIN

I
N

I
A

KIN
I

o

c
'I

Cll o
N

OK N

oo
CI



666 R. VAQ HER AND L ~ BOY ER

TABLE XVI. Rhombohedric group R~. 8 =90 . The values of p

e e, Longitudinal mode

Not.

1

(1$0,0) 2 (-1,1,0) (0,0, 1) (0,0, 1) 2
P31/ 11

(1,0,0) (ql, q2, 0)
1 1

1'0'0) (ql'q2'0)
2 2

(0,0, 1)

2 2
(qZ, -ql, p)

1 1
(-ql -q2. 0)

(0,0, 1)

la Cll

1 2
2 41 ll

2 2
(qlP41) 11

1 1

(1,0,0) 2 (-1,1,0) 2 (1,1,0)
2

1

2 (1,-1,0) 2
(Pll 12 11

( .0»0) (ql o.q3)
3 3

(1,0,0)

(1,0,0)

4 4
(ql o q3)

1

2 (-1,0, 1)

1

(1,0,0) 2 (-1,0, 1) (0,-1,0)

(0$-1$0)

4 4
(q3, 0,-ql)

1

2 (1,0, 1)

(0,-1,0)

3 3(-ql, p, -q3)

(0,-1,0)

1

2 (1,0, -1)

lb Cll

2

{(nlq3)+(n3ql)}332 32'
4 ( l3P41 )

1 11

{(nlql) + (n3q3) } 4
42 42

(qlP41)
1 11

2 2 4
(nl + n3)

8 8 ( 1 11 3 31)
64 nln3 Cll

1

(0,1,0) 2 (0,-1,1, ) (1,0,0) (1,0,0) 2
(P12"2 ' '14"3

(0,1,0) (O, qZ, q3)
5 5

(0$1'0) (0'q2'q3)
6 6

(1,0,0)

6 6
(O, q3, -qZ)

5 5
(O. -qZ. -q3)

(1,0,0)

4a
4

1 1

(0, 1,0) 2 (0,-1,1) 2 (0,1,1)

1

2 (0,1,-1)
(n„ + ., )

2 2 4

8 8 { 1(P11 Z P14 3) 3P31 2}
64 nln3 y

1

(0,1,0) 2 (1,-1,0) (0,0, -1) (0,0, - 1) 2
(P31UZ) /y

(0,1,0) (ql, q2, 0)
7 7

(0,1,0) (ql, q2, 0)
8 8

(0,0, -1)

8 8
(-q2 q] .0)

7 7(-ql, -q2, 0)

(0,0,-1)

4b y
4

7
2

{q2(P44 3 P41 2)}

2

{ 1(P44 3 41 2)}

1 1

(0, 1,0) 2 (1,-1,0) 2 (1,1,0)

1

2 (-1,1,0)
2

{(Pll P12) 2 P14 3

1

(0 0$1) 2 (1,0, -1) (0, 1,0) (0, 1,0) 2
P13/ 33

(o o. 1) (ql. p»q3)

(0,0, 1)

(0, 1,0)
9 9(-q, .o.-q3)

(0, lip)

7a C33

(0,0, 1)

1

2 (1,0, -1)
1

2 (1,0, 1)

1

2 (-1,0, 1)
2 2 4

(nl + n3)
8 8 1 13 3 3364 nln3 33

1

(0,0, 1) 2 (0, 1,-1)2 (-1,0,0) (-1,0,0) 2
P13/ 33

(0,0, 1) (O, q2 ,q3 )
11 11 (-1,0,0)

7b C33

(0,0, 1) (0 12 12) (p
12 12) (-1,0,0)

(0,0, 1)

1

2 (0, 1,-1)
1

2 (0, 1,1)

1

2 (0,-1,1)

2 2 4
2

8 8 1 13 3 33
13 33
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and u are given in Table XVG; the values of q are given in Table IV.

