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The matrix elements for the [111]defect are then
(neglecting small contributions to the off-diagonal
elements)

il 77 12+ 13 23 y I 22 088 &12++13++23 &

13+ +23 44 66 +12 +13 +23 '

All elements are multiplied by f(Xz- A,,) and an in-
tegration factor which is approximately equal to unity.
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We use the techniques of perturbation theory and the electronic polaron to classify and ob-
tain explicit formulas for electronic correlation in nonmetals. We consider explicitly the
case in which the highest valence band is p type and the lowest conduction band is s type or
vice versa, a situation which holds for all rare-gas solids, alkali halides, and most semicon-
ductors of the types II-VI and III-V. We consider the case of an electron in a filled band as
well as that of an electron in an otherwise empty band. In the case of the electron in an other-
wise empty band our formulas are the expression found previously by Inoue, Mahutte, and
Wang. Numerical results are presented for electrons both in occupied and otherwise empty
bands for a number of crystals.

I. INTRODUCTION

The theory of the electronic properties of non-
metallic solids has been extensively investigated
in recent years. Considerable progress has been
made in understanding the electronic structure of

rare-gas solids, alkali halides, 2 and elemental
and compound semiconductors from ab initio cal-
culations. It is seen that, if one adopts the Hartree-
Fock point of view, considerable errors are intro-
duced into calculations of such properties as op-
tical band gaps. There have been introduced two prac-
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tical ways of including the effects of electron-electron
correlation into energy-band calculations. In

the first of these, due to Fowler, one treats
the conduction electron or valence hole as a static
point charge. This formalism has the defect that
dispersion in the correlation energy is neglected.
The second formalism is due to Hedin' and was
used by Brinkman for silicon and by Lipari for
rare-gas solids' and later by the author and Lipari
for studies of NaCl, NaBr, and KCl. This ap-
proach has two defects. One is that the theory is only
useful for cases where the atomic subshells are
completely occupied; hence in Si, Brinkman is un-
able to treat the correlation between valence states
and the conduction electron correctly. The second
difficulty is a numerical one. In this formalism,
it is necessary to perform a Hartree-Fock band-
structure calculation f irst, and then one obtains from
this parameters which define the k-dependent di-
electric function; finally one must resolve the en-
tire band-structure problem using the k-dependent
dielectric function and the nonlocal self-energy
operator. This method ignores correlation correc-
tions for the core electrons.

There is a third formalism available for studying
electron-electron correlations. This is the elec-
tron-polaron method introduced by Toyozawa.
This method has recently been used to compute cor-
relation corrections for electrons at the bottom
of the conduction band of several alkali-halide
crystals by Inoue, Mahutte, and Wang. ' This meth-
od has the disadvantage of having been developed
for studies of conduction electrons alone and is
not totally useful in that it neglects the correlation
properties of the occupied levels.

These methods predict that the effect of electron-
electron correlation is large. In fact, the effect
upon the conduction electrons in a typical alkali
halide is to alter the energy of the conduction band

by several electron volts.
In this paper, we present a formal analysis of

the problem of correlation in nonmetals using
perturbation theory. This method has been thor-
oughly discussed by Sinanoglu and Nesbet' for
studies of atomic or molecular structure. We de-
fine approximate pair correlations for the system
and we use some of the results of Allen, Clementi,
and Gladney" to simplify the resulting expressions.
We then evaluate these expressions using the elec-
tron-polaron technique of Toyozawa by second-or-
der perturbation theory for both the case of an
electron in an otherwise empty band and for the
case of a hole in an otherwise full band. The case
of an electron in an otherwise empty band is exactly
the same case treated by Toyozawa. Finally, a
series of numerical calculations are performed for
both electrons and holes in a number of crystals.
It is seen that the results are in fair agreement with

those obtained by previous calculations.

II. FORMAL ANALYSIS

We wish to proceed as follows: We will include
only that part of the electron-electron correlation
which is included in terms of simple single-parti-
cle excitations and two-particle excitations. We
will follow Toyozawa in assuming that the valence
electrons are mostly responsible for the observed
polarization properties. We shall obtain our final
results by means of second-order pertur5ation
theory, and we shall neglect all correlations be-
tween electrons and the crystal lattice. We use
nonrelativistic Schrodinger theory, and our Hamil-
tonian is

0 is in rydberg units; Zl is the atomic number of
the Ith nucleus, which is separated by Rl& from
the ith electron, and r;& is the separation of the ith
and jth electrons. The nuclei are assumed to be
frozen into position. We desire to have approximate
eigenvalues for H of Eq. (l). Thus, we wish to
approximate the solution

HlN) g(N& ( )
g(N) q(N)

Here the superscript refers to the number of elec-
trons in the system and the subscript to the per-
tinent quantum numbers. In the future the sub-
script 0 refers to the ground state. If we ionize
the system we will always order things so that the
electron in the Nth orbital is removed, for the sake
of convenience.

