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Resonant Phonon Modes of Ag+ and Au+ in Alkali Halides
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Band-model calculations of resonant modes due to Ag' impurity in sodium halides and Au'

impurity in sodium and potassium halides have been made in the isotopic-mass-defect approx-
imation of Brout using a model density of phonon states. The results are compared with avail-
able experimental data. Good agreement is obtained for the Ag' resonances in sodium halides.
The Au' resonant modes in NaC1, NaBr, and NaI are predicted at 38, 26, and 19 cm"', respec-
tively. The Au' low-frequency resonances in KCl, KBr, and KI are predicted at 25. 2, 19.8,
and 10.6 cm, respectively. This estimate includes the softening of the modes due to changes
in the force constant near the impurity. The high-frequency resonant modes of Au' in KCl and
KBr show good agreement with the experimentally observed Raman modes at 61 and 58 cm ~,

respectively. The problem of the Ag' resonances in potassium halides remains unsolved in
our model.

I. INTRODUCTION

Defect vibrational modes in crystals have been
studied at length' since first theoretically predicted
by Lifshitz. ~ The effect of introducing impurities
is to produce two types of modes depending upon
the nature of the impurity. First, there are dis-
crete (localized or gap) modes produced outside
the band of perfect-lattice frequencies. Second,
there are resonant (band) modes which lie within
the band of lattice frequencies. Localized modes
have frequencies larger than that of the highest
LO mode of the lattice, while the gap modes have
frequencies which lie in the gap of the acoustic and
optical branches of the host crystal. For both these
modes the vibrational amplitudes fall off exponen-
tially with increasing distance from the impurity,
i.e. , the modes are spatially localized in charac-
ter. Resonant modes, on the other hand, have vi-
brational amplitudes which, though peaked at the
resonant frequencies, do not fall off as rapidly as
those of the localized modes.

Theoretical models of defect vibrational modes
in crystals fall into two broad categories: band
model ' and molecular model. The band model
utilizes the density of phonon states of the pure
crystal in calculating impurity modes and, as such,
both localized and resonant modes are treated on
an equal footing. The molecular model, on the
other hand, treats the impurity and its nearest
neighbors as a vibrating molecule, precluding the
possibility of resonant modes.

In this paper we present band-model calculations
of the resonant mode frequencies of an Ag' impurity
in sodium halides and an Au' impurity in sodium
and potassium halides. In evaluating the frequen-
cies, a model density of phonon states' is used for
the host lattice. Its properties and the method of
evaluating the mode frequencies in the isotopic-
mass-defect approximation3 (IMDA) is given by

Sec. II. Section III discusses the determination of
the "effective force constant" in analogy with the
F-center model. ' The effect of including the force-
constant change is to soften the mode frequencies
of Sec. II. Results of these calculations and com-
parison with experimental data are discussed in
Sec. IV.

II. CALCULATION OF UNSOFTENED MODE FREQUENCIES

When an impurity atom goes into a perfect-lattice
site, three distinct changes are produced in the
neighborhood of the impurity: mass, force-con-
stant, and charge defects. ' Any theoretical model
which attempts a calculation of the impurity vibra-
tion frequencies should incorporate three defect
parameters hm, f", and e* characterizing the
mass, force-constant, and charge defects, re-
spectively. For the simplest approximation, i.e. ,
isotopic-mass-def ect approximation, charge and
force-constant defects are neglected. In this case,
the vibrational frequencies of a substitutional im-
purity are given by the solution of'

D(&u)=i+ Z z &=0,&m

where &m=m -m, with m being the impurity
mass and m the mass of the substituted ion. The
summation is over a11 phonon modes of the host
lattice, whose density of states v(&u) is normalized
such that

1 v((o) d(o = 1 .
Equation (1) may also be written

where e is the mass defect dm/m, v(~) is the
normalized density of states, ~ is the maximum .

lattice frequency, and the principal value of the
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resonant modes in sodium halides and Au' resonant
modes in sodium and potassium halides are given
in Tables II-IV. These tables also contain values
of &, the minimum mass defect necessary to ob-
tain a low-frequency resonance in these crystals.

The widths —,'I' determined by Eg. (4) are found
to be fairly good for the modes obtained in the near
acoustic region but not for those obtained in the
near optic region. This is probably because the
modes obtained in the near optic region generally
occur at the low-energy shoulder of the model
v(&u) where ReD(&u) varies very rapidly. In this
case, the width —,'I' is not correctly given by Eq.
(4). The low-energy acoustic resonance, on the
other hand, occurs in a region where the Re D(&u)

is slowly varying, and then Eq. (4) becomes ap-
propriate.

0 (b)

FIG. 1. (a) The dashed curve gives the van Hove densi-
ty of states for an acoustic-like branch, while the solid
curve is the model density of states. (b) The dashed curve
gives the van Hove density of states for an optical-like
branch, while the solid curve is the model densityof states.