Pure shear or m$xed mode Pure shear mode

Not. y Bw Not. B„„»

2a
2

1 2

(ql(P41 2 45 3))

2
2

(q2(P41 2 P44 3))

3a 3

1
2

(ql(P41u2+ P4g 3)) /y

2
2

(q2(P41u2 + P4P3)) /Y

((n3q]) i (h)q3) ) 3
32 32'

2
— — (ql( 66 2 P14 3))

2 h3 Y
2b y 42 422

((nlql) + (n3q3) ) 4 2

(q3(P66 2 P14 3))
n3 Y

((n3ql) +

n4

Y '
4 2

((n 4)2

4
h3

322
(nlq3) ) 3 2

(ql(P66u2 P143))

4 2
(n3q3) ) 4 2

(q3(PSSu2 ' P14u3))
Y

5a y

(P12 2 P14 3)
2

(nl + n3) 4 4 2
2 24

8 8 ( l(P11 2 P14 3) 3P31 2'64 nln3 y

(P31u2) /Y
2

((3q2) ( lq3) ) 25 25 2
52 52

4 4 1 2 66 3 3 41
nlh3 Css6' Css

'
6 2 s 2

2

(( lql) (h3q3) )
4 4 ( 1 3 66 3 2P41

nlh3 Css

5b

7
2

( 2(P44 3 P41 2)) y

2

(ql(P44 3 P41 2))

6b C66

7 2
(qlp41) /C66

8 2
(q2P41) /'ss

(8,9)a C44

(8,9)b C44»

2

((Pll P12) 2 P14 3)
Pure shear degenerated mode

|'
»

2
P14/ 44

92 92
((h3ql) i (hlq3) ) 4 9 2 4 9

4 4 ( 1( 1 14) 3( 3 44) )
nln3 C44

10 2((nq ) +(nq ) )1 1 3 3
( 4( 10 )2 4( 10» )2)

n4 4
C

. 1 q3 P14 3 1 P44
13 44

(Ill + h )

8 P14
64 n3 C44

2
P14/ 44

11 2 ll 2
3 2 ( 1 3 ) 4 11 4 ll 2

4 4 1 2 14 3 3 44)
hlh3 C44

12 2 12 2
1 2 3 3 4 12 4 12 , 2

4 4 ( lq3 P14 3q2 P44)
13 44

(n +n)1 3 2
8 P14

64 n3 C44
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TABLE XVE.

e
1J

e, Longitudinal mode

1

2 {O,l, l) (0,-1,0) (1,0,0)

1

2 (0,1,1) (0,-1,0) (1,0,0)

(1,0,0)

(0,1,0)

Not. y

2

(p12u2 + p13u3 + p14(u2 + u3)) /2y

1

2 (O, l, l) (O, q2 ,q3 ) (O, q3 ' 2 )
2 17 17 17 17

1
18 18 18 18 18 18

2 (0,1,1) (O, q2 ,q3 ) (O, q3 , -q2 ) (0, 2 ' 3
((nlq2 ) + {n3q3 ) ) ((n3q2 ) + (nlq3 ) )

18 2 18 2 18 2 18 2

8 8 nl'2 q3 (Pllu2 ' P13u3 '14'u2 ' u3))
2 n ln3

4 18 18 2 2 18 8 18 2
3q2 q3 (P31 2 33 3) 1 3((q3 ) ( 2 ) )( 44 2 44 3 41 2)(

1

2 (0,-1,1) (0, 1,0)

1

2 (0,-1,1) (0, 1,0)

(-1,0,0) (-1,0,0)

(-140,0) (0,-1,0)

2

( 12u2 13 3
+ 14(u3

-
u2 ) /2

1

2 (O, -l, 1) (O, q2 ,q3 ) (0 q3 q2 ) ( 1 0 0)

1

(0.-1.1) {O.q .q ) (O.q -q ) (0 -q -q )

19 yl9

1 2 3 3 ) ( 3 2 lq3 4 26 26
26 2 26 2 26 2 26 2

8 8 nlq2 q3 (Pllu2 -
P13u3 + P14(u2 - u3))

2 nln3

42626 2 2 26 2 26 2-
n3q2 q3 (P31u2

-
P33u3) nl 3((q3 ) -

(q2 ) )(P44 3
-

P44 2
-

P41u2)(

TABLE XVII. Rhombohedric

Not.

11( 2 2 21
2 I 44 66 (( 44 66) 14) J

1lf 2 2 2i
2 & 44

'
66 ( 44 66

' 14) I
1

1 2 2 2j
2 i 11

'
44

' (( ll 44) ' 14) }
1

2 2 21
C +C -((C -C ) 4C )

13

14

19

20

1

Cll + C33 + 2(C44 C14) + ((Cll C33 2C14) + 4{C13 + C44 C14) )
2 2 8

1
1 f 2 2 2'I

Cll + C33 + 2(C44 - C14) - ((Cll -
C33

- 2C14) + 4(C13 + C44
-

C14) )

1
1 f 2 2 H
4 Cll + C33 + 2(C44 + C14) + ((Cll -

C33 + 2C14) + 4(C13 + C44
- C14) )

1

g Icll + C33 + 2{C44 + C14) - ((Cll -
C33 + 2C14) + 4(C13 + C44 + C14) )

1 f 2 2 2j
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(Continued)

Pure shear or mixed mode Pure shear mode

Not. Not.