We wish to define an approximate process for
constructing g'"' out of an expansion set of Slater
determinants. Let us assume we have solved for
the ground state of 0 ' in the Hartree-Fock limit.
We further assume this ground state to be nonde-
generate. This is usually the case for a simple
nonmetalic crystal. Thus the various bands are
either completely filled or empty in the ground
state. This produces a single Slater determinant

(r, , . . . , r„) which has an energy E and is

(r, , . . . , r„)= (N! )
' det(P~ (r ) ),

or

l

g(N)0)
l )

We call the orbitals P, which occur in $0" occu-
pied orbitals. The Hartree-Fock equations which
define the Q's also contain solutions, not contained
in (o"', which are orthogonal to the occupied or-
bitals and are termed virtual orbitals. We shall
use subscripts a, b, c, etc. , to label virtual or-
bitals and i, j, 0, etc. , to label occupied orbitals.
We order things such that 1 ~ i ~N &a.

It is possible to form additional Slater deter-
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minants using these virtual orbitals. In doing this
we follow the usage of Nesbet' and designate, for
example, (1&I

"& as that determinant where the ith
occupied orbital has been replaced with the ath
virtual orbital. Similarly, if orbitals i and j are
replaced by orbitals a and b we denote this state
as (1&I&' . However, since we vary the number of
particles we find second quantization useful here.
If we limit ourselves to one- and bvo-electron ex-
citations, we can represent $0"& and, where (2t

and a are the fermion creation and annihilation op-
erators, respectively,

lq(N&)
l

ac) QA(N&ob ~t ~
l )

+ ZHI,"'"'o,~b'a(~, lvac ) . (4)
f pub

In principle we need to determine the values of the
A's and 8's by the variational method. In the case
of our nondegenerate ground state, the A's turn
out to be zero in the limit of second-order pertur-
bation theory. ' We can construct approximate
excited states of the N-body system by replacing
an occupied orbital with a virtual orbital in ('"& .

We also generate the ground state of the (N —1)-
body system by removing the electron in the Nth
orbital in the N-body system. This ground state is
given to be

we will define the energy of the N-body system in
its ground state and also for the (N+ 1)-body sys-
tem as discussed above. These are seen to be

E(Ã& f y(N&b'Hy(N&d&/ J'q(N&+~(N&d

and

Ea(N+1) f.f,a(N+1) +H.f,a(X+1)d / f.i.a(N+j. )+ (.a(N+1) ~

(0)
and the ionization energy for the Nth electron is

(N-1) (N)-~0
Now„we must define our correlation energy

terms. We do this with respect to the energy of
the base Hartree-Fock ground state. In so doing
we rely on the content of Koopmans's theorem. '3

The energy of the N-body ground state to the accu-
racy of second-order perturbation theory is given

(X)% 2
E(N& EO Q (V( )

f e ~f ~o

(
(N&0ab) 2

+ 2 Q 0 0 0 0 ob (11)
b Cia g c b+

Here the quantity V is defined as

v("' = (vac lH(2, (2( lvac)

)= (2N lvac)+Z&I"" (2, (2((2N lvac)

+ 3 a((N-(&bb (2t(2t (2((2, (2„ lvac) . (5)
)gab

This wave function describes a nonmetalic solid
with a hole produced in it.

In considering the case of an electron in the con-
duction band we desire to obtain the starting point
of Toyozawa and hence we consider the conduction
electron to be an electron added to the N-body sys-
tem. The wave function for this (N+1)-electron
system in which we have added an electron in the
ath state is designated

l~a(N+(&) &t
l ) Q g(N+(&b &t& &t

l

ebb

Q g(N+(&bc ott(2t (2 (2 (2t
l )

$gbc

In E(l. (6) by the prime we mean that in summing
over the b and t." we omit state a and that in sum-
ming over i, j, we include a.

The (t&'s in general satisfy the Hartree-Fock
equation

FA(r )=e 4(r )

and the eigenvalues && have the usual meaning
given by Koopmans's theorem. ' It is the proper-
ties of these (t&'s which we wish to exploit. Finally,

vI&"' '= (vac lHa,'(2, (2(n, lvac) .
We note by Brillouin's theorem for our N-body
ground state the V&"' are zero. The quantities
e',

&
are given as'

b

(V(N&(h)2 (V(N&0b)2

e&N 5 c a&N j a

(V( Ã& Ob2
)
2

+ 0 0 0 0
e&+ b&N 6] + E~ —E

~ (12)

In terms of the "pair correlations" defined in Eq.
(12) for the N body ca-se, which take on the ap-
propriate form for the (N —1)- and (N+ 1)-body
cases, [that is, one simply changes the upper limit of

the sums in E(l. (12)], we have expressions for the
total energy which are

In general, for Bloch-like states the v's tend to
go as 1/N and are hence usually neglected in solid-
state calculations. P» is the operator which in-
terchanges coordinates 1 and 2.

