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After an outline of the Brillouin effect and of elastic waves in crystals, a method for the
determination of elastic and photoelastic constants is analyzed, The authors propose a set of
conditions with a view to obtaining accurately the numerical values of elastic and photoelastic

constants and to ascertain their sign.

The Brillouin-line intensities for scattering angles of

90° and 180° are presented for all crystal systems, except for the monoclinic and triclinic
ones, and for the low-symmetry classes of the rhombohedric system.

1. INTRODUCTION

The measurement of frequency shifts of Brillouin
lines permits the determination of the propagation
velocity of elastic waves; this method has recently
been improved, so that technical applications, such
as the determination of the elastic constants of
crystals, can now be easily performed. The prin-
ciple of the method was put forward by Krishnan in
1955.! Also, the photoelastic constants may be
calculated from measurements of the Brillouin-
line intensities. The first observation of the Bril-
louin-scattered lines was made by Gross, >® and the
first accurate experimental verifications were made
by Benedek et al.,* Chiao and Stoicheff, ° and
Cecchi® in 1964. Measurements of elastic (see
e.g., Refs. 7 and 8) and photoelastic constants have
since been performed. ®® This method has the ad-
vantage of avoiding the creation of important dis-
turbances in the medium; thermal fluctuations pro-
vide the necessary elastic waves of small ampli-
tude, and the crystal is studied in conditions near
the mechanical equilibrium. Measurements are
not subject to boundaries conditions, i.e., the shape
of the sample, insofar as the usual dimensions
are concerned. The results are obtained at fre-
quencies of about 10 GHz, permitting dispersion
studies. !! Besides, intensity measurements allow
the determination of elasto-optic constants. How-
ever, the necessity of using a transparent material
restricts the application of the technique (although
measurement of elastic constants of a nontrans-
parent crystal by means of the Brillouin effect has
been recently performed by Sandercock!?). More-
over, the usual difficulties accompanying ultra-
sonic pulse methods (i. e., choice of the directions
leading to the most precise measurements and de-
termination of the signs of some of the constants)
are increased by the unobservably low intensity of
some Brillouin doublets.

Our attempt here has been to select conditions
that allow the most accurate determination of the
elastic and photoelastic constants of all crystal sys-
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tems (monoclinic and triclinic systems excepted).
They have been applied to measurements of the
elastic constants of crystals belonging to the cubic, 3
the tetragonal, * the trigonal, '* and the orthorhom-
bic!® systems. Measurements of photoelastic con-
stants are under way.

II. THEORETICAL CONSIDERATIONS

A. Propagation of Small Amplitude Waves in an
Anisotropic Medium

The components of the displacement T of an ele-
mental volume of density p satisfy the following
differential equation, *’

pi} =C _aa_l.].l_ )
$T AR 9y axy,
with C,,,, being the components of the tensor of the
elastic constants. (The summation convention is
always implied.)
With solutions in the form of plane sinusoidal
waves, Eq. (1) becomes

yU;=T,, Uy, )
with

Y= pVZ ’ (3)
where V is the phase velocity and

T=Ciym@; Q- (€]

T';, is symmetric with respect to an interchange of
the subscripts 7 and I/, and @;, @, are the direction
cosines of the unit vector normal to the wave plane.
The three directions of vibration 1°, eigenvectors
of the matrix I', are mutually perpendicular, be-
cause of the symmetry properties of I', and are
therefore associated with one given propagation
direction. In general, they are neither purely lon-
gitudinal, nor purely transverse. The three real
and positive associated eigenvalues y* can be ob-
tained by solving the following equation:

det|T';, - 6;,7|=0. (5)
Formula (5) links the propagation velocity of
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elastic waves to the elastic constants of the crys-
tal. The tensor I';; is centrosymmetric; the prop-
erties connected with the propagation of elastic
waves are the same for all crystalline classes be-
longing to the same Lailie group.

B. Pure Modes

In the case of some propagation directions called
“first-kind” pure-mode directions, one of the pos-
sible vibrations is purely longitudinal, and the cor-
responding waves are then pure-compressional
waves; the two other possible vibrations are, in
that case, purely transverse (corresponding to them
are pure-shear waves). In the pure-mode direc-
tions of the “second-kind,” one of the vibrations is
purely transverse; the other two can be of any kind.

Some pure-mode directions are determined by
considerations of symmetry. !* As a matter of fact,
a “first-kind” direction corresponds to every prop-
agation direction whose vector Qis parallel to one
of the axes of symmetry of the Laiie group. A de-
generacy in mode frequencies occurs if the axis of
symmetry is of a higher order than 2, %22

On the other hand, a purely transverse “second-
kind” vibration (whose direction is perpendicular
to the plane of symmetry, the other two directions
of vibration being contained in the plane) corresponds
to every vector @ contained in the plane of sym-
metry. The utilization of these pure modes, de-
termined through symmetry, for the determination
of elastic constants is routine in the usual ultra-
sonic methods.

The general conditions for determining pure
modes are obtained by writing in Eq. (2), @=1 for
the “first-kind” modes, and -4 =0 for the “second-
kind” modes. #+# 1t is evident that the results con-
tain not only the directions obtained through con-
siderations of symmetry, but also directions which
depend on the numerical value of the elastic con-
stants, and are useful for determining the signs of
some of these constants.

C. Brillouin Scattering

Brillouin scattering is usually compared to x-ray
diffraction from crystals, because of the formal
analogy between the conditions of interference
(Bragg relation). The phenomenon is described as
a selective reflection of the incident electromag-
netic waves on lattice planes in case of x-ray dif-
fraction, or on planes of maximum density in case
of Brillouin scattering. In the latter case, a shift
of frequency due to the Doppler effect is observed
because the planes are in motion. The inelastic
scattering of x rays by phonons is obviously the
same phenomenon as Brillouin scattering,

One of the possible theoretical approaches de-
scribes light scattering as the radiation of polar-
ization density created by the incident electromag-

netic field. ®"'® If the size of the scattering volume
is infinitely large with regard to the wavelength,
there is only one “efficient” acoustic wave which
is responsible for the scattering; its wave vector
Xo is determined by momentum conservation. In
fact, owing to the finite size of the scattering vol-
ume, all the acoustic waves whose wave vectors
X are approximately equal to fo, contribute to the
scattering®. Therefore, a broadening takes place
and enhances the classical broadening due to the
attenuation of hypersonic waves. ®

We now define some of the notations to be used:
A and N are the wavelength and the frequency of the
“efficient” elastic wave; A and v are the wavelength
in vacuum and the frequency of incident light, re-
spectively; § and q’ are unit vectors of the perpen-
diculars to the incident and scattered light-wave
planes; €, and &, (€ and &}) are unit vectors of
the two vibrations which propagate without altera-
tion along q (q'), (we are only going to consider
cases which will be sufficiently simple for &, and
€} to remain in the scattering plane, and there-
fore, &, and €] are perpendicular to this plane);
n, and n,. are the indices of refraction of the
medium for the light polarized along E,, and
€),+, respectively; and 6=(q, ¢’) is the scattering
angle.

If the incident and the scattered beams are po-
larized along €, and &),., the “efficient” wave is
defined by

Apye=20d +n'2 = 2n,nl, cos)t/?, (6)
r > ->

- nyeq —nuQ

Quu'= (7)

-~y -
Inyeq’ =n,ql

Three directions of vibration and tt_)_ree velocities
of propagation correspond to each Q direction. The
frequency shifts are then given by the expression,

6v3,,. /v=2(VS,./c) 2 +n'% = 2n,n). cos)/?.
®
In case the incident beam is not polarized and the
polarization of the scattered beam is not measured,
each of the six lines is, because of birefringence,
composed of four components separated by a few
MHz, %

The flux of light scattered by an elementary cubic
volume with an edge a is given by (taking into ac-
count the losses due to reflection at the inlet and
outlet faces of the crystal)

s 81T  ut n'

put = X (n +1)2 o +1)*2 Biu'wasiu’
b w’

(9)
where & is the Boltzmann constant, T is the abso-
lute temperature, w is the scattered-light solid
angle calculated externally to the crystal, and ¢,
is the illuminance of polarized incident light along
€,. For all crystal systems, except the mono-



6 BRILLOUIN SCATTE RING:

clinic and triclinic ones,

S = 41,4 (n%nie,u('dsB?;zeu.i)z , (10)
Nuhye p(Viu
where
ij"‘.b;m“: @, (11)

n;, n; are the principal refractive indices, e, ;
and e’,.,, are the i and j components of the €, and
€. vectors, respectively, and u is the k compo-
nent of the u° vector. pj,,, is the new photoelastic
tensor which is defined by

aU,

—*, (12)

(6x™);5=Pism ox,

where (ax‘l) is the variation of the inverse optical-
dielectric constant and 8U,/8x, is the displacement
gradient.

This tensor, introduced by Nelson and Lax in
1970, 2 allows one to calculate the change in the
inverse dielectric tensor due to the strains and the
rotations associated with the acoustic waves in an
optically anisotropic medium. The rotational ef-
fect which takes place in shear waves had been
omitted until then. It is convenient to put

Dimi=bigmi+Diser) » (13)

where p,,,; is the Pdckels photoelastic tensor (sym-
metric with respect to interchange of % and ), and
Dij 1y 18 a tensor given by

Disany= 5[0 1y 80+ (k™) 84 — (k™) 84y

- ("-l)uﬁn] . (14)

In all crystal systems where the principal axes of
the dielectric tensor coincide with the crystallo-
graphic axes, we have

Pu(kn=%(5¢15k1‘5u5u) (1/”?"1/"?) . (15)

We shall use only the above expression since mono-
clinic and triclinic systems have been excluded from
the scope of the present work.

III. POSITION OF THE PROBLEM

A. Elastic Constants

The solution of Eq. (5) enables us to establish a
system of »n equations, the unknown quantities of
which are the » elastic constants, and in which the
coefficients depend on Q, the chosen directions.
Therefore, the values of the elastic constants can
be determined by measuring y in a sufficient num-
ber of arbitrary directions p of Q. The calculations
may be carried out from the » values of y and the
3p values of the components of 6 28-31

The precision of the measurements of y depends
not only on the intensity of the corresponding com-
ponents, but also on the resolving power of the
spectrometer, on the intensity of the line without
any frequency shift (due to the defects of the crys-
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tal and to stray light), and on the intensity and the
frequency difference of the adjacent components,
which can often provoke displacements of the maxi-
mum of a line through overlapping. The problem
finally consists of determining (3, 4, u, and u’, so
as to obtain the maximum accuracy of the C;, val-
ues.

Putting such a complicated problem of optimiza-
tion into equation form is difficult, and unnecessary
in order to achieve good accuracy. We prefer to
use a semiempirical method similar to the usual
ultrasonic techniques.

The choice of the angle of scattering can be inde-
pendently based on previous experiments. As a
matter of fact, it is necessary to avoid spurious
light as much as possible in order to carry out
precise measurements on transverse components.
Experience shows that it is preferable to use a 90°
scattering angle instead of having recourse to back-
scattering. Moreover, calculation demonstrates
that B, the scattering factor, is frequently zero for
transverse components in case of backscattering.
However, if the experimental arrangement for 90°
scattering cannot be used for technical reasons,
the backscattering may be attempted. This is the
case for nontransparent materials'? or when the
samples are too small to permit the cutting of the
necessary faces.

In the same manner as in the method of deter-
mination of elastic constants through propagation
of ultrasound, 32 the Q vectors are chosen accord-
ing to the following criteria: (a) The constant which
is to be measured must appear in the characteristic
equation (5) with largest possible coefficient; (b)
this equation should be expressed very simply, so
that the number of measurements necessary for
determining this constant can be as small as pos-
sible, in order to achieve precision of calcula-
tions—such as, in particular, the case when Eq.