14 14 See mode 13 15 p(C44 + C66) + C
1

(P66 ' '14) ~ZY
2

(343) ~ 217 217
17 2 17 2

4 4 3~2 (P44 P41) 1 3 (P66 ' »4)
2 hlh3 Y

20 See mode 19 I( 44 66) 14
1

(P66 - ~14) ~2
2

«"1~2 ) ' ("3q3 ) ~ 2 25 , 2 25
25 2 25 2

4 4 "3~2 ( 41 ~44) 1 3 ( 66 P14)
2 hlh3

group R,.

1

14t(Y 66) 14)
2 2 2 2

1

(Y - C66)((Y -
C66) + G14)

2 ~ 2 2 2

1

14~(y ll) 14~
4 2 2

1

ll " ll 14
4 „4 2 2

1

0 (G13 + G44
- C14)((ZY + 2C14 - Cll - C44) + (G13 + G44

-
C14 )

13 2 2P

1

14 ll 44 ~( " 14 ll 44 13 44 14) ~
13 13 2 25

1

13 44 14 ~ " 14 ll 44 13 44 14
19 2 2%

1

(Y C66) ((Y G66) + C14)
2 2 2 2

1

C14((y - C66) + C14)
2 2 2 2

(y - Cll) ((y - Cll) C14)
4 4 2 2

1

14((y ii) 14)
2 2

1

ZC14 11 44 14 11 44 1$ C44 14) ]13 13 22

1

13 44 14 ~ " 14 11 44) 13 44 14
13 2

(2Y - 2C14 - Cll - C44)((2Y - 2C14 - Cll - C44) + (C13 + C44 + C14) )
19 19 2 2

1

0 {2y -
2G14 - Cll - C44)((ZY - 2G14 - Cll -

C44) + (C13 + C44 + C14) } - (C13 + C44 + C14)((ZY 2C14 - Cll -
C44) + (C13 + C44 + C14) )

19 19 2 22 19 2 2
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we find

(C„+C„)C„=-,' (F -S) . (44)

The sign of C,4 being determined by the modes 15
or 21, (44) lifts the indeterminacy of the sign of
Cis

G. R2 Rhombohedric Group {Classes 3 and 3)

As in the case of the quadratic group T2, the total
factorization of Eq. (5) appears only in the direction

of elastic waves. It is only the intensities that dif-
fer in some cases among the two groups. The cal-
culation for the group C2 can also be used for the
group C& by taking into account the fo11owing re-
marks: p»=p&3 for C&, which produces, in par-
ticular, an intensity equal to zero in the case of
ll, in polarization (1, 1); the distinction between
the scattering cases called "a" and the scattering
cases called "b" is useless because of the presence
of quaternary axes in C&. C» and C«are measured
directly (modes Ia and b; 2a and b, 12), whereas
C,2 is calculated from measurements of ylo and y '.
For the isotropic group, the orientation Q is no
longer important. For any direction the measure-
ment of the elastic velocity of a longitudinal wave
provides the value of Cfl and the measurement of the
transverse wave provides C44.

F. Rhombohedric Group R, {Classes 3m, 32, 3m)

The calculations for this group are given in
Tables XVI and XVII. The presence of elements
Cq4, C24, and C~6 which are different from zero,
and which are called for by the small degree of
symmetry of these classes, leads to complicated
expressions for Eq. (5). This equation is com-
pletely factored in the direction (001) only. C11,
C33 C44 and C66 are measured directly, and so
is C1s (modes la and b, 'la and b, Sa and b,
and 6a and b). C,4 is calculated from the
measurements of y" and y '. Cross checks are
given by the measurement of y for the modes 2, 3,
4, and 5. Two values of C,s are obtained from the
measurement of y for one of the modes 13, 14, 19,
and 20. The choice between two possible values of
C&s can be made in the following manner; The val-
ues of y and y for the modes 13 and 14 are the
roots of the equation