From this we identify part of the correlation
energy, and call it a "pair correlation" e&& ',
which is seen to be
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E(N) EO 1 g~~ (N)

2

E(N1) EO 80 Q (N1)1 N-3„

N
= ~N+

j j=1
(14)

E(N) E(N-1)
N 0 N

N-1 N-1
0 ~ W ~ (N) (N-1)i Y (N)fN= &N + —~ (8(& —8(& )+ ~ 8N~

k) j=1 j=i

(16)

We note that this expression for &N in E(l. (16) re-
duces to Koopmans's theorem result &„when cor-
relation is neglected. Similarly, we define the
energy of the conduction electron as being the elec-
tron affinity of the solid, and hence 8, is found to
be

Ea(N+» E(»
0

N
0 1 ~ a( N+1) (N) ~ a( N+1)

&a = &a+ ~ (8(g —8(J )+ Z 8(N 1)
k) j=1 j=1

(17a)

However, if we neglect the changes in correlation
energy for the valence and core electrons, as does
Toyozawa, due to the presence of the added elec-
tron in an empty band, we find that

N
0 ~ a(N+1)

a = Ea+ ~e(N+1)j
j=i

(17b)

It is noted that the approximation introduced by
Toyozawa is consistent with the analysis of Allen,
Clementi, and Gladney" and is also consistent
with the results one may derive from Toyozawa's
formalism.

Finally, in keeping with normal solid-state prac-
tice, it is useful to define a self-energy for the
conduction electron and for the valence hole.
These are called E, and E„, respectively, and are
given as

N
a( N+1)

Ea —~ e
j=1

(18a)

N-1 N-1

+a ~ (8(J 8V ) + ~ 8N1
(N) (N 1) ~ (N)

j=1
(18b)

At this point it is perhaps useful to discuss the
use of second-order perturbation theory with some
hope of understanding its reliability. It is also
useful to discuss types of configurations which one

1 N+j„
Ea(N+1) E0 &0 Q'I a(N+1)+ &a+ — 8]j2 f) j=i

Here we add the superscript a to indicate that the
orbital a has been occupied in E(I. (15). In the
case where the electron in Nth orbital is removed
from the system, we define its energy as being the
negative of the ionization potential, and hence find
that &N is given as

includes in evaluating the correlation energies
[E(ls. (12)-(18)].Wealsonotethatforour (N+1)-
and (N —1)-body system, single-particle excitations
are included. These are necessary for two rea-
sons. First, these configurations are not closed-
shell configurations so that Brillouin's theorem
doesn't exactly apply, and second, the one-electron
orbitals used in the (N+ 1)- and (N —1)-body config-
urations do not satisfy exactly the Hartree-Fock
equation for this system but satisfy the N-body
Hartree- Fock e(luation (7).

One of the limitations of using second-order per-
turbation theory is that only the interactions of the
excited configurations with the ground-state con-
figuration are included. Thus the mutual interac-
tion of the excited configurations, which may lie
very close together in energy, is neglected. This
(Iuestion has been considered for the present types
of systems by Inoue 8t al. ' for the (N+ 1)-body
case. They find the following: (a) Many-body cor
rections are exactly zero for odd orders of per-
turbation; (b) they give an explicit expression for
fourth-order perturbation theory and evaluate this
for a particular case. Inoue et al. find that the
fourth-order perturbation correction is several
orders of magnitude smaller than the second-order
correction. The author concurs with this result
and therefore believes that the use of second-order
perturbation theory is not unreasonable.

One of the reasons that the higher-order pertur-
bation-theory corrections are small is that some
attention was given to the choice of how one con-
structs the excited configurations which go into
E(ls. (4)-(6). The utility of a proper choice of ex-
cited configuration has long been recognized in
atomic calculations. ' In our discussion we have
said the orbitals used are solutions to Pock's equa-
tion (7). If one applies the proper boundary con-
ditions this produces a unique set of occupied or-
bitals. However, the spectrum of virtual orbitals
is quite arbitrary and in practice any set of orbitals,
orthogonal to the occupied orbitals, will serve to
construct the excited-state configurations. For
any such set of orbitals the formulas presented in
this section remain valid. ' This arbitrariness of
the virtual Fock orbitals is discussed in the Appen-
dix and a "generalized" definition of the Fock op-
erator used in E(I. (7) is presented.