(5) can be expressed in factored form.

On the other hand, there exists an infinity of pos-
sible directions of § and §’ for a given Q direction,
corresponding to different values of the intensity
factor g%, of each particular line. Since the tensor
Bj; has been determined by (11) for each of the
three acoustic modes expressed by Q and u®, the
value of q should be chosen first (which thereby de-
termines ¢’ and the two possible values of €, and
¢€',,) depending on the following criteria: The state
of polarization of lines should permit their identi-
fication; the intensity should be maximal for the
line under consideration.

B. Photoelastic Constants

In the same way, B, the scattering factor mea-
sured by comparison with that of benzene® or
toluene® for a sufficient number of orientations,
allows one to determine the values of photoelastic
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constants from (10) and (11). For the same rea-
sons, 90° scattering will be chosen, with orienta-
tions that give simple relations between g and the
photoelastic constants. Backscattering is used
only when other measurements are necessary for
ascertaining the sign of these constants,

IV. GENERAL STATEMENTS

Starting from these considerations, we have tried
to provide a method for determining elastic con-
stants for all systems, except the monoclinic, the
triclinic, and the rhombohedric group R,. The con-
ditions are as follows: (a) (3 must be parallel to one
of the crystallographic axes® or the bisector of
these axes (except in a few cases), and (b) for 90°
scattering, the scattering angle must be equal to
90° inside the crystal.

For typographic reasons, the tables are presented
in the following order: Backscattering, and then
90° scattering.

A. Backscattering

Samples. Samples having faces perpendicular
to the crystallographic axes and bisectors are re-
quired. In order to avoid stray light, which is gen-
erally strong, samples with oblique faces with re-
spect to the crystallographic axes are often used,
allowing the use of Brewster’s angle to remove
specular reflections. Unfortunately, this technique
requires a high number of samples. Alternatively,
a device for filtering the unshifted line may be
used (see, e.g., Refs. 12 and 36-38).
. Results. For each Laiie group, the values of y,
Q U, €,, &,., and the Brillouin intensities are
presented in table form. When necessary, the
values of y and U are reassembled in a distinct
table. The notation refers to one acoustic mode,
i.e., to a given Q, u° couple.

B. 90° Scattering

Experimental process. What we call a “scatter-
ing case” is determined by a Q direction, a scat-
tering plane, and a polarization state. Given the
condition 4+ q’ =0, the components of § and ¢’ may
be calculated by applying (7) in each scattering case.
Four samples are required for the most general
case (orthorhombic group). These four samples
are cut in the form of rectangular parallelepipeds
with the following faces: (a) (100), (010), (001);

(b) (110), (110), (001); (c) (011), (011), (100); and
(@) (101), (101), (010).

Only two samples are necessary in the case of the
cubic system. If § and §’ are perpendicular to the
inlet and outlet faces, the crystal will be positioned
on a spectrometer adjusted for an angle of 90°.

This is the case when »n,=#x},., or when the bire-
fringence effect can be neglected within the accuracy
of the experiments. Otherwise, q, 4’ and the re-

fractive indices being known, the incidence angles
i and ¢’ of the incident and scattered rays are cal-
culated, and consequently, the angle ¢’ between the
incident and scattered rays outside of the crystal
is also calculated. After having properly oriented
the laser beam, the crystal is arranged so as to
obtain the angle i between the incident beam and the
direction perpendicular to the face.

Results. Table IV shows the q and ¢’ values for
any scattering case of an optically biaxial crystal.
The indices refer to the scattering cases. The table
is used for optically uniaxial crystals with ny=n,.
For each Laiie group, a table has been provided
showing the &, and €/,, values and the scattering
factor (the same notation of acoustic modes for a
Latie group is used in the backscattering and 90°
scattering tables).

C. Notations

When dealing with the elastic and P6ckels photo-
elastic constants below, we will make use of the
usual contracted notation of two indices running
from 1 to 6.

The elements p,;,;, are written p,,,, with the
correspondences:

1,1-1, 2,1-6, 3,1-5,
1,2-6, 2,2-2, 3,2-4,
1,3-5, 2,3-4, 3,3-3.,

With the same convention, the elements p;,,; are
written p_,,.

The intensity factors relevant to one acoustic
mode have been calculated for two perpendicular
scattering planes. These planes are called a and
b. The components of § are called qi, where a
refers to the scattering case. The scattering fac-
tors are called 8% ,.(6) where the index M refers
to the acoustic mode and the scattering plane, and
the indices 1 and u’ refer to the polarization direc-
tions. The state of polarization of the incident and
scattered beams polarized in the directions €, and
&', will be designated as polarization (u, u'). For
simplicity, the index which refers to the acoustic
modes is omitted for the notation of 1.

V. DETERMINATION OF ELASTIC CONSTANTS
BY MEANS OF 90° SCATTERING EXPERIMENTS

A. Orthorhombic Group (Classes 222, mm?2, and
mmm)

A good starting point for this study is the ortho-
rhombic group 0 (Tables II and III). Equation (5) is
completely factored for the (100), (010), and (001)di-
rections and partially so for any (3 vectors lying in
the coordinate planes. Cy; is thus determined with
the help of measurements made for the modes la
and 15 in polarization (1, 1) and Cj, and C;3; by mea-
surements similar to the ones made for the modes
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4 and 7, respectively. The value of C4 can be de-
duced from measurements made for the modes 5b
and 9a, in polarization (1, 2) or (2,1), and the val-
ues of Cs; and Cgg by measurements similar to the
ones made for modes 3a, 8b and 25, 6a, respec-
tively. If some transverse intensity factors are
too weak to allow these last measurements, the
modes 12, 15, and 18 can provide a solution. Each
of these six constants is obtained from one mea-
surement of y only: In this way maximum precision
is achieved.

The measurements for the modes 10, 11, 13,

14, 16, and 17 supply the experimental values of
the sums Sl = (C12+ Ces), ng (Cls + CSS)’ and S3 = (Czs
+Cy). On the other hand, the signs of these sums
cannot be directly determined by the measurement
of elastic velocities, whatever the direction of
propagation may be. Moreover, it is not always
possible to lift the indeterminacy when starting
from conditions of stability (positive energy of de-
formation).

The method described by Fisher and McSkimin®®
does not apply unless one can distinguish a priovi
the longitudinal mode from the mixed one, which is
possible by the pulse-echo method. The problem
has been solved by observing the fact that the prop-
agation velocity in the planes of symmetry does not
depend on the sign of the sums S;, S,, and S;. For
example in the plane X0Y, the values of y*® are roots
of the following equation:

(Cs5Q%+Cay Q2 =) [¥2 = (C11 Q%+ Cp Q3+ Coe) ¥
+(C1y Q2+ Cos Q3) (Cos Q%+ C22 Q3)
= (Cia+ Cee? @ Q3]1=0 . (16)

On the other hand, the propagation direction of pure
modes of the first kind exists in this plane and is
expressed by

Q@ _ c,,-zcsﬁg-c,g>1/2 -
@ *‘(czz—zces—cm » ©=0. a7

The corresponding value of y for the pure-longi-
tudinal mode L is given by

vE=

(sz - ZC§§ - C12) Cu + (Cll -— 2C§§ - Clz) (2C§§+ CJ.Z)
C11+ Cpp —4Cg—2Cy;

(18)
We should calculate the presumed direction of a

pure mode and the value of y for each one of the
]

(Cas =VH{P? = ¥(Cyy + Ceg) = [C16(@F - Q;) +(Cz+ Coq) Q1 Q2
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possible values of C;;. Comparison with the roots
of Eq. (12) lifts the indeterminacy. The signs of
S, and S; are determined in the same way.

B. Quadratic Groups T, (4mm, 42m, 422, and 4/
mmm Classes) and Hexagonal H, (6mm, 62m, 622,
and 6/mmm Classes)

The results for the quadratic group T, (Tables
VII and IX) stated below can be applied to the hex-
agonal group H, by taking into account the supple-
mentary relations relevant to H,,

Ce=3(C1 = C1a) , (19)

pee=z(p11 - P12) (20)

The only modes indicated in Table VII—as well as
in the following tables, are those that lead to inten-
sities different from zero. C;;, Cs3, Cy4, and

Cge are readily measured (modes 1a and b; 7; 3a,
8, 12; 2b; respectively, with 15 for cross check-
ing). Cj; is calculated from the measurements of
y!°. The measurements of y** or y!* give two pos-
sible values for C,5; the above described method
(Sec. V A) may be applied for choosing the correct
value. If necessary, the value of 3(C;, — Cy,) for
T, can be measured by the mode 11, e.g., taking
the plane (110) for the scattering plane. The cal-
culation of intensities is tedious and will not be
given here. It should be noted that for H, the mode
10 does not supply any new information as, in fact,
v=Cy.

C. Hexagonal H, , Group (Classes 6/m, 6, and g)

There is no need to distinguish between the hex-
agonal group H, and H, (Table VIII) when studying
the propagation of elastic waves; in some cases of
scattering only the intensities are modified.

D. Quadratic Group T, (Classes 4/m, 4, and ;)

The method herein proposed is an adaptation of
the method put forward by Alton and Barlow.3! It
is possible to apply it if the velocities of longitudi-
nal and mixed modes for a given direction can be
measured (this case is frequently found in Brillouin
scattering”). The calculations for this group are
given in Tables XI and XII. Cg3 and Cy4y are readily
measured. Cy;, Cy, Cig, and Cgg are calculated
from measurements of v ° for the fcllowing values
of @ (1,0,0), 2°2(1,1,0), and (V3/2, 3, 0). Asa
matter of fact, Eq. (5) is factorable if @ lies in the
(001) plane. Thus

+(C1y @3+ Cos Q5+ 2C15 Q1 Q2) (Cos QF + C11 Q3 — 2C15Q1 Q2)} =0 . @1

y¥ and y ¥ (roots of the quadratic equation) are the
values of pV? for the longitudinal and mixed modes,
respectively. The sum (y £+ y¥) remains constant

M
and a first relation is written,

S=ylay¥=Cpy+Ce . (22)
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If -Q.= (1, 0’ 0)!

IR+ ")?=4, (23)
where

A=C%+C%+2C% . (24)
b -Q.'_- 2-1/2(1’ 1’ 0)1

IP+("P=A+3B, (25)
where

B=C}; - C};+2Cgq (Cyy + Cyp) . (26)
Finally, if Q=(V3/2, %, 0),

¥R+ ¥)?=A+(3/4)B-(V3/2)D, (27)
where

D=Cy4(Cyy + C1a) - (28)

After elimination of terms other than Cy; between
(22), (23), (25), and (27), a quartic equation is ob-
tained. To each given value of C,; there corre-

sponds one single value of Cy;, Cyg, and Cgg. Sta-
bility conditions for T, are given by*°
Ci11,Ca3, Cyyy Cgs>0,
(29)

C11>Cia, Cyy Ceg>Clg, C11Cy>Cly.

It is thus generally possible to exclude some of
the values found; however the method proposed in
Sec. V A must be used to complete the determina-
tion. As a matter of fact, the quadratic factor in
(21) may be written

7% = Sy+2DQ; @x(Q} - QD) - BQE Q4+ 3 (s* - A)=0.
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Q vector lying in the (001) plane. To each possible
value of the constants, the directions of pure modes,
in this plane, are given by

m=Qy/Q,
=0+ 2V Y14 B2 FH(1+ BA)V Y 2L (1 b2 2, (31)
where
b=(Cyy —2Cgg — Cy5)/4Cyg . (32)
The corresponding value of y % is

v =(1+m?) ™ [Cyy + mP(2Ceg+ Cra) + m(3 = m?) Cyg] -

(33)
A comparison between these values and the roots
of Eq. (30) lifts the ambiguity.