4y —2y(C»+ Css + 2C« —2C,s) + (C33+ C44)

x(C1, + C« —2C1s) —(C13+ C44 C,4)' = o (42)

For the modes 19 and 20, Eq. (5) should read

4y —2y(C11+ C33+ 2C4&+ 2C,4)+ (Css+ C«)
x(C11+C«+ 2C,4) —(C13+Css+ C1s) =0 . (43)

If we write

(C13+C«+ Cls) E
& (C1s+ C44 C14)

(001). On the other hand, no partial factorization
is possible in any other direction. For instance,
in the direction (100) Eq. (5) becomes

y y-(C11+ C44+ Css) - y(C14+ Css —C11C44
3 2 2 2

—C11Css —Cs4Css) - C11C«Css+ C14C11+ CssCss - 0 .2

(45)
If it is possible to measure the frequency shift

between the three Brillouin lines in a sufficient
number of orientations, the Parker and Meyer
method should be applied. In any case, the lack of
accuracy in the measurement of the constants is
great.

VI. DETERMINATION OF ELASTIC CONSTANTS BY
MEANS OF BACKSCATTERING MEASUREMENTS

A. Remark

In most cases the number of measurements pos-
sible in some specific directions is just equal to
the number of constants to be determined. Should
an intensity factor be too weak to per1nit a mea-
surement or should complementary measurements
be needed for verifications, it would then be neces-
sary to perform measurements in further direc-
tions.

8 Orthorhombic Group

1C», C22, and Css can be determined from y &

y, RIlly, ' C44, C55, Rnd C66 from y, y, Rnd y
(Table I). The absolute values of the sums S,= C1s
+ C66~ $2= Cts+Css, and Ss= C»+ C44are obtained by
measuring y for the modes 10, 11, 16, 17, 13, and
14. The signs are determined by means of the
method described in Sec. V A.

C. Quadratic Group T, and Hexagonal Groups H,
and H

For the T, and H, groups (Table V and VI), C11
and Css are determined by measuring y' and y'.
The value of the sum y +y =-,'(C»+Css+2C«) is
calculated from y' or y' by using the usual method
for choosing between the two possible values.

The same method can be applied to II2 and as a
matter of fact, the measurement y'0 provides a
verification of C» only, whereas that of y allows
the determination of C&2 by means of the relation
Css = s (C11 —C1s).

D. Quadratic Group T~

The method is similar to the one described in
Sec. VD, except for the measurement of C44, as
it is impossible to measure y, C44 must be de-
duced from the value of y for the modes 3, 12, or
24 (Table X).

E. Cubic Groups C, , C2 and Rhombohedric Group R,

No special remark is to be made regarding these
groups (see Secs. V E and V F) (Tables XIII and
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XV).
VII. DETERMINATION OF PHOTOELASTIC

CONSTANTS

A. Remarks

which gives the sign of p44, since

1 1 1
2 n3 n2

(6I)

4 4
n2 8n2 1a 1/2

pll 7p21+ I 2 RiR (Cll p22)
ni + n2l

(46)

4 4

pll +~ lp311 +( 2 2 2 (Cll p22)
Sn2 1b i/2

ni n1+ n3
(4V)

A comparison between the two possible values of

p» given by (46) and the four possible values given

by (4V) permits the determination of the algebraic
value of p», of the sign of p31, and then of the sign
of p32.

In the same manner, p22 is measured according to
4 4

=n Sn, 4a 1/2p22=+ p32+ g 2 RgR (C22 p22)n2+ n3)
(48)

4

p„=~ 9 1p„1+, „(c„p„)n 8n, 45 1/2
n2 ni+ n2

(49)

Then p33 is determined from similar expressions as
a function of PRR and PRR. The algebraic values of

p12 p13 p21 P31 p32 pii p22 and p33 are thus
found, depending however on the sign of p2, . There
are two possibilities.

(a) The crystal possesses an important birefrin-
gence in one direction at least, so that p, (g) is not
negligible with regard to p&&. Suppose n2en3, start-
ing from P &1 and P 231 we can write

ni C44
4

021
9a

P44 P4 (4) 4 [( 10)2 ( 10)2]2 ( 10)2

sa

[(n, ql)'+(nRqR) ] (ql)

(i) In the systems under consideration, the only
p',

&
constants which differ from the corresponding

Pockels p, &
term are the following: the orthorhom-

bic system: p44, p44, p», ps', p66, p~6; and qua
dratic, rhombohedric, and hexagonal systesm: p44

I l
p55 ~ p44 p55'
(ii) As we shall mainly use P measurements for

e = 90', the index w/2 will be understood in the fol-
lowing text. The index g will be indicated only for
backscattering measurement of P.