%e now briefly discuss which configurations are
to be included and how they are chosen. In doing
this we restrict the explicit discussion to the
(N+ 1)-body wave function E(l. (6), understanding that
the extension of the discussion to the other cases
is simply formal and trivial. The possibilities for
single-particle excitation are twofold: (i) An elec-
tron can scatter internal to its own band; (ii) an
electron can scatter to another band. Case (i)
doesn't contribute to the correlation energy because
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the excited determinant belongs to a different ir-
reducible representation of the translation group
than the ground-state wave function and hence the
matrix element coupling them is zero. Case (ii)
is explicitly contained in Toyozawa's formalism
and the particular choice of excited orbital is an
excitonic one rather than a band function. That
this is included is clear from E(l. (22) of Inoue
et al. ' by noting the summation includes the term
q = 0. One can evaluate the specific contribution
of this type of excitation, and it is small compared
with the two electron excitations.

For the two-electron excitations one has three
possibilities: (a) Two particles are scattered in-
ternal to their band; (b) two particles are excited
to other states; (c) one particle is scattered in-
ternal to its band and one particle is excited to
another state. Process (a) does not occur here
since we have at most one particle free to scatter
internal to its own band. Process (b) can be in-
cluded, but an evaluation of this process based up-
on the Toyozawa formalism shows that its influence
is small compared to process (c). That this is so
can be deduced from the formulas presented in Sec.
III of this paper. Thus we must consider process
(c) carefully. If the configurations chosen are
based upon the Bloch type of solutions to E(l. (7),
one may anticipate difficulties in the use of second-
order perturbation theory since there are clearly
an infinite number of possible excited states nearly
degenerate in energy which correspond to the same
irreducible representation of the translation group
as the base determinant and one may expect the
mutual interaction of these states to be non-negli-
gible. This difficulty is avoided making use of the
arbitrariness of the Fock virtual orbitals. Follow-
ing Toyozawa one choses a Bloch function for the
orbital of the electron scattered internal to its
band. However, rather than represent the excited
electron by a Bloch function one forms an excitonic
wave function, in which both electron and hole are
represented by localized functions in a given de-
terminantal wave function, and linear combinations
of such determinantal wave functions are formed
which satisfy the periodic properties of the lattice.
This is discussed in Sec. III and, as we noted pre-
viously, seems to avoid the difficulties which could

occur due to the neglect of the mixing of the ex-
cited conf igurations.

III. EVALUATION OF CORRELATION ENERGY

N

ff(r'r1 rN) = ~ ~ /~r —ry I (19)

and the total Hamiltonian is represented as

H=HO(r)+H, (r, , . . . , ry)+ U(r; r1, . . . , r/) .
(20)

Ho includes the kinetic energy and the interaction
of the electron with the core electrons and with
the nuclei. 0, is the equivalent Hamiltonian for the
valence electrons. The c system in the indepen-
dent-particle limit has excited states in which some
electrons are in the conduction bands and some
valence holes. In the next limit we find some ex-
citations (i. e. , spatially correlated electrons and
holes). We assume the energy needed to create
such an exciton is &„„and is independent of w, the
exciton translational quantum number. We specify
the eigenstates of the system by the number of ex-
citons of each (( and n present (the excitons are
considered to be bosons). We find (dropping the
subscript «)

In this section we obtain approximate expressions
for E(ls. (18a) and (18b). To accomplish this, we
follow the work of Toyozawa. Since the method
appears in full in Toyozawa's paper, we will sketch
the derivation here, emphasizing the physical ar-
guments. We begin by looking at part of (17) or
(18), that is, for example,

N 1
(N)

/=1

We restrict our attention to i or j being those elec-
trons in the valence band or those electrons in the
same band as the electron in question. We shall
restrict our attention to those configurations which
lie closest in energy to the state of interest. This
will be partly justified later.

We wish to consider the interaction between the
ith electron and the M electrons in the band with
the jth electron. We assume here the jth electron
is in the valence band for simplicity. This inter-
action is

h( Pl I 'N ~ 40 ~Qy'( '
y K (y ' ' ' y '"Kg~ ~ ~ ~ q ly ~ .

y N) %0+~m m~K' K m)Y'(' ' ' t '"K'(r ' ' t '"KJr ' ' ' s 1& ' ' '
& (()

(21)

Naturally, E(I. (21) holds o'nly if Qg„n„«M.mWe
need the matrix elements of U with respect to the
solutions of E(l. (21). We shall use the linear-com-
bination-of-atomic-orbitals (LCAO) method for the

one-electron orbitals. The integral I which we
must evaluate is
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en ~x
I
U

I ( "-.~
~ ~ ~ "-.