For the measurement of C;3, we use the follow-
ing property: The planes containing 0Z and one of
the first-kind pure-mode directions (given by m)
are planes containing second-kind pure-mode di-
rections. Let us consider such a @ direction given

by

Q=(1+mP+R%) 12,
Qz=m(l+m?+E))M/2,

Qs =k(l+m?+ 1?12,

where & is arbitrary. With the following choice of
a right-handed rectangular-coordinate system:
0X’ parallel to @, 0¥’ lying in the crystallographic
(001) plane, Eq. (5) is written*!

(30) (Ces =M [(Cly -7 (C35 -7 - Cif] =0, (34)
The values of ¥ £ and y ¥ are also known for any with
|
Ci1=(Q1+Q3%) C1y +2Q% @4 C12+ 2Q3 (Q% + @F) (C13+2Cyy) + Q3 Cyg+ 4Q% Q% Cop+4Q; Q2 (QF - Q3) Cyq, (35)

Cis= Q5 (QF+@3)™ (91 + Q%) C11 +2Q3 QF (@F + Q)™ (Cra+ 2C45)
- Q3@+ @F) (2C13 ~ Cyg) + (1 - 2Q3)* Cyy +4Q, Q2 Q3(QF+ QD)™ (@2 - Q%) Cys, (36)
Cos= 207 @3 (Q}+ @)™ (C11 — C1o) + @5 Cau + (QF + D)™ (QF - @3)* Cos —4Q, Q2 (@3 + QD™ (@2 - Q%) Cy @37
Cls=— Qs (QF+ @)™/ % (@} + @8) C11 — 203 Q5 Q3 (QF+ @)™/ C1a+ Q5 (QF + @D/ 2 (1 - 2Q5) (C13 + 2Cy)
+ Q3 (QF+@3)/2Ces-4Q1 Q3 Qs (QF+ @3)1/%Cos —4Q1 Q2 Q5 (QF + QD) /2 (2 - @9) Cy . (38)

The measurement of yZ and y ¥ for this direction
gives two possible values for Cy3. The ambiguity
must be lifted by the method proposed in Sec. V A,
from the first-kind pure-mode direction given by

Qz/Q1 =m, (39)

Q4=l=<9.u:_2£n:_c_n 1+m2
& Cy3=2Cy —Cy3 ( )

2(Cyy = 2Cgg = Cyp)m® (m?+1) )1/2 4
+(033—ZC44 = Cy3) (m* —6m® +1) - (40)

In this direction one finds

r

'yL=(1+m2+lz)'1[Cn+mz (2066+ CIZ)
+12(2Cy +Cr3) +m(3 —=m?) Cyg] . (41)

For this class, it is necessary to cut two samples
so as to obtain

Q=(:V3,%,0) and QII(,m, k).

E. Cubic C, (43m, 432, and m3m Classes), Cubic
C, (23 and m3 Classes), and Isotropic Groups

There is no necessity to distinguish between cubic
groups C, and C, (Table XIV) for the propagation
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R. VACHER AND L. BOYER

TABLE IL

Orthorhombic group 0.

6=

90°,

The values of ¥ and

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

o4

1
2 7(-1,1,0)

(a1,03,0)

(e} ,03,0)

1

2 2(-1,1,0)

1

2 2(-1,0,1)
(a3,0,03)

4504
(ay,0,03)

1

2 %(-1,0,0)

1

2 2(0,-1,1)
(0,03,03)

(qug,og)

1

2 2(0,-1,1)

1

2 2(1,-1,0)
77
(07,6,,0)

8 8
(°1'°2’0)

1

2 %(1,-1,0)

1

2 %1,0,-1)
(q?,o,qg)

1
(qio.o.q§°)
1
2 %(1,0,-1)

1

2 Z0,1,-1)

(0, qz .qll)

(0.02 ,qéz)

1
2 %0,1,-1)

™+

(0,0,1)
(0,0,1)

(05,-02,0)

1

2 2.(1,1,0)
(0,-1,0)
(0,-1,0)

4.4 .4
(a3,0,-07)

1

2 7(1.0,1)
(1,0,0)

(1,0,0)

(0,05,-0)

1

2 7(0,1,1)
(0,0,-1)
(0,0,-1)

;.8 8
(-a5,07,0)

1

2 %(1,1,0)
(0,1,0)

(0,1,0)

0
(-aé ,D,o}o)

!
2 %10,

(-1,0,0)

1 1
(0,-937,9,7)

12 12
(0,-03%,0,%)

1

2 Z0,1,1)

@+

(0,0,1)
(-0},-a3,0)

(0,0,1)

1

2 2(1,-1,0)
(0,-1,0)
(-a3,0,-03)

(0,-1,0)

1

2 %1,0,-1)
(1,0,0)
(0,-03,413)

(1,0,0)

1

2 200,1,-1)
(0,0,-1)
(0] ,=02,0)

(0,0,-1)

1

2 7(-1-1,0)
(0,1,0)
(-a?.O.-og)
(0,1,0)

1
2 %100
(~1,0,0)

(-1,0,0)

(-1,0,0)

1

2 %0,-1,1)

Longitudinal mode

A

1b

4a

4b

7a

7h

v R
?
P31/ 1
0
i
0
(n + n2) 2
—g'—p—(np - ngp,y)
oo rd 1P11 ~ "2P21
2
P21/C11
0
1
0
2,4
(n ML (np napa,)?
___—8'_8_
& 111~ "3P31
2
P12/C22
0
C22
0
(n? + ng)4 4 4
P (ngpgy = ningp)?
2" b2
2
P32/C22
0
)
0
(nf + n§)4 ( )
npy, - nap
1P12 22
64 non r22
P23/C33
0
Ca3
0
4
fend)? 4 2
a BB (MP1s - "aPas)
1M 33
2
P13/C33
0
C33
0
2.4
(g +nd)? 4 4
o B E o (M2Pa3 ~ N3Py
2 "3 Ca3
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1 are given in Table III; the values of § are given in Table IV,
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pure shear or mixed mode

pure shear mode

{ A A 1
Not. Y Buu' Not. Y Buu'
0 0
(rga)? ¢ (mgp®?
0 (9yPgs)
2a ¢ a ", Cs5
° % (ngd)? + (9D))?
0 (92Pse)
"2 Ces
0 0
0 0
3.2
((ngaD? + (1)D? 5
(qll’sa) 0
"3 Cep B C
¢ '
66 (ngeh? + (ngh®? 55
(Q3P65) 0
"3 Ceg
0 )
0 0
(nggp)? + (mp@)? 5
0 (92966)
"3 Cgp
5a C 62 C
44 66 ((“zqg)z . ("3q6)2)2 6, .2
0 A3 (alngg)
"3 Ceg
0 0
0 0
7 7
(D% + (a2 5,
(a3pga) 0
s6 ¢ "1 Cag 6
“ (("ﬁ?)z + ("212)2)2 8, .2 66
——g—— (ayp1) 0
" Caq
0 0
R 0
((ngap)? ¢ (mad®? 45
0 (q3P44)
o 3Paq
ga ¢ 9 ¢
% ‘4 (ma? + 03992 4o,
0 (9y7Paq)
" Caq
0 0
0 0
(ngg3h? + (ng@3h)? 1y
(Q3 955) [}
8 ¢ "2 Css N
* (g1 + (a2 5
(QZ 955) 0
"2 Ces
) )




648 R. VACHER AND L. BOYER 6
TABLE II.
I ] ] [ . Longitudinal mode
l A nl
Not. vy Buu'
2l
221,100 (1,00 (0,0,1) (0,0,1) (yyuy + Pagug)?/2v
l
220,10 (@0 (001 (a0 0
10 Y10
1
221,10 (a}*a}h0) (@}t -alto)  (0,0.1) 0
3 (ngal512 + (001912 (mpal)? + (nyal9y2)”
i 2 1 1
2 51,1,0) (4%03:0) (83°:-9°:0) (-q1°,-43,0) — i (1% 3% ((py10y + papu) - nf(oyuy + pygu,))
172
2
+ n?ng(pésul + péguy)(( - (455)2)}
1
22(0,1,1,) (0,-1,0)  (1,0,0) (1,0,0) (pygup + Py3u)7/2y
4
2 €(0,1,1) (o,qf.q;ﬁ) (1,0,0) (0:'4%6-'056) 0
13 Y13
1
220,,1) (0,00l (0,01 1-a))  (1,0,0) 0
. (g2 + (g2 (0B 4 (n,l02)°
2%0,1,1) (0,01%,01%) (0,01%,-013) (0,-0%,-al8) 22 2 32 s - 2 {033 (n§(m3g0 + Pagus) - nB(pyg0, + ppguy))
2"3 Y
2
+ 1505 (Piguy + Pigus) (397 - (039}
2l
221,00 (0,0-1) (01,0  (0.1.0) (yauy + Pyu))?/2v
B!
221,00 (@%0.0l%)  (0,1.0)  (-al%0,01%) 0
16 YlG
2l
221,01) (20,02 (-a2%0,0%)  (0,1,0) 0
1 (g2 + (n t‘21)2]2(“‘ @2 4 (n qzl)z)2
2410, (@h0.e2h) (-a2Lodh) (gl 0.e3h) B (o] ey + pyg) - oy  pagey)
3"y
2
© kg + s (- D)
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(Continued)
Pure shear or mixed mode Pure shear mode
e A
¢ — \
Not. ¥ Bupt Not. Y By
0
(a2 + (n 13)2)2
2N 192 (n2q}3p 213, 2
N9 Pgg + Np95 Pag)
191 Pgs * "% Py,
"na(Caq * Cog)
n M See mode 10 12 HCy, + Cgp)
2
18,2 14,2
(@ + %)) 208, 214, 2
(n1e2 P35 = Mz91 Pyg)
nyn2(Caq + Cgg)
0
0
(00162 + (n 16)2)2
L{n39 203 216, 216, \2
(nz92 Pgg * "393 Peg)
Na(Cee + Cor)
"2"3ltss * L6
1w M See mode 13 15 Hgg + Cgg)
2
17,2 17,2
((ng927)" + (nga5")°) eV pe - n2al701 42
593 Pgg - N3d; Pee)
A T ey 293 Pég - "3%2 Ps
2"3(Cs5 + Cop
0
0
(22 + (00193
193 3N 219, 2,19 , 12
(n3937P4q * n19) Pgp)
"3y (Ceg *+ Caq)
17 v” See mode 16 18 ;(Css + CM)
' 2
20,2 20,2
((n303)" + (nyq37)°) (2a2%: - n2a2:)2
391 Pag - "9 Peg)
nang(Cee + Cup)
3"1(Ces * Caa
0
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("7 - P - k) + (T4 Ea)) (T 4 Ey) - m-fgu - G- )+ (T 4 Bg)) (g - 2y - i) 0
Az) + (05 4 E29)) ("0 - 28y - A7) m-fﬁu - G- ha) + (T 4 By (T 4 E2y) 0
0 m-fgu =M= R0+ (%% 4 T19)) (3% 4 Ey) - %+ U))(%% - Ty - 42)
0 m-fgu - Ty - 22+ (% E)) (9% - Thy - g M-HNA%u - - g p42) + (%9 4+ T19))(3% + 2y
€ en In
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BRILLOUIN SCATTERING

Ty ¢
A —_t 1 0 b

€, _ Ly
u NAmz N:V

ﬂmz + M:V AH= - &)