8. Orthorhombic Group

The absolute values of p12 p13 p21 p23 p31 p32,
p44 pss p66 p44 pss and pse are readily mea-
sured (Tables I and II). We assume that the sign
of one of these constants is known (p12 for instance).
The respective measurements of Pl„P11, and

p 1»1 give the signs of p,Rpl„p» p23, and p31p32
they also provide a verification of the absolute
values of these constants. Then we can write

No further information can be usefully inferred
from 90 -scattering measurements. In expressions
such as p12, for instance, p4g is included as a cor-
rective term only and cannot be used for the purpose
of experimental determination. The signs of the
products p44 pss, pss p66, and peep44 can be fixed on
the basis of p",,(w), p»(w), and p»(w). We there-
fore know the algebraic values of p44, p», and p00.
Proceeding from the measurement of PRR(w) for one
of the modes 10, 11, 13, 14, 16, and 17, the sign
of p2, can be either confirmed or changed if neces-
sary. It should be stressed that the new formula-
tion of the photoelastic effect put forward by Nelson
and Lax permits the determination of the signs of
the photoelastic constants by means of Brillouin-
scattering measurements: Within the present ac-
curacy of intensity measurements (around I%) the
procedure can be applied when one of the main bire-
fringences [(nl -nR) for instance] is greater than
10

(b) The birefringence of the crystal is so weak
that p«» can be considered as negligible within the
accuracy of the experiments. In this case the cal-
culation proceeds by comparing the signs of p44,
p», and p66 with those of the other constants, start-
ing from the measurements of P232(w) for one of the
modes 10, 11, 13, 14, 16, and 17. The sign of p21
will thus have to be determined by means of another
method (static for instance).

C. Quadratic T, and HexagonalH, Groups
I I

The absolute values of p12 p 13 p», p44, p,4, and

p00 are determined directly (Tables V and VII). If
the sign of p» is chosen arbitrarily, it is then pos-
sible to calculate the algebraic value of pii, and

to determine the signs of psl and p13 (Sec. VII B).
The measurement of PRR gives

4n 8ni 7 1/2
P33 +P13+ s 2 Rx2 (CSS P22)

n3 ~ni+ n3 I

There are two possibilities: (a) The indices nl
and n3 are different enough to permit the direct de-
termination of the sign of p44 by comparing I p44 I

with I p44I. The sign of p66 is thus fixed by means
of the measurement of PR, (w). The experimental
values of PRR(w) and PRR(w) are used in order to
choose between the two possible values of p33 and
to fix the signs of p,2 and of the other constants.
(b) nl = nS, the sign of the product p44p00 is deter-
mined by means of the PR",(w) measurement. Pro-
ceeding from the p22(w) and p22(w) values, we can
choose between the two possible values of p» and
fix the signs of p44 and p66 in relation to the sign of
p12, which is chosen arbitrarily.
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D. Hexalona) H~ Group from the values of pll, p2z, and p22. Then we have

The absolute values of P12~ Pfs~ Psi~ Pee~ P45, and

p15 are determined readily (Tables VI and VIII).
From the p12 measurement ip44i is determined
according to

pi 1
= Pi Qi + P3 Q2 q

1 1

p16 = Pi Q2+ PSQ1
1 1

pl2 P2 Ql + P4 Q2 '1 1

(61)

(62)

(66)

E. Quadratic Group T~

The constants p», p», p44, and p4& are readily
determined (Tables X Rnd XI). The sign of p3, is
chosen arbitrarily. The valises of p«, p», and p15
are found by the following procedure. Let us put

P11Q1+PieQ2= Pi ~

1 1

p12 Q 1 p ie Q2 P2 ~
f

Vfe may write
4 4

+1 HP31 +1+ 2 2 2 (r P22)
1& 1/2

gf 81 +

(r 1p 15)1/2

(s4)

(ss)

(66)

(sv)

Pf and P2 can have two values. The choice between
these values is made by considering

4 1/2

l&44' -)([( 5)2+( 5)2]2( 5)2 ~44P12 P45

(ss)
First, the sign of p» is chosen arbitrarily; the al-
gebraic values of pl2, p„, and p«are thus deter-
mined, as well as the two possible values of ps, .
The sign of p55 is given by p55=-2'(p«-P, 2).