~ ri ~ ~, rs))
(22)

This integral is nonzero in three cases. We have
case (1): n =n' for all Tc and j and the electrons ex-
cited coincide; case (2): n =n' for all z and j but
1 and here n+ 1=n' and the excited electrons coin-
cide for the cases where n =n'; case (3): the re-
verse of case (2).

In studying these cases, we consider, as does
Toyozawa, only changes in the total charge and in
dipole moment. In case (1), where there is neither
change in total charge nor dipole moment, we can
essentially use the rock potential due to the val-
ence electrons in the ground state. We call, in
this case,

I= Uo(r)

In either case (2) or (3), we find

a = 2ve(1 —I/& ) (28)

Here E is the energy of the system when there is
no conduction electron. It is the term eQ(r) which
contains the effect of pair correlation here.

Now we generate the final form for eQ(r) follow-
ing the method of Inoue, Mahutte, and Wang. We
use a Bloch function formed from localized func-
tions as the one-electron orbital for the electron
in question, that is,

(30)

In Eq. (27), V is the volume of the solid, and in

Eq. (28), e„ is the optical dielectric constant.
Therefore,

& = [Ho~ Uo(r)]+ (E, + epfb-b-) —ep(r) . (29)

I=eg .„(r) (24)
We must evaluate fQ, (r)e"(r)P„",(r)dr. If we work
to lowest order in interatomic overlap, one has

where Q .„(r) is the dipole potential due to the di-
pole moment p, on the nz'th atom when it is excited
to the state n,

f &—;(r) e&(')&. (r) = ~ I'x(0)(b-x-bx) ~''-x ~.
(31)

„= fP, *(r)er(b„'(r)dr (25)

U(r'r . . r )= Uo(~) —e4(r) (26)

where we use ground and excited atomic Slater
determinants here. These expressions are further
simplified by Toyozawa for the case in which the
valence-band function is s- or t)-like.

In principle we must evaluate (25) for each ex-
cited state of the atom in question. This is clearly
a difficult, if not impossible, task. However, we
see that Eq. (25) is related to the transition oscilla-
tor strength for the transition 0-n of the atom.
We shall use this fact to simplify our problem.
We shall replace the spectrum of the atom by a
single excited level which is & above the ground
state. We therefore have unit oscillator strength
per electron for transitions from the ground to ex-
cited state. Hence, we may use this fact to ob-
tain a value for p. ; we drop the subscript since
there is now only one excited state. As we shall
see, the exact value in & is not very critical. We
have done what Toyozawa assumes; that is, we re-
place the spectrum by a single effective exciton
band of energy e. If we do this, then Eqs. (24) and

(25) simplify immediately to the result originally
given by Toyozawa. Again we stress that the ex-
citon we introduce here is not the one which one
sees experimentally but is an averaged representa-
tion of an entire spectrum.

If we follow the example of Toyozawa and intro-
duce boson creation and annihilation operators bf„
b„ for the exciton, we find that

x e'"'Q (r —R, )dr . (32)

Here we introduce the electron creation and annihi-
lation operators &K and &K. If the one-electron
orbitals about site R, are orthogonal and if I K I

'
is large compared to the size of an orbital Q, we
find

2 m& (1 —I/e. ) t("'

x Q„(r —0„)e '"' Q„(r —R„)dr 5„„. (33)

That is, the electron is scattered internal to its
own band an/ in part justifies our prior statements
relating to which configurations are needed. This
is the form given by Inoue et al. We complete
the second quantization of our Hamiltonian sub-
tracting out the energy of the ground-state Hartree-
Eock determinant, except for the orbital in question,
and find it to be

H = Q Efl Qg (xj + E Q bKbK
k K

+ ~ I'K(0) (b K-bK) &~K-K&k
kK

In the ground state we have no excitons and hence
we see that the first term on the right-hand side of
(34) is just what we get from Hartree-Fock for the
electron in question, while the last term is the
effect of correlating the electron with all the valence
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electrons. We proceed from here to find the self-
energy for the electrons and the hole. In the case
of the electron, we have the result of Inoue et al.
Thus, we find that (18a) and (18b) become

and

I VK(0) I

8( )- K
(k) (k -)

I VK(0) I

&a( ) = R, (k)" (k -)

(35)

(36)

Again we stress that we have included only the
lowest exciton band and we restrict the scattering
of the electron to its own band.