¢_¢

1

€ 1 € 1
-N Amc + N:V (“u + =vm-~ 0 b

~ey
~oy

(Eu + Ly
%t + Tplu vze

€ 1
NNHMNMIHINMW - b (Is - 1)

o+, z- b Gs+niyz- 0

uy
— - 0 — b s-1,2- 0

—~
NN

1 4 1 -
u + ~=V (‘u + :vm-w 0
1
€ 4 € 4 _
Auc + ch (*u + =VN z 0

—ey

m-
2 2

v uze
v % . 0 b (s-n,z (asn),z-
€, _ ¢ € . ¢ 81+ 2. <.
& AR

pGuedn fu-fyye ol stz - 0 a2 (benye (5-0
i [ T I

(%u + ws (Tu - %)

4
- b 3 -
2 ' l 0 ( 1), 2 0

2 1 4 1
z --N + m-ﬁwc + ch (“u + tu) i m-

¢
1 1 1 “
1
u g _c 2€
0 = P L T (41,2 0
u-u (Su - Su) [
2 4 I4r4 4

muamc + w:v Am: - ~=vm-~ muﬁwz + wcv Amc + szm-

W-Amc +W:vﬂm=- ﬁcvw-w
1 1

€p % Tp “30N € %
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652 R. VACHER AND L. BOYER 6
TABLE V. Quadratic T, and hexagonal H; groups. 6=180°,
Not. Y [ M Type of e, = & e, =8} B
yoe 17 € 27 ¢ 1
2
1 ¢, (1,0,0) (1,0,0) L (0,1,0) (0,0,1) p3,/C)
2
7 Cas (0,0,1) (0,0,1) L (1,0,0) (0,1,0) Pis/Ca
1 1 1
10 Yy, +c,) e 2201,1,0) 2 2(1,1,0) L (0,0,1) 2 %(1,-1,0) 2/
Z% M2l e s ol e s P31/Y
.1 1
13 V13 220,1,1) (02l L (1,0,0)  25(0,1,-1)  (ppup + Pyguz)2/2y
2 3
14 14 2%0.1,1)  (0.uyt,ulh) M (1,0,0) 2 5(0,1,-1)  (pypu, + pyus)¥/2y
) 1
15 7(Cqq * Cg) 2 2(0,1,1) (1,0,0) T (1,0,0) 2 2(0,1,-1) 0
TABLE VI. Hexagonal group H,. 6=180°, The
Not. Y 6 u Type of g = 8! e, = &l [
ype 17 ¢ 2 1
1 ¢y (1,0,0) (1,0,0) L (0,1,0)  (0,0,1) N
2 Ces (1,0,0) (0,1,0) T (0,1,00  (0,0,1) Pa6/Ces
3 Cag (1,0,0) (0,0,1) T (0,1,0) (0,0,1) 0
7 €3 (0,0,1) (0,0,1) L (1,0,0)  (0,1,0) pi3/Ca
.1 .l .
10 ¢ 2 %(1,1,0) 2 %(1,1,0) L (0,0,1) 2 4(1,-1,0) 2 /¢
11 sl sly U Pt Y Pal 11
. ) .l
1 Ces 2%(1,1,0) 2 %(1,-1,0) T (0,0,1) 2 %(1,-1,0) 0
.1 .l
12 Cag 22(1,,0)  (0,0,) T (0,0,1) 2 %(1,-1,0) 0
" »
13 3 220,11 (0.uldul3) L (1,0,0) 2 %(0,1,-1)  (pypuy + pygup) 22y
) 1
14 v 220,10  (utulh M (1,0,0) 2 2(0,1,-1)  (pypp + Pyqug) 2y
1 .1
15 Cpy+Cee) 22011 (1,0,0) T (1,0,0)  220,1,-1)  pg/(Cyy + Cgg)
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The values of i and ¥ are made explicit in Table IX,

B2 = B2 P22
2
0 P51/
2
0 (Pyy * Pyp - 2pge) 270y
11 P12 - 2P
2. 2.4
(n7 + n3) 4 22 2
0 g (0] (11U, + Pyguz) + M3(pgyuy + Pagua) - 2 nind(pgu, + Piguy))
128 nn3 Y
2. 2.4
0 (n1+n3)(4 + +n4( u, + u)-2n2n2('u+‘u)]2
Tos By n1(PyyUp * Py3u3) + n3(Pgqup + Paguy 1"3(Pgqup * Pagu3
13
2. 2.2
(n7 + n3)
P A T T
40 - ("Pes = "3Paq) 0
aln.,
values of U and Y are made explicit in Table IX,
B2 = B2 P22
2
0 P31/C1
c 0
2
Pas/Cas 0
2
0 pl3/Cs3
0 o2/
0 o3/ Ces
2
Pas/Cag 0
2.2 2 4
(ni + n3) 2 (n1 + ng) 2

2 2 4 4 22 i
—g g (NPygp + 3Pgg(up + ug)) g —(ny(Pyyup + Py3uz) + n3(Pgyup + Pa3uz) - 2 N ng(pgau, + Pyzus))
16 nng Y 128 nng ¥

(n «nd)? 2 2 f ), 4 2 n2nl 2
=7 (NP1glp * N3Pgslup + ug))  ——g5—(n1(Pyup *+ Py3u3) + n3(P3 1y + P33u3) - 2 NIn3(Paquy + Pyzus))
16 nyng Y 128 n1n3 Y

(n? + ng)2 (ni + ng)2

2 2 .2 2 2 .2
"1Ps6 - "3P4q) (n1P16 * N3Pg5)

—_—
8 "1"3(°44 + c66) 64 nn3(Chq + C66)




654 R. VACHER AND L. BOYER 6
TABLE VII, Quadratic T; and hexagonal H; groups. 6=90°, The values
q [ Eu g, Longitudina) mode
A
Ll A}
Nat. vy Buu.
1
(1L0,0) 2 2(-1,1,0) (0,0,1)  (0,0,1) Wi/,
(1,0,0)  (a1,63:0)  (0,0,1)  (-a},-a3,0) 0
la cll
(1,0,0)  (4,65.0)  (G-adi0)  (0,0,1) 0
21 n! »)
(1,0,0) 2 2(-1,1,0) 2 {(1,1,0) 2 2(1,-1,0) by, - Py,
1
(1,0,0) 2 %(-1,0,1) (0,-1,0)  (0,-1,0) Pla/tny
(1,0,0)  (63,0,63)  (0,-1,0)  (-a3,0,-03) 0
1b Cu
(1,0,0)  (a,0,83)  (3.0.a1)  (0,-1,0) 0
1 1 1 2 2,4
- - - (n] + n3)
(1,0,0) 2 2(-1,0,1) 2 2(1,0,1) 2 2(1,0,-1) E;l;§;g§E~_(ngpll - ndpy))?
31
1
0,0,1)  2%1,0,-1) (0,1,0)  (0,1,0) py/Cas
(0,0.1)  (67.0,63)  (0,1,0)  (-a3,0,-03) 0
7 C33
0,0.1)  (a1%0.0%)  (-93%0,0}%) (0,1,0) 0
1 1 1 2 2,4
- - - ny +n
(0.0,1) 2 2(1,0,-1) 2 4(1,0,1) 2 2(-1,0.1) CL 5 (atayy + nipyy?
. 64 nng C33
22(1,1,0) (-1,0,0)  (0,0,1)  (0,0.1) Py
241,10) (@30 (0,01 (-al-al0) 0
1 10 yw
2 %1,1,0) (a}*,03%0) (a3%-al%.0) (0,0,1) 0
1
25100 (-L0.0) (L0 (1,0,0) Weelv
1
220,11) (0,-1,0)  (1,0,0)  (1,0,0) (pygp * Pyyup)?r2y
.
2 (0,1,1) (0,-1,0)  (1,0,0) (0,1,0) 0
. T
2 2(0,1,1) (0,3)"a) (0,8.-03") (1,0,0) 0
2 2
1 18,2 18,2 18,2 18,2
- ((n1a3")° + (n3a37)%) ((n4a57) + (nya3°))
2 2(0.1,1) (0,0)%,018) (0,08,-01%) (0,-0%,-ql%) 12 - ~BE i 2 3 (el (ng(py1u; + pagua) - noyyu, + pyguy))
s ¢ (@82 - (¢18))n22(n; R
2 a3 ) Ingn3(paquy + Pizéz)
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of v and U are given in Table IX; the values of § are given in Table IV.

Pure shear or mixed mode Pure shear mode
A

A r )

Not. Y Buu' Not. Y Buu'
0 0
0 (a1p4a)/Caq
2a 066 3a C44 , .
0 (Q3p43)"/Cqq
0 0
0 0
2
3,2 3,2
((“3%) + ("1Q3) ) 3 2 o
(a3Pgg)
2 ¢ "%, 3 ¢
66 4,2 4,2 4
(@)™ + (1383)°) 4 5 o
(a3pgq)
"3 Ces
0 0
Pure shear degenerated mode
f A N
0
2
9,2 9
(("3q1) + (“1Q3)2) 9., .2
(a3pg4)
n1Caq 2
8/9 c 2., 9.2
4 (("lqg) + (n3a3) ) 10, 2
(a] Pgq)
"1Caq
0
w A J
0 0
13, 13, .42
0 (a1 + 057 )pgg) /2Ly
1
11 5(Cy - Cyp) 12 Caa o
0 (ar* - a3t ipgg) /2ty
0 0
0
2
P66’ (Caq * Cop)
1
14 L4 See mode 13 15 1Chy + Cop) e 17.2,2
(8" + (n3a3)) " 5 7 2 17, 12
P (n193"Pgg = "39 Pag)
niny y
"3
0
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TABLE VIII, Hexagonal H, group. 6=90°,

8

The values of Y and

2l
(1,0,0) 2 2(-1.1,0) (0,0,1)
(1.0,0)  (a},a2:0)  (0,0,1)

(1,0,0)  (a4,a2.0)  (ad.-a2.0)

1 1

(1L0,0) 2 2(-1,1,0) 2 4(1,1,0)

»!
(1,0,0) 2 2(-!.0.1) (0,-1,0)

(1L0,0)  (43,0,83)  (0,-1,0)

(1,0,0)  (ah0.ad)  (aho.-ad)

1 1
(1L,0,0) 2 2(-1,0,1) 2 £(1,0,1)

21
(0,0,1) 2 2(1.0.-1) (0,1,0)

(0,0,1)  (63,0,3)  (0,1,0)

0.0.1)  (a1%,0,03%) (-93°,0,0}")

1 1

(0,0,1) 2_2(1,0.'1) 2-2(1.0.1)
22(1,1,0) (-1,0,0)  (0,0,1)

B!
2 21,1,0) (a%,a}.0) (0,0,1)

1
2%(1,1,0) (a}%.a}.0) (a*,-a1%.0)

")
22(1,1,0) (-1,0,0)  (0,1,0)

2 2(0,1,1) (0,-1,0)  (1,0,0)
2l
22(0,1,1) (0,-1,0)  (1,0,0)

1
. 7
2 40,1,1) (0,03 a}") (0,037 ,-a1")