Again we meet with two possibilities: (a) n, is
different from ~ so that p4,4, is not negligible as
compared to p44 within the accuracy of the experi-
ment. The two values of p4g are thus

&44=~ I P441-2'(4) ~

The signa of p44 Rnd p45 are given by the values of

pl2 RIll p21. The 81gns of p55 R11li p15 Rx'e detex'111llled

by proceeding from the values of p', z()x) and p,'2()1).
The values of p2132()/) and p~z()/) are used to choose
between the two possible values of pss and to fix the
sign of pf2.

(b) nl =)53. The signs of p«and p4, are given by
the respective values of p12()/) and p, z(w). The sign
of p, e is given by the value of one of the constants
pzz(w), pl&()x), or pl&(n). The choice between the
possible values of p» is made on the basis of the
value of pzz()x) or of pz2()/). Here again the sign of
p» will have to be determined by means of another
method.

On the other hand, the value of P722 gives four pos-
sible values for p», as opposed to two; the absolute
values of pe, and p«and the sign of their product
are given by the measurements of p f2 and p2, in the
Ib and 2b modes and by that of p 252 in the I0 and ll
modes. Proceeding from the measure of p&2 and

pp2, the sign of both constants can be determined
as a function of that of p, 2. If p«4& is not negligible
with respect to p44, the signs of p44 and p45 can be
specified by the measurement of p22 and pal.

For the above-mentioned group, the calculations
of intensities become very tedious when Q is not in
a pure-mode direction. The expressions have been
given explicitly only for Q=(Q„Q2, 0) and Q=(0,
0, I). As shown above, these expressions allow the
determination of the absolute values of some of the
constants; for others various values are possible.
There exist relations between the signs of the con-
stants. However, completion of the calculation re-
quires measurements in the (Q, , 0, Q3) or (0, Q2,
Q3) directions. A comparison between the experi-
mental values and the possible values —to be ob-
tained from computer-provides the necessary re-
lations between signs.

F. Cubic Groups C~ and C,

For the C2 group the absolute values of p,2, p,s,
snd p44 are readily measured (Tables XIII and XIV).
The sign of p» is chosen arbitrarily. The sign of
p„ is determined by measuring pxl and p,",. The
algebraic value of p» is calculated from the values
of pz; and p22. The sign of p, 4 can be specified by
measuring p 1222(v).

For the Cf group the absolute values of p» and
p44 can be determined; an arbitrary choice of the
sign of p«allows the calculation of two possible val-
ues for pl, . The choice between these two possible
values and the determination of the sign of p44 are
made from the measurement of p2M2(v) and pzz(w).

G. Rhombohedric Group 8,
The absolute values of pf2 p13 p14 p31 and p41

are readily determined (Tables XV and XVI); those
of p44 and p44 can be deduced from

(&1 I') =4'Y P

In the same way, if we write

(sa)
1/2

lp'4I=
(

v 2(r'Pl2+r'P, "2) p4, -
e2)

pl i Ql +pie Q2 —Ps ~

2 2=

p12Q1 -pleQ2= P4
2 2-

(se)

(60)

the algebraic values of Ps and P4 can be deduced

(ss)
1/2

IP44I =
I 1 ~ (r'&l2+r'P'12) P41-
~(ql)

The sign of p» is chosen arbitrarily.
The algebraic values of p«and ps, can be deter-
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mined by a comparison between the two values re-
sulting from the measurement of Paa and the four
values calculated from Paa. Then the sign of pss
being known, the sign of P,4 is determined from P |a
or p ta; the sign of p4t from pta or pat, and that ofpta
from a measurement of p~~ in one of the modes 13,
14, 19, and 20.

Two possible values are given for p3& by measur-
ing Pas. Should the birefringence be important
enough, the signs of P44 and p44 will be given by a
comparison between (64) and (65). The sign of p,4

is given by p",a or pat, which specifies at the same
time the sign of all constants, p33 excepted. The
choice between the two possible values of P» is

made from Psa(v) in one of the modes 13, 14, 19,
and 20.

ShouM p44 and p~4 be equal within the precision of
the experiments, the sign of p4~ —relative to the
arbitrary sign of P,a

—is given by the value of P,a".

The choice between the two possible values of p» is
effected as indicated above.
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