III. DETERMINATION OF EFFECTIVE FORCE CONSTANT

The effective force constant coupling the impurity
to its neighbors can be determined in the molecular
model. ' Neglecting the deformation of the positive
ion, the force-constant softening is estimated from
the two sets of Kellermann constants A.» B& for the
host lattice and A2, B2 for the impurity site. The
force constants for the pure (f&) and impure (fz)
lattices are given by

integral is required. The width of the resonant
mode at ~0 is given by fg =Ay + 2Bg —(32m &/q V, )Z (7)

Im D(~+ ie)
(4)Re D'((u)

The model v(v) for the host lattice consists of four
different v, (&u) corresponding to the LA, TA, LO,
and TO branches. For the acoustic branches

vg((a&) d(d = &(d (QPg —(d) d(d,

co& being the cutoff frequency and n the normaliza-
tion factor. Similarly, for the optic branches

vo((u) d(u = o. '((u —|d,)' '((u, —(u)'"d(o, (6)

where ~& and (d2 are the lower- and higher-frequen-
cy cutoffs. The v(&u) are schematically given in
Fig. 1.

This model density of states' incorporates the
correct M-type (maxima and minima) van Hove
singularities while smearing out those of the S
type (saddle points).

Our model v(~) have been fitted in the different
branches to the v(~) of Karo and Hardy to obtain
the frequency cutoffs. These are given in Table I.
The resonant frequencies ~o and the widths —,'I' were
determined by solving Eqs. (3) and (4) numerically
on an ICL 1909 computer. For a given impurity
two resonance modes are obtained for any crystal:
The low-frequency mode is acoustic-phonon-like
in character, while the high-frequency one is optic-
phonon-like. The results of calculations of Ag'

and

f2=A2+ 2&~ —(32m n/q&, )Z (8)

Here V, is the unit-cell volume 2z0, with y0 being
the equilibrium lattice constant, Z is the Szigetti
effective charge e*/e, and o. is the polarizability
given by the Clausius-Mossotti formula

3V, &e -I
4m (t„+2

where e is the high-frequency dielectric constant.
Assuming no relaxation of the lattice around the
impurity, Eqs. (7) and (8) are simplified because

B~=B2= —TZ ag2 2

where && is the Madelung constant. The constants
A& and Z are evaluated by using the k- 0 LO- and

Crystal
Id' (TA) (dg (LA)

(cm ') (cm ')
col(TO) (u2(TO) co)(LO)
(cm ') (cm ') (cm ')

NaCl
NaBr
NaI
KCl
KBr
KI

133
91
63

111
76
52

186
106

76
159
106
69

164 212 186 264
112 191 184 223
95 148 127 196

111 153 138 214
85 127 116 170
95 124 106 143

TABLE I. Cutoff frequencies in units of wave numbers
for the various phonon branches obtained from y(cd) of Karo
and Hardy (Ref. 9).
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TABLE II. Resonant modes for Ag' impurity in sodium halides. The mass defect & is 3.69.

Crystal

Minimum
mass defect &m

(low) (high)

Calculated resonance modes
(cm ')

Width yI' (cm )

(low)
Reported

resonance modes
(cm-')

Nacl
NaBr
NaI

3.45
3.62
3.67

55
43
32

154
114

95

24, 5
16.6
12.7

52. 5
48. 0
36.7

aSee Ref. 11.

TO-phonon frequencies in

P~s~r.o /e —fs+ Y ~~

Pl.~To/e =A —
s mZ

2 2 4 2 (12)

The resonant mode frequencies of Ag' impurity
in sodium halides in the IMDA are given in Table
II. It is seen that the calculated frequencies cor-
responding to acoustic-phonon-like modes agree
well with the observed ones. In the same approxi-
mation, we predict the low-frequency resonant
modes of Au' in NaCl, NaBr, and NaI at 38, 26,
and 19 cm, respectively, in Table III. It is ex-
pected that the IMDA will also be adequate for Au'

resonance, since the mass defect E is 7. 56. This
is much bigger than the minimum value for the
mass defect E, which is obtained for our model
v(co) in Eg. (3). For impurities with below this
value no low-frequency resonances are obtained.
The E for low-frequency acoustic resonance in
sodium halides ranges from 3.45 to 3.67.

The IMDA does not give resonant modes for Ag'
in potassium halides. The value of & in this case
is 1.77, while e ranges from 3.3 to 4. This re-
sult indicates that for heavier alkali halides the
IMDA is inadequate and that changes in the force
constant due to the impurity must be taken into
account. This approach may be exemplified by
considering the Au' resonances in potassium ha-
lides. In this case the IMDA gives resonance fre-

where p. is the reduced mass and ~«and ~ To are
the I 0- and TO-phonon frequenc, ies. To find A2,
the experimental infrared frequency has been
matched with the highest E&„eigenfrequency in Eq.
(11), with appropriate changes for p, . This pro-
cedure determines f, and f2; the values of the
force-constant softening for Au' in potassium ha-
lides is given in Table IV. The effect of the force-
constant softening, which takes into account the
change in the elastic binding coefficients, is to re-
duce the resonant frequencies. These are then ob-
tained from the resonant frequencies in the IMDAby
multiplying with the softening factor (f2/f, )'~, and
the results are given in Table IV.