1
22(0,1,1) (0,03%,0}%) (0,0%,-0}%)

e, Longitudinal mode
A
f
Not. y B
(0,0,1) SN
(-qi.-qé.o) 0
la Cll
(0,0,1) 0
1
2 2(1,-1,0) (Psq = Pro)2raC
i P11 " P12 11
2
(0,-1,0) P12/C1y
2
3,.3 (nga)? + (mad?d) 5
(-91+0,-43) X (LI
3
1 C 2
1 ((na%)? 4,2
(n)97)° + (n395))
(0,-1,0) 1 3 (apye)?
n3 Cqy
1 2, 2.2
-5 (n7 + n3)
2 4(1,0,1) “—l'ns—("?”u - ngpyy)’
mng Oy
2
(0,1,0) Piy/Ca3
(-q?.o.-qg) 0
7ty
(0,1,0) 0
1 2. 22
- (n] + n3) 4
2 2(-1,0,1) Loy - ngpyy)’?
64 nin, C
1"3 C33
2
(0,0,1) 931/Y
(-a3.-a3%,0) 0
0 ¢y
(0,0,1) 0
2
(1,0.0) P/
(1,0,0) (Pyglp + Py3uy)2/2y
(0,1,0) (pmuz)z/Zv
13
13 y 2
17,2 17,2
((ny95,")° + (n3a3")°)
(1,0,0) 12 PR 3 3 (n%q;7p16u2 + n§q%7p45(u2 + u3))2
3
2 2
18,2 18,2 18,2 18,2
1818 ((n)a;7)% + (n303°)%) ((n58,7)° + (nja3°)°%) 8 18, 4 4
(0.-a572-93°) —2 3 2B : 2 = {q% a3 (n3(p3 U + P33u3) - (P Uy + Py3u3))
1
+ nind(piqu, + Piu3) ((9




6 BRILLOUIN SCATTERING: A TOOL... 657
1 are given in Table IX; the values of § are given in Table IV.
Pure shear or mixed mode Pure shear mode
( 2 — [ A X
Not. Y Buu‘ Not. Y Suu.
0 0
0 (a1pig + 9zPg5)/Caq
2a C66 3a Caq
0 (9504 - 93Pys)/Cyq
2
P16/Ce6 0
2
P16/Ces 0
(ngd? + (e’ (ng@? + (ngad?)°
3% 193 (30,12 3% 193 (430,00
91Pge) 93P45
"3 Ce ") Caq
2 Ces 4.2 4,2,2 b Gy 4.2 4.2,2
((nlql) + ("3Q3) ] 4 2 [("lql) + ("3Q3) ) 4
7 (a3Pgg) . (CHIP]
3 Ce6 1 bas
(of + ),
G, 16 0
3 Ce6
Pure shear degenerated mode
A
f 1
0
2
9 9,2
(a2 + @) g, 5
(a3)7(Pgq + Pys)
8/ c ",
44 (10192 + (n.q1%)2)
19 393 10,2, ,2, 2
(97 7)"(Pgq * Pgs)
"y Cqq
0
[t A J
0 0
13, 13, 13 _ 13, 42
0 ((ay” + 927)pgg + (9° = a1 )Pgg) /244
11 Ces 12 Caa .
0 ((a3* - ahpgg + (a1 + a3 ipgg) /2¢4,
ple/y 0
2
P16/ (Cag * Cop)
2
Pes’ (Cas * Cop)
14 1
14 See mode 13 15 (Cpp + Cp) 2
2Caq * Ce6 17,2 17,2
¢ ((n19p1)" + (n3a3")%) (2alp . - n2allps 32
2wk 193 Peg = "392 Paq
2
18,2 18,2 18,2 82,2
(097" + (130317 ((n303°)% + (n,03"))” ( , 1q 19 2,182 _ 18,2 |?
> I8 {“1“2 a3 Pg + n3((a )" - (a37) ]"45}
Y
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4

TABLE IX., Quadratic T

Not. Y
1
10 3 (€11 + Cpp) * Cg
1 2 23
?
13 7 {Cu +Cg3+ 20 + ((C1) - C39)° + 4(Cqg + Chq)) }
1 2 23
. . 2
14 T {Cll * O3+ 2gq - ((Cqp - C53)% + 4(Cqg + Cgy)%) }
TABLE X. Quadratic group 7, 6=180°. The
Not. Y 3 U Type of g =2 e, = 8} 8
mode 1 2 "2 1
1 11 2
1 Y (1,0,0) (upsu5,0) L (0,1,0) (0,0,1) (Pyuy = Pyglp) /Y
2 2 2 2
2 Y (1,0,0) (u2,u2,0) M (0,1,0)  (0,0,1) (Pypup - PpgUp) /Y
3 Gy (1,0,0) (0,0,1) T (0,1,0)  (0,0,1) 0
7 Cy  (0,0,) (0,0,1) L (1,0,0)  (0,1,0) p33/Cas
o 0 2210 W% L (0,0,1) 2 5(1,-1,0)  (pyy(uy + up))¥/2y
3 1
1 w1240 wihelo M (0,0,1) 2 2(1,-1,0) (pyyluy + up)) /2y
1 Al
12 G 2°(1LLO)  (0,0,1) T (0,0,1) 2 %(1,-1,0) 0
22 ¥ 000 (BB L (0,0,1)  (Q0s0)  (pap(uy0y + up0p)) oy
S (T N I o S (0,0,1)  (0-0120) (P (ugQy + upQy)) 2y
24 Cyq (Q450,,0) (0,0,1) T (0,0,1)  (Qy»=0;,0) 0
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and hexagonal H, groups,

! Y2 Y3
.1 .1
2 2 2 2 0
% 2 1 2 %
0 (€3 + Cag) (€13 + Cgg)? + (2 - ¢y - 64p)?) (213 - €pp - Caad((Chg + Cu? + (22 - ¢yp - €4p)D)
-3 2 13 2 '%
2 13 2
T P [ (G L € Y b B (PP (P P L G MY
values of ¥ and U are made explicit in Table XII,
B12 = B2 b2
0 (931“1)2/Y
0 (p31u1)2/Y
2
2
0 P13/C33
0 (b * Ppp - 2Pgg)(Uy + Up) = 29, (4 - up))?
By P1y * Pra T Pggllly * Uy 6141 = Y2
0 +-((Pyq * Pyp - 2Pgg) (Ug + ) = 205, (uy = up))?
ByUP1y * Ppp ~ Pgg) (U * U s1l¥1 ~ Y2
2
Pgs/Caq 0
0 L{((py; - 20g)0,0, * PLg(@ - 09} (010, + ) + Prp(ui@ + 0,03) - 20,0951 (ur0y - 0,0}
¥ (UWP11 ™ %Pegl Ul * Pigl = Q) luglp + uply) + Ppplugly + Ul 1%2Pe11U1% -~ Y%
1 2 2 3 3 2
0 Y {((pu " 29)Q10; *+ Pyg(Q - Q) (U0 * upQy) * Pyp(ugQy + upGp) - 20yQpPgy (40 - “z°z)}

(20,0045 - (8% - B)pj3)%/Cy 0
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TABLE XI, Quadratic T, group. 0=90°, The values of ¥ and

[} 3 e 3, Longitudinal mode
H
I A 1
Not. Y Buu’
3
(1,0,0) 2 5(-1,1,0)  (0,0,1) (0,0,1) (p3gu)) 2y
(1,0,0) (a}.9:0)  (0,0,1) (-a},-9,0) 0
la yl
(1,0,0) @0 (@-do) (0.0,0) 0
Joney o :
(1,0,0) 22-1,L0) 28110 2 %(L-1,0) ((pyy = Pyplyy + 2p1gup)2/dy
4
(1,0,0) 2 %(-1,0,1)  (0,-1,0) (0,-1,0) (Pypt) = Pygip) /Y
2
3,2 3,2
((ny93)° + (n5a7)°) 2
(1,0,0) (@,0,63)  (0,-1,0) (-a3,0,-03) L 3L (d(pggu, + pgyuy)
1 "3 Y
by 4,22
((na])? + (na3)) 2
(1,0,0) (@h0.a)  (@hoah)  (0,-1,0) Ll 33 (hingeu, + Pgyuy)
ﬂ3 Y
1 1 1 2 2,4
- -3 - (n] + n3) 2
(1L,0,0)  2%L00) 22100 22,0 oy + prgy) - o)
"My Y
1
{0,0,1) 2 %(1,0,-1)  (0,1,0) (0,1,0) pfa/c33
(0,0,1) (03:0,03)  (0.1,0) (-a3,0,-03) 0
7 C33
(0,0,1) %00} (-al%0.l% (0,10 0
1 1 1 2 2,4
21 . - (n7 + n3)
(0,0,1) 2%1,0-1) 2 2100) 2 2(-1,01) E;ll—d—j—’E—(rf{p13 - n3pg)?
"1"3 33
21
221,1,00  (-1,0,0) (0,0,1) (0,0,1) (Pyyluy + up)) /2y
241,10 (@00 (0,0.1) (-a¥,-a3%,0) 0
10 10
22,00 thaho  @h-atho 00 0
!
2 %(1,1,0)  (-1,0,0) (0,1,0) (1,0,0) (Pggluy + up) + Pgyluy - uz))2/2v
(0.0,,0)  (aF4a8h0)  (0,0,1) (0,0,1) (pgy {00y + uy0)) 2/
0.0:00  (Padd0) (00,1 (-a2%,-a2%,0) 0
22 722
020,00 (a2hafh0)  (aEh-dho)  (-aB-a2h0) 0
(020:0)  (a22,08%,0)  (aZh-a%20)  (-afP.-a5.0) {82022 (0pyy - 1) 030y = uyQy) - 2oygLuy0, + ug0)))
2
+ (22 - (2)7) (pgy (0,9, - u0y) + Pgglugy + w0} /v
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U are given in Table XII, the values of § are given in Table IV.
Pure shear or mixed mode Pure shear mode
f A \ ( A ,
Not. vy Buv' Not, y Buu'
(p3yup)? 0
931\‘1) 1A
0 (a]piz * OzPgs)/Caq
2 2 3 Gy
0 (03034 - 93Pgs)*/Caq
((Pyy = Prpluy + 20yu,) 270y 0
( 2
P2ty - Prg¥a) /Y 0
2 2
3,2 3,2
{na3)2 + (nyad)?) (ng)? + (nge?) 5
i s U T (93Pg5)
v 3y 1 Cas
N . B Cyy
(tn,a})? + (nyah)?) 2
L1 X 33 (Q;(nguz + 961“1)]2 ((“IQ‘:)Z + ("3‘1;)2) 3 2
3 Y (QIP45)
" Cag
0 0
Pure shear degenerated mode
r 4 1
0
(("3'1?)2 + (“1‘13)2)2 9.2, ,2 2
e ((a3)°(Pgg + Pis))
8/9 Cqy 10,2 10,2,2
(tnya) )" + (n303)°) 102 2, 2
e (("‘1 ) (944 + P45))
1 Caa
0
8 A J
(931("1 + "z))z/zY 0
13, .13, 13 _ 13, 42
0 ((ay” + 927)pg5 + (9 - 9,7 )pgg) /2C4,
1 Y“ 12 C44 2
0 ((at® - a3 ipgq + (ol + apangg) /264,
(Pggluy + up) + Py luy - up)) /2y 0
(31 (ug0; + uy0) %y 0
0 (Piaa,0) + 90) + Py (9 ~ 91%)) /S
FERV -2
0 (psl(qloz - q201) + 945(‘1101 + 4202))2/C‘4
{“iz“gz((’u - P1a)(upQp = uyQy) - 2pyg(uyQp + upQy)) 0
2
+ (G5 - (517 (pgy (41 - ugy) + Pgglundy + “2°1’]} H
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TABLE XII,

Not. Y

o

}

1 2, 402
oz {511 + Cgg * ((C1y = Cgg)” + 4CTg)

2
1

Nt
—

2
{Cu + Cgg ~ ((Cq) - Cgg)® + 4CT¢)

~N
-

N1

}

1 2, 402
0 5 {c“ *+ Cop + ((Cp + Cgg)” + 4CTg)