Vfe can make several qualitative statements
about (35) and (36). First, if the bands are flat,
there is no dispersion in E, or E& and the expres-
sions are independent of k. Second, if the band-
width is less than &, as it usually is, E, is negative
and E„is positive. Finally, the expressions are
such that the effect of correlation is to narrow the
bands. This narrowing is proportional to the width
of the band. These qualitative judgments are mostly
consistent with the previous calculations. ' The
sign of the effect is consistent with the work of
Fowler. We note that the extension of Eqs. (35)
and (36) to the case of degenerate bands is simple.
We simply sum Eqs. (35) and (36) over the de-
generate bands.

IV. NUMERICAL CALCULATIONS

s(%) = Eo+ V„(cosa k„a cosak„a

Our task is to evaluate Eqs. (35) and (36) for
several cases. In order to do this we need several
pieces of information. These are expressions for
s(k), s, s„, the lattice constant, and Wannier
functions for the band in question. We restrict our-
selves to s-like bands in fcc solids and use the
simple-tight-binding value for s(k); this is'4

+ cos-,'k„a cosa k, a + cos ak„a cosak, a). (37)

The values of a and &„are gathered from standard
sources. The value for & is not critical as one can
see from Eqs. (32), (35), and (36), since as the
bandwidth goes to zero, the values for E, and E„
become independent of &. In most cases we con-
sider, the value for & is large compared to the
bandwidth and hence the choice of & is not critical.
In principle, one should not use an experimental
value for &, but should evaluate it from wave func-
tions used in the calculation to define the exciton
band. Such a calculation is difficult in practice.
The author evaluates & as follows. Use the Har-
tree-Fock energy bands, when they are available.
If they are not available, such energy bands as are
available are used. From this, one can estimate
the exciton binding energy by the effective-mass
approximation. This value when subtracted from
the band gap yields the value for &. In the case of
the core levels we obtain the correct Wannier func-
tions from local-orbitals calculations. " For the
conduction bands we get approximate hydrogenic
tight-binding functions using the quantum-defect
method. The value of the electron self-energy is
found to be nearly independent of the wave function
used.

In Table I, we give values for E,(k) at k= (0, 0, 0),
(2v/a) (1, 0, 0), and (v/a) (1, 1, 1), or I', X, and L,
for the lowest conduction band of MgO, KI,

'
KC1, ' NaCl, ', LiCl, Ar, ZnS, and InAs. In
Table II, we give values for E„(k) for core levels
in MgO, KI, LiC1, and CaF&. These values are
found to be% independent. We also give values for
E, and E„from other sources when available. We
see in Table I that our values for E, are in fair
agreement with those from other sources except
that in the case of KCl there is substantialdisagree-
ment between the present work and that of Ref. 8.
This is surprising inasmuch as both works use

TABLE I. Values of —E~(rt) at 1', X, and L are given using Eq. (35) for the lowest conduction band of several solids.
Also given are the values for E~(k) obtained from other sources whenever possible. Results are in eV.

Substance
This
work Other values

This
work Other values

This
work Other values

MgO
KI
KCI
NaCl
LiCl
Ar
ZnS
InAs

3.21
1.72
1.70
2.02
2.36
1.44
3.08
l.60

2.18
l.96'
2.43'
3 14~
1.10

2.38"
2.75
2.41~

4.13
2.28
2.04
2.28
2.73
1.57
4.56
2.05

2.18
1.96
2.43
3.14'
1.10

2.09'
2.27'

2.20'

3.83
2.09
1.94
2. 21
2.62
1.53
4.02
2. 93

2.18
l.96'
2.43
3.14
1.10

2.05'
2.39

2.20'

~Reference 4.
Reference 8.
Reference 18.

References 2 and 19.
'Reference l.
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TABLE II. Values of Ez(k) are. given for some s-like
core states of several crystals using Eq. (36). Values
are also given according to Fowler Q,ef. 4) wherever
possible. Results are in eV.

Substance

MgO
KI
KI
KI
KI
KI
KI
KI
LiCl
CaF,

Level

Mg 2g
I lg
I 2g
I 3g
I 4g
K 1s
K 2g
K 3s
Ll 1$'

Ca 2s

Present work

4.31
2.52
2.52
2.51
2.48
2.52
2.51
2.41
3.41
2.75

Ref. 4

1.44
l.44
1.44
1.44
2.18
2.18
2.18
3.14

the same expression for E, . The difference is not
due to different choices of parameters in the two
calculations, for when the author used the param-
eters stated in Ref. S the agreementbecame worse.
Lipari has also evaluated Eq. (35) for the case of
KCl and is in agreement with the results of this
present work. ' We are not able to understand
the exact reasons for the disagreement between
the present result and that of Inoue et al.