IV. DISCUSSION AND CONCLUSION

TABLE III. Resonant modes for Au' impurity in sodium
halides. The mass defect & is 7.56.

Calculated resonance modes Width gl
(cm 1) (cm-')

(high) (low)
Mlnlmum

Crystal mass defect &m (low)

NaCl
NaBr
NaI

3.45
3, 62
3.67

38
26
19

151 12
111 3

92 6. 3

quencies which, when softened as discussed in

Sec. III, predict low-frequency modes at 25. 2,
19.8, and 10.6 cm ' for KCl, KBr, and KI, re-
spectively. The prediction is made plausible by
scaling the experimental value for the Ag' reso-
nance in potassium halides by the square root of
the ratio of the masses of Ag' and Au',

(M„,/M„„)'~', and comparing with the calculated
softened resonant frequencies for Au'. Table IV
shows that there is good agreement between the
experimental and theoretical frequencies. The
above procedure treats the Au' and Ag' in potassium
halides as if they were isotopes of each other.
This may be a good approximation, since the force-
constant softenings for Au' in KCl, KBr, and KI
(35.4, 35. 8, and 25. 8%%uq, respectively) are com-
parable to the force-constant softening for Ag' in
these crystals" (30.6, 36.0, and17. 2%, respec-
tively).

Paucity of experimental data of the optic-phonon-
like high-frequency resonant modes prevents de-
tailed verification of our theoretical results. How-

ever, high-frequency resonant modes have been
measured by Raman scattering for Au' in KCl,
KBr, and KI at 58, 61, and 57 cm ', respectively. '
The comparison between these and our calculations
are made in Table III. Good agreement is found

for Au' resonance in KBr and KCl. For Au'

resonance in Kl, a gap mode is obtained theoreti-
cally. This is to be expected, since & is approxi-
mately equal to E .

We conclude by stating that the resonant frequen-
cies of Au' and Ag' in sodium halides are adequate-
ly treated in the IMDA. For potassium halides the



RESONANT PHONON MODES OF Ag' AND Au' IN. . . 599

TABLE IV. Resonant modes for Au' impurity in potassium halides. The mass defect & is 4. 1.

Minimum
mass
defect

C rystal

Calculated un-
softened reso-

nance modes
(cm-')

(low) (high)

Keller mann

constants
Al A2

Force
constant
softeninga

Yt~fi)
Vo

Softened modes
~OY2~fI)

(cm )

(low) (high)

Width gl'
(cm-')
(low)

Reduced
infrared
modes

(cm «)

Raman
mod esc
{cm l)

28. 5
25
13

61
58
57

25. 2
19.8
10.6

42 109 12.34 6.36 35.48
33 85 12.45 6.94 35.83
21 87 12.95 6.36 25. 78

3.31
3.95

6.6
6.5
3, 8

65
51
44, 2

able for Ag' substitution in these crystals, assuming Au'

to be an isotope of Ag'. See Ref. 10, p. 475.
cSee Ref 12

KCl
KBr
KI

~The force-constant softenings obtained for Au' substi-
tution are comparable to those for Ag' in these crystals
(30, 36, and 17.2', respectively). See Ref. 11, p. 475.

"These modes have been deduced from the ir data avail-

situation is different and force-constant changes
due to the introduction of the impurity must be in-
cluded. When this is done, the Au' resonances are
satisfactorily explained. The problem of Ag' reso-
nances in potassium halides remains unsolved in
this paper.
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The real and imaginary parts of the dielectric susceptibility of the RbCl: CN system are
measured throughout the 1-26 GHz range. The results, which show a relatively sharp ab-
sorption peak at 9. 6 GHz and a smaller, broader peak at 4. 5 GHz, agree with a model in
which the CN" rotation is both hindered by eight deep potential minima in the [111]directions
{XY-8), and severely perturbed by the internal stresses of the crystal (these stresses pro-
ducing the broad peak at 4. 5 GHz). Such an interpretation, in addition to agreeing with the
symmetry predictions of previous ultrasonic measurements, can also qualitatively explain
the heretofore contradictory results of several other experiments.

INTRODUCTION

Of all the work done on the tunneling properties
of substitutional impurities in alkali halide crys-
tals, ' only one system, KCl: Li', has to date con-

sistently lent itself to a simple theoretical inter-
pretation (that of the tunneling model of Gomez et
al. a). It now appears, however, that the proper-
ties of another complex, RbCl: CN, may, with
modifications due to the random strains within the