Not. ul
¥
1 2
1 cgltr! - ep? + )
1
1 2. 2472
2 oot - e e el
!
10 2 272
10 (Cpp + Ceg) (2 - €11 - Cep = 2L1g)° + (Cpp + Cgp))
0 »
1
1 @r'% - g - g - 20y (@010 - 0y - Cge - 201007 4 () + Co)D) 2

rot—

2 (01600 - Q) + (€1 + Ce)0)Qy) {(YZZ - €007 - Cged - 20160107 + (€100 - 0By ¢ (Cpp C66)01‘32)2}

1

22 _ 2 2 22 _ 2 2 2 2 _ 2 2172
28 (7 - 00 - Gl - 2016010y {(Y C1107 - Coply = 2016210p)" + (C15(0Q7 - Q) + (Cpp + Cgg)0y0p) }
TABLE XIII, Cubic groups
Not. Y [y [1 Type of 3, =@ e, =2 8
mode i 1 2 2 11
1 1 (1,0,0) (1,0,0) L (0,1,0) (0,0,1) péa/C1,
. " "
1 H H H 2
10 7(C1q * Cpp) * Cyy 2 “(1,1,0) 2 “(1,1,0) L (0,0,1) 2 %(1,-1,0) (P, + Py3) /8y
1 .3 1
1 ey, - ¢C 2%(1,1,0) 22 0 T 0 2(1,-1,0 22
FAMI I 12) (1,1,0) (1,-1,0) (0,0,1) 2 °(1,-1,0) “’12 - p13) / (C“ - ClZ)
. " Al B
25 ey, + 2y, + 1) 34LLY 3411, L 6 %(1,1,-2) 2 2(-1,1,0) é;(pu +pp * Py - 20g0)°
: s o
26 FHeqp - Cpp * Cag) 321,11 ot T 6 (1,1,-2) 2 %(-1,1,0) T}W[s(plz +pyg + g - 2017+ (pyy - ppp)Y)

%/ D(111) : degenerated in the (111) plane.
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Quadratic group T'y.

Not. Y

1
1 2, .23
n z {Cu + Cog ~ ((Cpp + Cgg)™ + 4030}

1
{Cn + Cg + (€1 - Ce)2(Q] - Q) + 80y, + Cog)0]0G + 4Chg + 8Cy(Cyy + €10 0,0 - 02)12}

}

22

N—

rot—

1 2,02 2 20202 . a2 2 o2
B 7 {c“ + Cgg = ((Cqy - Cgg) (0] = Q5) + 4(Cyp + Cag) Q)T + 4CTg + BC16(Cy + Cpp)0)Qp(0Q) - 03))

~ot—
o

o (B e e ey

1 2 .2
- Cplly” = €)% + Cg)

No—
o

1
N T (T P S L O Cse)z)—é °
1
S (€1 ¢ Ced (10 -y - Cgg - 2017+ (g, + Ceg)D) 2 0
L
(P2 - ¢10F - Cgedf - 26160102){[Y22 - e - e - 20601007 ¢ (1005 - )+ ey ¢ c66)°102)2} ¢ 0
1
(01600 - @) + (Cpp + CGS)QIQZ)}(YZZ - 01107 - Copll - 2036010+ (046(0] - )+ (Cp ¢ Css)"l"z]z}.i e

Cy and Cy. 6=180°,

12 = B 822

0 P/t

0 2 2
(2p)) - 4Pgq * Pz *+ P13)/16Y

2

0 (Pyp = P13)7/8(Cqy - Cpp)

0 1 ( + + Pyq - 2 )2
Gy\P11 * P12 * Pi3 " Py

2 2 2
T8 3(P1g = P19)” Py + i+ gy - 201)8) 7 (306yp - pip)® ¢ (Bp ¥ By ¢ 4Ry - 201y




oy
0 0 A/%%4 (0''n)  (0*1*0)  (0%0°1-) (0°T°1), 2
2.
$uw\sms 0 0 (1r00)  (0'1*0)  (0°0°1-) (0°1°1),, 2
Yy (- The P (e e o I
52/"5d 0 0 (001} (1°0%0) (0°0'1 (0°1°1),, 2
2.
0 Ao/, (Eld - 2la) Ap/,(Eld + la) (10%0) (10'0)  (0%0°1-) (0*1'D), 2
) 2
r A N
0 ar,(%1d - Tha) (10°D), 2 (1°0°1-), 2 (1-'0°1-), 2 (0%0°D)
1T T 1
P
<] 12 147 c7e “nsT -$A¢T- «ne
o %2/75d 0 (o°1°0) (1°0°1 VW-N (1-*0°1 VW-N (o*0°1)
o b 1 i 1
e 3 az 2
. (eI 0 (o', 2 (0'1'0) (1-*0*1-), 2 {00°1)
= & ¢
2 1. £1
m 0 /"4 (0°1°0) (0*1°0) (1-%0°1-), 2 (0%0°1)
2.
P
m 0 :uim: - Tg) (011, 2 ('1'D, 2 (0'T'1), 2 (0%0'T)
&) 1 1 1
<
> yz/Via 0 (10'0) (0'1'1), 2 (0'I°'1-), 2 (0%0*1)
o | ", . { 1, 1 i
"¥yz/¥bd 0 (0'1-*1), 2 (1°0°0) (0°T°T-), 2  (0*0°1)
1 i
0 y/%% (10*0)  (1°0*0) (0'1°1-), 2 (0°0°()
; i
apow pajeJauabap Jeays auand
.a_u A j0N .a_u A ‘30N .a.m A
1 ) \ 1)1
A f A § T "
apow Jeays adng apow JAeays aangd apow [eurpnyibuot ] 2 b )
>
© 06=0 'O pue ?pdnoxd oiqny °AIX ITAV.L
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ol

*aueld (100) au3 ut pajedsuabap : (100)a /%
Wy | o6y _ (Mg . 99111 > 58 o1 YLy _ (99, , ¥\2
0 ((F1d - )z - (Phd - ) u) ﬁm ) 0 (1-1-'0), 2 (0'0'D) 1 (oo'n)  (1-r1'0), 2 79 - (o ¢ o)
u + : . €.
T 1
TN..S._ + Enta - Znva)Suluz - (Enfed - Znla)iu +
4
A &uly ga1
((n - Zn)¥lq 4 Enflq - ~=:&i —gg °¢ 0 K2/ ((6n - 2n)Pld - Enflg - 202la) (roer-co) 2 (0%0T) W (En¢ Zatg) (1-*1%0), 2 i 0z
v e, L T 2 02" 0z 2. 07
(Gu + Ju) 2 2- H
vt i 1
Tm:?a + m:w? ~=33 Ncm Amsnmn - N::ncwc
z
£,
5 A futu gzl
((n - Zn)?ld + Enfla - Enlla)fu} B8 0 K/ ((5n - Zm)Pld - Enfla - 2n2la) (1-1-t0), 2 (0f0'T) 1 (.Enf Znc0) (1-1°0), 2 A 61
v e, LT 2. 61" 61 2. 61
(Su + lu) 2 4
vt i 1
: u 91
0 (" + Pra)Su - (*Ta » oon:..TLFwnl 0 (=10, 2 (00 1 (o' (r'ro), 2 Mo v (Pav Mot
2 A + Ns 1 1
Tmazn - Ent¥a 4 Zn"ta)Suluz - (Enfa o EnlEa)fu
2
A Eulu gzt
((Fn + Zn)¥lg - Enfla , Ns:&i ~ gigh 8t 0 A2/ ((En s Inp¥la s Eafla 4 202d)  (1-1%0), 2 (0%0'T) W (.En* %ne0)  (1°1°0), 2 N .
v (Gu s Ly 2 2. v ol 2. t1
vt 1 1
TN:SQ - Enttyg :«w&w (En€Eq 4 N::..Smc +
2
Lu ga1
(En s Z0)¥Ta - Enfla 4 ZaTTq) Ly WLW g 0 w2/ ((Fn s Ipla s Bl L W2le) (o), 2 Goro'm) 1 (S dno) (o), 2 ot el
(Cu + Lu) 2 R 2.
vt t e i 1
"5/ LT "5/ (0'1'0) (00D 1 L(w00a (100 voy 8
EEy/tL 0 E/Ela (0'1°0)  (0*0'm) 1 (1°0*0) (100 £y L
0 99y/1%4 0 (0'0'1)  (0*1°0) 1 (0*0°1) (0°1°0) 9 9
A7, (EnPlg + 2nZla) 0 A, (énTEa) o (ore w  Cedo (010 s
A/ (En¥ld 4 2nZla) 0 A7 (enTEa) o (o) 1 (Endeto)  (0'10) R v
15/ T8 5/2% (to'0)  (o'1'0) 1 (0%0°1) (0*0'1) 1t 1
apow
2z T2y . 2y 1 %%  la- Ty o0 0 ) x 30N
*AI 91qe( ur 3101[dxs opeuwr axe b jo sanfea oYL °IIAX O[qe, ut j1ol[dxe epeu oie N pue A Jo sonfeA 94l ‘,08T=¢ °'y¥ dnox8 oripeyoquioyy °‘AX ATAV.L
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TABLE XVL Rhombohedric group Ry, 6=90°, The values of ¥
[ q gu 3\']. Longitudinal mode
l X il
Not. Y Bt
2 2
(1,0,0) 2 2(-1,1,0) (0,0,1) (0,0,1) P31/C11
(1,0,0)  (a7,a3:0) (0,0,1) (-a}-93:0) (a3p) %/
la C11
10,00 (4,a20)  (a5.-a%,0) (0,0,1) (a3 /ey,
-% 1 1
(1L,0,0)  2%-1,1,0) 241,100 2 %(1,-1,0) (yy = p)%40,,
1
2 2
(1,0,0) 2 %(-1,0,1) (0,-1,0) (0,-1,0) P5o/C1y
2
(a7 + (03]
(1,0.0)  (a.0,63) (01,0 (-a3:0,-a3) L33 (qdey,)?
! 4 ;lc“ 4,2\
1 ( 2
(nya))® + (nya3))
(1L0,0)  (a},0,03)  (a3.0,-a) (0,-1,0) Ll 23 (afp,)?
"ty
1 1 1 2, 24
-3 -3 -3 (n7 + n3)
(1,0,0) 2 2(-1,0,1) 2 %(1,0,1) 2 ¢(1,0,-1) L —intp)) - ngpg)?
64 nny C
.
(0,1,0) 2 2(0,-1,1,) (1,0,0) (1,0,0) (pypup * pnua)zly
0.1,0)  (0,05,05) (1,0,0) (0,-05,-03) 0
4a Y4
(01,0 (0,65.0)  (0,65,-05) (1,0,0) 0
1 1 1 2 2,4
- -2 -3 (n? + n?) 2
01,00 220,-1,1) 2 20,1,1) 2 2(0,1,-1) t3_41_;8_"3{_[,1‘1‘(puuz + pygly) - n305u,)
13
1
2
0.1,0)  22(1,-1,0)  (0,0,-1) (0,0,-1) (yyup)
2
0.L0)  (a],3,0) (0,0,-1) (-9]4-03.0) (ap(Pjquy - Payup)) /¥
w ¥
2
©1L0) (30 (o (0,0,-1) (@3 (pjquy - paqup)) /¥
1 ! 1 2
(0,1,0) 2 4(1,-1,0) 2 2(1,1,0) 2 2(-1,1,0) ( - - 2pyuq) /4
BE -1 1 B (Pyy = Prglup = 2Pyqg) /v
1
2 2
0,0,1) 2 2(1,0,-1) (0,1,0) (0,1,0) p24/Cs;
(0,0,1)  (a3,0,09) (0,1,0) (-03,0,-03) 0
7a C33
001 (@%08)%  (-a%.0.0}% (0,1,0) 0
1 1 2 2,4
-5 -5 -5 (n] + n3)
©01  2in0-y 28101 241,01 L—ndpy; - nlpyy)?
64 nin3 C
17373
1
3 2
(0,0,1)  2%0,1,-1)  (-1,0,0) (-1,0,0) pey/Cas
0.0.)  (ahalh) (100 (0-all-adh) 0
7b C33
©0.1)  (0ha?)  (0-fa?)  (-1,0,0) 0
1 1 1 2 2,4
- - -3 (nT + n3)
0.0 220,0,-1) 220,11 2 %(0,-1,1) Sl )2

4 4
(nyP13 = "3P33
64 nyny 033
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and U are given in Table XVII; the values of q are given in Table IV.