There are other trends to observe here. One is
that the present results for E,(k) seem to have
greater dispersion than previous work. In the case
of Ref. 4 this is easy to understand, since Fowler
treates the electron as a static charge and neglects
the translational symmetry of the solid and hence
omits any dispersion. It is not possible to explain
the lack of substantial dispersion in the other re-
sults considered.

In the case of the formation of the hole, we see
from Table II that the self-energy Z„ is essential-
ly independent of which hole is created in a given
solid. This may be unreasonable. This is likely
to occur here, since our final model includes only
the relaxation of the valence levels and the levels
from which an electron is removed. Thus we ex-
pect this to be most accurate for the outer levels
only since the relaxation of levels between the
level in question and the valence levels is neglected.
In general, the agreement between our present
model and that of Ref. 4 is poor. It is possible to
understand why this is so.

In the Fowler model, it is assumed that the hole
exists as a positive point charge on the lattice site
about which it is created. This positive point
charge then polarizes the charge clouds on the
surrounding atoms and iona. Using a Mott-Little-
ton approach, Fowler is able to compute the
amount of energy involved in polarizing the sur-
rounding ions. This model entirely neglects two
other contributions which may be of importance in
this ease. These are that the correlation energy

between the electron removed and the other elec-
trons in the ion from which it is removed is ne-
glected, as is the energy associated withthe relax-
ation of the wave functions on this ion in the Har-
tree-Fock source when the electron is removed.
We can estimate these effects in a simple model.

We obtain the correlation energy for a hole on a
Li' ion in LiCl from Fowler, and it is 3. 14 eV.
The correlation between 1s electrons contributes
—1.19 eV. We compute the relaxation enez gy
from the difference between the ionization energies
for Li' to Li" computed by Koopmans's theorem
and by self-consistent Hartree-Fock techniques.
This contribution is 1.52 eV. The final self-ener-
gy for the hole in LiCl' s Li' ls shell is then 3. 5V eV,
which agrees well with the value of 3.41 eV ob-
tained in the present calculation.

V. CONCLUSIONS

In this paper, we have used simple perturbation
theory to investigate the correlation energy associ-
ated with a lone electron in the conduction band of
a nonmetal and also to understand the correlation
energy associated with an electron in a filled shell
of a nonmetal. In both cases our model permits
us to obtain expressions of these self-energies,
using the method of Toyozawa, which are easy to
evaluate using an electronic digital computer.
These models have been evaluated for the lowest
conduction band and also for several core levels
of a number of solids. These solids include ionic
insulators, a rare-gas solid, and a II-IV and a
III-IV semiconductor. We see that the effect of
correlation is to narrow the bands. We also find
the self-energy for conduction electrons to be ne-
gative and the self-energy for holes to be positive.
This feature is in good agreement with previous
work. The magnitude of these corrections is siz-
able, about 2 eV, and this also is in agreement
with previous work.

It is useful to relate these results to the results
of standard energy-band calculations. These cal-
culations fall into two categories. These are those
calculations which use adjustable parameters and
those which do not. Only the latter are useful
here. These also fall into two classes. These are
those which use a local exchange approximation
and those which use the nonlocal Fock exchange.
Calculations of the former type are most numerous.
Those substances with reasonable Fock types of
calculations are Ar, ' Kr, ' LiCl, LiBr, NaCl,
NaBr, and KCl. The observed band gaps
and the computed Hartree-Fock band gaps are given
in Table III for these solids, as are the band gaps
obtained using local exchange approximations with
no adjustable parameters. The trends are ob-
vious. The Hartree- Fock calculations consistently
overestimate the observed band gaps by several
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Ar
Kr
LiCl
LiBr
NaCI
NaBr
KC1

16.20
15.1
11.47
12.10
12.08
11.03

11.76-10.1

7.08
11.3
8.7
7.4
7.4
6.4

6.5-6.3

14.3
11.8
9.4
7.6
8.75
7.1
8.7

TABLE III. Values of band gaps axe given for several
crystals. In column 1 we specify the solid, in column 2
the Hartree-Fock gap is given, in column 3 the local
exchange gap is given (see Ref. 28), and in column 4 we
give the experimental gap. Results are in eV.

where

p(r, r') = ~5 4, (r) yt (r') (A2)

A' ~= (1 —p)A(1 —p), (AS)

and has the properties

In this Appendix we use the nomenclature estab-
lished in the text.