667

Pure shear or mixed mode
A

Pure shear mode
A

Not. vy Bw. Not. vy
0
2
(01(Paguz + Pjaug)) /v
22 yz 3a 13
@ )
9(Payuy * Piau3)) /¥
0
0
2
((ng})? + (33D 2
, . (a3 (PggUp *+ Pygus)) ,
by 2 3y
(tngh? + (ngeh?) 2
1% 3930 ) (oo, + pygua)
—"-"‘4"—““‘“3 » 93(PgeY2 * P1g¥3
0
(PypUy + Pyguz)2/y
129 * P1a¥3
0
5a Y5 6a C66
0
d e ndy? 4 2
o B A (n}(Py1up = P1gU3) - n3P3yu;)
(pnuz)z/Y
(ah(Phaus - Paqu ))z/
2(Pag3 = Pag¥a)) /Y
56 y0 6 Cgq
2
8
(ay(pgauy - Payup)) 7y
2
((pyy = Pypdup - 2pyquy) 74y
Pure shear de}enerated mode
( \
2
P14/Caq
2
9.2 9,2
()" + (Mma3)) 4 9 2. 4,9, 2
21 ’ cl 3 (n}(a3pyy)? + n3(a3pa)?)
1"3 Caq
€% Cua (k02 + (ngal®)°
Ll 33 (ﬂ?(qéopu)z + ng(q}%a,)Z)
"n3 Caq
2, 2.4
(nl + n3) p§4
64 n§ Caa
2
P14/Caq
2
11,2 11,2
(tngap)" + (nya3)) (ndallp 4 ndollp: )2
192 P14 * "393 Paq
(8,9)b C "'l
»9)b Cgq (nal2)? 12,2
9,%)° + (n303)°)
192 IR R I
L 193 P14 = "39% Pas
1"3 Cag
4
(ni + ng) 2
3 P

64 ng C“

2
(tng@d)? + (n03)?)
Rl UM L

2
((nah? + (ngaD?)
) Uet) )

W

2
(a}(pgyu; + Pigug)) /v

2
[ai(n"uz + Paauz)) /v

0

2

3

- (91(Pgguz + Pyq¥3))
. 2

(a3(Pggiz *+ Pra¥3))

na Y

0

2
5.2 5,2
((n393)° + (nya3)°)
H 2 (nfugpeg + n3o3ay)
"3 Ces
6,2 6,2
((nya))€ + (n3a3)°) .
H 3 (nlagpes - "395%41)°

"n3 Ces

(a]pgy) /Cgs

(a3pq)) /Ce4
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TABLE XVI.

[} 3 Zu e, Longitudinal mode
r A ]
Not. y Buu.
1 ,
2 2(0,1.1) (0,-1,0) (1,0,0) (1,0,0) (pnu2 + Ppguz + pm(u2 + u3)] /2y
22(0,1,1)  (0,-1,0)  (1,0,0) (0,1,0) 0
13 413
2%0,1.1) (0.937403") (020 1-ay)  (1,0,0) 0
2 2
18,2 18,2 18,2 18,2
-2 18 18 1818 18 _18 ((nyap7)% + (m3057)7) ((n30p7)" + (n1937)%) (4 15 13
22001 (0,0)%.0%%) (0,)%,0%) (0,-018,-a1%) T {rfa3%al(pyu, + pygy - prqluy + u3)
"3
2
4 8 ' '
- 130303 (p3u, + pagug) + i3 - (@217 (jquy + Pigus - 941“2)}
1 ,
2 2(0,-1,1) (0,1,0) (-1,0,0) (-1,0,0) (plzuZ - gz + pm(u3 - uz)) /2y
.l
2 2(0,-1,1)  (0,1,0)  (-1,0,0)  (0,-1,0) 0
) 19 19
2 20,-1,1) (0,6°,4%%) (0,03°,-02%)  (-1.0,0) 0
-4 2% 26 (0212 + (0352819 ((nga28)? + (292"
A 2 26 26, 26 _ 26 1% 393 39 193 4 26,26
2 5(0,-1,1) (0,05°,05°) (0,05°,-05") (0,-5°,-05°) 2 n2r8 y {"1“2 a3 (Pyyup = P13l * Pralty - ug))
"3
2
4 26 2 2.2, 26,2 . ,
- 0305030 (Byyu; = Py3ug) + nin3((a59)% - (a5%)%) (pyguy - pygu, - p41“2)}
TABLE XVII, Rhombohedric
Not. v
1
242
2 3 {C44 * Cop + ((Cqq - Cgg)” + 4CY,) }
( 1
1 242
3 7 (Caa * Cos = ((Caq = Cgg)” + 4C14) }
, 1
1 B 212
4 3w+ Ca v (g - 0 + oy}
1
1 2, 4242
5 H {Cll * Caq - ((Cqq - Cgg)° + 40y, }
) 1
2 232
13 i {cll * gy + 20~ Cpg) + ((C)) = Ca3 - 2qg)" + 4(Cy5 + Cgy - Cpf)) }
1 2 2
PN
14 3 {611 O3 % 20 = Cpg) - ((Cqp = Ca3 - 2014)" + 4(Cyg + Cgy - C1)%) }
. 1
2 PN
19 i {c” F gy ¥ 2Che + Crp) + ((Cyy = a3+ 202 + ACy5 + Cpy = €10)9) }
1 2 }
22
20 i {011 *Cag+ 2Cqy + Crg) = ((C) = L3+ 21g)" + 8(Cy5 + Cop + C1p)°) }
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(Continued)
Pure shear or mixed mode Pure shear mode
f A \e A ,
Not. Y Buu ' Not. Y Bw '
0
( 2
Pgg * P1a) /2Y
1 1
“ oy See mode 13 15 5(Chq + Cep) + C 2
T T e " (mep"12 + @) (5 4y 2,17 2
P o {3e8 04 + pap) - nfe}(ogg + m}
1"
0
0
2
(965 - Du) /2y
20 1
20 ¥ See mode 19 21 HC4e * Co) - Cra 2
T (@3 + (0339?14 55 Ly L 2,25 2
P {r3e8°(pay - i) - el tngg - no}
1"y
0
group Ry,
u u, 3
.% 1
0 Gl - Cge)? + cly) (0 - Cg1v? - Cgg)? + cF)?
4 3
2 2
0 (07 - o) ((FF - Ce)? + €3y) < 0 - ce)? + )
3 4
° Calirt - P+ i) 0! - et - egp? e ey
4 4 2, .2 ‘i 4 2 '%
0 = C (07 - Cq)” + Cy) et e pfecdy
4 3
0 (Cy3+ Cy = Cgl(@r' + 203 - gy - Cg)? + (€13 + gy = €1)) I N (T N R CTRA ML

o (@, -cp - @B ez,

19
0 (G54 Cqq* Crg)l(2y -2y - Cpy

0 (&2, -y - g - 2y,

1
2 22 13 2 2,2
Cpy = Cag)” + (Cyg + Caq - C1g)°)%| - (Cpg # Caq + Crp) (2 # 2014 = €)) = C4g)" + (Cy3 + Coq + Cyy)%)

2 22 19 19 2 2
Cag)” *+ (C13 + Caq * Cyp)7) (2¢77 - 20y = Cy = Cag)((2r77 = 2014 = €gy = Caq)™ + (Cy3 + Caq + C1)%)

1
2 232 c 19 2 z'i
Cpp = Cag)™ * (Cpg + Caq + Cg)%)%| = (3 + Caq + C1g)((2r = 2014 = Cyp = Cag)® + (C13 + Cyq ¢ Cpy)°]
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of elastic waves. It is only the intensities that dif-
fer in some cases among the two groups. The cal-
culation for the group C, can also be used for the
group C; by taking into account the following re-
marks: p;,=p,; for C;, which produces, in par-
ticular, an intensity equal to zero in the case of

11, in polarization (1, 1); the distinction between
the scattering cases called “a” and the scattering
cases called “b” is useless because of the presence
of quaternary axes in C;. C;; and Cy are measured
directly (modes la and b; 2q and b, 12), whereas
Cyz is calculated from measurements of y'® and »*'.
For the isotropic group, the orientation Q is no
longer important. For any direction the measure-
ment of the elastic velocity of a longitudinal wave
provides the value of Cy; and the measurement of the
transverse wave provides C,,.

F. Rhombohedric Group R, (Classes 3m, 32, 3m)

The calculations for this group are given in
Tables XVI and XVII. The presence of elements
Cu, Cy, and Cys4 which are different from zero,
and which are called for by the small degree of
symmetry of these classes, leads to complicated
expressions for Eq. (5). This equation is com-
pletely factored in the direction (001) only. Cy,,
C33, Cy4, and Cgg are measured directly, and so
is Cy, (modes 1a and b, 7a and b, 8a and b,
and 6a and b). Cy is calculated from the
measurements of y'° and 4?!. Cross checks are
given by the measurement of y for the modes 2, 3,
4, and 5. Two values of C,3 are obtained from the
measurement of y for one of the modes 13, 14, 19,
and 20. The choice between two possible values of
Cy3 can be made in the following manner: The val-
ues of y¥ and y 7T for the modes 13 and 14 are the
roots of the equation

47% - 2y(Cyy + Cg3 + 2Cyy —2Cyy) + (Cyz + Cyy)
X(Cy1+Cyy = 2Cyy) = (Cyg+ Caq — C14)?=0 .
For the modes 19 and 20, Eq. (5) should read

492 = 2y(Cyq + Cag + 2Cyg + 2Cyy) + (C33+Cyy)
X(Cy1+ Cyy + 2C44) = (Cr3+ Cag + Cy4)?=0 . (43)

42)

If we write

(Ci3+Cas+Cyu)?=E, (Cy3+Cyq—Cyy)?=F,
we find

(Ci5+Cyy) Cyy=3 (F - E) . (44)

The sign of Cy4 being determined by the modes 15
or 21, (44) lifts the indeterminacy of the sign of
Cls-

G. R, Rhombohedric Group (Classes 3 and 5)

As in the case of the quadratic group T,, the total
factorization of Eq. (5) appears only in the direction

(001). On the other hand, no partial factorization
is possible in any other direction. For instance,
in the direction (100) Eq. (5) becomes

7% = 73(Cpy + Cyq + Cgg) = ¥(Chy + C3s — C11Cyy

= C11C6 = C44Ceg) — C11Cy4Cos + C34C11 + C35Ce5 =0 .
(45)
If it is possible to measure the frequency shift
between the three Brillouin lines in a sufficient
number of orientations, the Parker and Meyer
method should be applied. In any case, the lack of
accuracy in the measurement of the constants is
great,

V1. DETERMINATION OF ELASTIC CONSTANTS BY
MEANS OF BACKSCATTERING MEASUREMENTS

A. Remark

In most cases the number of measurements pos-
sible in some specific directions is just equal to
the number of constants to be determined. Should
an intensity factor be too weak to permit a mea-
surement or should complementary measurements
be needed for verifications, it would then be neces-
sary to perform measurements in further direc-
tions.

B. Orthorhombic Group

C11, Czg, and Cgy can be determined from v,
', andy"; Cy, Css, and Cgq from 9'% 9%, and 1
(Table I). The absolute values of the sums S;= Cy,
+Cgg, Sz=Cy3+Cs5, and Sg= Cy3 + Cyy are obtained by
measuring y for the modes 10, 11, 16, 17, 13, and
14. The signs are determined by means of the
method described in Sec. VA,

C. Quadratic Group T, and Hexagonal Groups H 1
and H,

For the T, and H; groups (Table V and VI), Cy
and Cg3 are determined by measuring y* and 77,
The value of the sum y®+y "% =4(C;y + Cy3+2Cy,) is
calculated from y** or ¥ by using the usual method
for choosing between the two possible values.

The same method can be applied to H, and as a
matter of fact, the measurement y!° provides a
verification of C;; only, whereas that of y!* allows
the determination of C,, by means of the relation
Ces=12(C1y — Cya).

D. Quadratic Group 7,

The method is similar to the one described in
Sec. VD, except for the measurement of C,; as
it is impossible to measure y8 C,, must be de-
duced from the value of y for the modes 3, 12, or
24 (Table X).

E. Cubic Groups C,, C, and Rhombohedric Group R,

No special remark is to be made regarding these
groups (see Secs. VE and V F) (Tables XIII and
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XV).
VII. DETERMINATION OF PHOTOELASTIC
CONSTANTS

A. Remarks

(i) In the systems under consideration, the only
py; constants which differ from the corresponding
Pickels py, term are the following: the orthorhom-
bic system: ph’ P;I, Plss, ng, Péea péé; and qu%'
dratic, rhombohedric, and hexagonal systesm: py,
=535, Dii=Dss-

(ii) As we shall mainly use 8 measurements for
6=90°, the index 7/2 will be understood in the fol-
lowing text. The index 7 will be indicated only for
backscattering measurement of 8.

B. Orthorhombic Group

The absolute values of py, P13, P21, Pass Ps1s Paz,
Ph ’ pg57 Pésa p;;, pggs and Péa are readily mea-
sured (Tables I and II). We assume that the sign
of one of these constants is known (p,, for instance).
The respective measurements of 833, 81, and
B1} give the signs of prap1s, paipes, a0d pyypaz;
they also provide a verification of the absolute
values of these constants. Then we can write

4 4
_h 8 1a\1/2
pu= ;L‘L;le * _ZJTE(nl ) (CuuBa)?, (46)
pr=+"% | by s (Cyy BV @7
u=E | Par| 207 mz (Cu Baa) "

A comparison between the two possible values of
b1 given by (46) and the four possible values given
by (47) permits the determination of the algebraic
value of p,;, of the sign of ps;, and then of the sign

of pss.
In the same manner, py, is measured according to

4 4
Pzz=:TZ' P32 i@%nigjz (Coa B33)'/? (48)
and
b =i’—‘ilp |+ B (Cop B2 49)
22 n3s 12 m 22 P22 .

Then ps3 is determined from similar expressions as
a function of 873 and 3. The algebraic values of
D125 D13y Dats Ds1s Ps2s Pus Dazs and pg are thus
found, depending however on the sign of p,;. There
are two possibilities.

(a) The crystal possesses an important birefrin-
gence in one direction at least, so that p, ;, is not
negligible with regard to p,;;. Suppose n,#n3; start-
ing from B3¢ and B3 we can write

9a

1C ( B3
(G2 q1°)% + (5 ¢ 3P (¢ 10

1y Cyy
Das Py )= 2

- B2l > (50)
(G g%+ 2 gD P @) 7
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which gives the sign of py, since

1/s1 1
h«ﬁi(%“%)-

No further information can be usefully inferred
from 90° -scattering measurements. In expressions
such as Bi%, for instance, p,; is included as a cor-
rective term only and cannot be used for the purpose
of experimental determination. The signs of the
products pif pss, pssbes, and pggpie can be fixed on
the basis of Bi3(n), Bi3(m), and Bis(r). We there-
fore know the algebraic values of pyy, pss, and pgg.
Proceeding from the measurement of 8,(7) for one
of the modes 10, 11, 13, 14, 16, and 17, the sign
of p,; can be either confirmed or changed if neces-
sary., It should be stressed that the new formula-
tion of the photoelastic effect put forward by Nelson
and Lax permits the determination of the signs of
the photoelastic constants by means of Brillouin-
scattering measurements: Within the present ac-
curacy of intensity measurements (around 1%) the
procedure can be applied when one of the main bire-
fringences [(n, - u,) for instance] is greater than
1072,

(b) The birefringence of the crystal is so weak
that p, 4, can be considered as negligible within the
accuracy of the experiments. In this case the cal-
culation proceeds by comparing the signs of py,,
P55, and pgg with those of the other constants, start-
ing from the measurements of 83,(7) for one of the
modes 10, 11, 13, 14, 16, and 17. The sign of py
will thus have to be determined by means of another
method (static for instance).

(51)

C. Quadratic T, and Hexagonal H, Groups

The absolute values of pya, P13, Pa1s Pas s Pai, and
pes are determined directly (Tables Vand VII). If
the sign of p;, is chosen arbitrarily, it is then pos-
sible to calculate the algebraic value of py;, and
to determine the signs of py; and pys (Sec. VIIB).
The measurement of 8}, gives

n 81} 71172
P33=2P1sib‘t§‘—la—)2‘(csa Baa) <.

1+ 73 (52)

There are two possibilities: (a) The indices n,
and n; are different enough to permit the direct de-
termination of the sign of pj, by comparing |ps,!
with |pszl. The sign of pgq is thus fixed by means
of the measurement of B33(n). The experimental
values of B33(r) and B33(n) are used in order to
choose between the two possible values of p33 and
to fix the signs of p,, and of the other constants.
(b) ny ~ny; the sign of the product p,, peg is deter-
mined by means of the 8}3(7) measurement. Pro-
ceeding from the Bi3(n) and Bii(r) values, we can
choose between the two possible values of p33 and
fix the signs of pyy and pgg in relation to the sign of
P12, which is chosen arbitrarily,
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D. Hexagonal H, Group

The absolute values of pys, P13, Ps1s DPess Pas, and
pig are determined readily (Tables VI and VINO).
From the 8%, measurement py| is determined
according to

A — Cutte-rt)”
AR (07 37 In, g S (3% BY: - bis .
(53)
First, the sign of p,, is chosen arbitrarily; the al-
gebraic values of py3, ps;, and py; are thus deter-
mined, as well as the two possible values of ps;.
The sign of pgg is given by pge=3(p11 — Pr2)-

Again we meet with two possibilities: (a) », is
different from n; so that p, 4, is not negligible as
compared to pyy within the accuracy of the experi-
ment. The two values of p;r are thus

pii=%|pi| - 2p4q, -
The signs of pyy and p,g5 are given by the values of
B3g and B3{. The signs of pgg and p,¢ are determined
by proceeding from the values of 813(r) and B13(n).
The values of 85(7) and B3s(n) are used to choose
between the two possible values of pg3 and to fix the
sign of py,.

(b) ny ~ng. The signs of py, and p,s are given by
the respective values of 8is(r) and B3%(n). The sign
of p16 is given by the value of one of the constants

BX(m), BB(n), or Bis(n). The choice between the
poss1b1e values of pg3 is made on the basis of the
value of BL3(n) or of Bi3(n). Here again the sign of
D12 Will have to be determined by means of another
method.

E. Quadratic Group T,

The constants pi5, psy, Pis, and pys are readily
determined (Tables X and XI). The sign of py is
chosen arbitrarily. The values of py;, P12, and pye

are found by the following procedure. Let us put
buti+preuz=Py, (54)
braui —prguz= Py . (55)
We may write
Pl"—i'i’:ﬂ. Uy (;2:%3;‘)'2'(7 B2, (56)
|Paf = (v *B1) 2. (57)

P, and P, can have two values. The choice between
these values is made by considering

(Py~Pp)*=4y' B35 . (58)
In the same way, if we write

puvi+pgus=Ps, (59)

pratl - preul= Py , (60)

the algebraic values of P; and P, can be deduced

from the values of 2, i, and B33 Then we have

p11=Piui+ Pyuy, (61)
p1e=Pyuj+ Pyul, (62)
pr2=Poui+Pyuj . (63)

On the other hand, the value of 8}, gives four pos-
sible values for p;3, as opposed to two; the absolute
values of pg and pgg and the sign of their product
are given by the measurements of 8§, and 8§, in the
156 and 2b modes and by that of B3, in the 10 and 11
modes. Proceeding from the measure of 822 and
B2, the sign of both constants can be determined
as a function of that of py,. If p, 4, is not negligible
with respect to pyy, the signs of pyy and p,5 can be
specified by the measurement of 333 and B3,

For the above-mentioned group, the calculations
of intensities become very tedious when Q is not in
a pure-mode direction. The expressions have been
given explicitly only for Q (9, @z, 0)and Q= (0,
0, 1). As shown above, these expressions allow the
determination of the absolute values of some of the
constants; for others various values are possible.
There exist relations between the signs of the con-
stants. However, completion of the calculation re-
quires measurements in the (@, 0, ;) or (0, Q,,
@) directions. A comparison between the experi-
mental values and the possible values—to be ob-
tained from computer —provides the necessary re-
lations between signs.

F. Cubic Groups C, and C,

For the C, group the absolute values of p;5, py3,
and p,, are readily measured (Tables XIII and XIV).
The sign of p;, is chosen arbitrarﬂy. The 51gn of
P13 is determined by measuring g1 and Bi. The
algebram value of py, is calculated from the values
of B¢ and {322 The sign of p44 can be specified by
measuring B33(r).

For the C, group the absolute values of p,;, and
Psa can be determined; an arbitrary choice of the
sign of p,, allows the calculation of two possible val-
ues for py;. The choice between these two possible
values and the determination of the sign of p,, are
made from the measurement of 833(r) and BZ3(r).

G. Rhombohedric Group R,

The absolute values of pyp, p13, P, P31, and py,
are readlly determined (Tables XV and XVI) those
of p4s and pgz can be deduced from

1/2
|Pi4f=<zq—)'z(7 8% +75ﬁf5)-1>f1) (64)

and
1/2

|paz| = ("‘}T'Z(Y e +733§§)—P31) . (65)

The sign of p,, is chosen arbitrarily.
The algebraic values of py; and py, can be deter-
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mined by a comparison between the two values re-
sulting from the measurement of 83§ and the four
values calculated from B3. Then the sign of pgg
being known, the sign of p,, is determined from 8}3
or B%;the sign of p,, from 53 or B33, and that of py;
from a measurement of 3§, in one of the modes 13,
14, 19, and 20.

Two possible values are given for pg3 by measur-
ing B33. Should the birefringence be important
enough, the signs of pg, and pi; will be given by a
comparison between (64) and (65). The sign of py,
is given by 8% or 8§, which specifies at the same
time the sign of all constants, ps; excepted. The
choice between the two possible values of pg; is

A TOOL... 673

made from B3,(m) in one of the modes 13, 14, 19,
and 20.

Should p3 and pz be equal within the precision of
the experiments, the sign of p,, —relative to the
arbitrary sign of p;;—is given by the value of 3%.
The choice between the two possible values of py, is
effected as indicated above.
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