We now introduce an operator A. ' which was
originally suggested by Gilbert and whose use has
been explored by Huzinaga and Arnau' and by
Kunz. ' This operator is defined to be

eV, whereas the use of local exchanges produces
band gaps which are smaller than experiment. The
error in the Hartree-Fock gaps is consistent with
the results of the present calculation. or

A' P =0

y.=Ay. - pAy„, X & a

(A4)

(A5)

ACKNOWLEDGMENTS
A. =~n&b 4b, %&a, g (A6)

The author wishes to thank Dr. Lipar i for help
in checking his numerical results. He expresses
his appreciation to the staff of the Materials Re-
search Laboratory Sigma 5 computing facility for
their cooperation. He also thanks Professor Bar-
deen and Peter Deutsch for reading the manuscript
and suggesting ways to improve it.

APPENDIX: VIRTUAL ORBITALS IN HARTREE-POCK
THEORY

In this Appendix we discuss the virtual orbitals
of the Hartree-Fock equation. The Hartree-Fock
equation results from minimizing the energy of
the many-body Hamiltonian with respect to a de-
terminantal wave function. The usual form for
this equation is

F/) = &( Qq =~- Vm —2 Z--( +I
r lRJ —ri

2
' p(r', r') d, 2p(r, r')

+ 2 -- '-, dr' — ', —y, A1lr —r I Ir-r j
4

These results hold for any mell-behaved Hermitian
operator A. Thus, we see that the effect of A'
operating on a virtual orbital is to produce a linear
combination of other virtual orbitals. It is clear
from Eq. (A4) that if we introduce A' into F the
Hartree-Fock ground state is unchanged. Thus we
define a "general" Hartree-Fock equation of the
form

(F+A )Q( ——E;Q) . (A7)

As has been discussed by Gilbert ' for the closely
related operator A = pAp, one can, in general,
produce a quite arbitrary spectrum for Eq. (AV).
It is clear that for the purposes of configuration-
interaction calculations any equation of the form
(A'7) produces an equally valid set of one-electron
orbitals. What is also clear is that some sets are
quite a bit preferable to other sets for the purposes
of actual calculations. Several aspects of this
question are discussed by Huzinaga and Arnau
and by Kunz. '
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The relative emission per ion and the lifetime have been obtained as a function of Tb con-
centration for the D4 to Fz transitions in (Yq „Tbg3A150&& crystals. At 297'K both are con-
centration independent for g & 0.3 and decrease as g ' ' ' for g & 0.4 up to about a factor 10
for Tb3A150f2 ~ From the time dependence of the intrinsic Tb3A150&2 luminescence the initial
nonexponential portion of the decay is shown to be consistent with direct dipolar transfer to
nonradiative sinks. The later part of the decay is exponential and involves resonant Tb +-Tb '
migration to the sinks. The direct transfer is found to be relatively temperature insensitive,
but migration is not. There is little migration at low temperatures but for T & 8'K, &+here
the higher-energy D4 levels begin to be populated, the migration rate increases rapidly. The
temperature dependence of the migration constant D was calculated using the level populations
and oscillator strengths. The migration contribution to the exponential decay is proportional
to D 4 indicating the Tb3'- Tb3' transfer also involves dipolar interactions. Impurity-perturbed
Tb3 emission is observed for T & 12'K. These ions are mainly populated by direct dipole trans-
fer from the intrinsic ions. Multiple-iondecay processes involving the deexcitation of an ion
in the 5D4 state and the simultaneous excitation of three or more neighboring Tb ' ions are shown
to be negligible at low temperatures.

I. INTRODUCTION

It is well known that the radiative-emission ef-
ficiency of most luminescent materials is reduced
at high activator concentrations. The additional
nonradiative decay results from direct multipolar
or exchange interactions between like- or unlike-
ion pairs or clusters, ' and from the migration
of the excitation ta nonradiative quenching cen-
ters. ' A considerable effort has been expended
to elucidate the quenching mechanism from the
concentration dependence of the radiative yield
and the transient decay curves. ' An alternative
technique involves the detailed analysis of the
transient luminescence decay of the concentrated

crystal following pulsed excitation. 3 The latter is
of particular value in cases, such as organic ma-
terials, where dipolar interactions are known to
be important, and quenching can occur by direct
transfer or involve migration to a sink. '

Both methods have been used to study the 'D4

« 'I'z (J = 1-6) emission of Tb ' in the garnet
series (Tb„Y, „)s Al, o,s with 0. 1~x~ 1. The 'D4

level is separated from 'I"
s by -14000 cm (Fig.

1), and energy conservation makes the multipolar
and exchange decay mechanisms between Tb' ions
a high-order process. To quench an ion in the D4

state requires that it and at least two of its neigh-
bors be excited to 'I'0 plus the emission of 3500
cm ' of phonons; alternatively, three neighbors


