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The effect of the spin-orbit interaction in the bound excited I 4 states of the F center is in-
vestigated within the framework of the semicontinuum F-center model. Assuming the K band
arises from allowed transitions, expressions for the K-band spin-orbit splitting and the F-K
spin-orbit configuration interaction are found using vacancy-centered F-center model wave
functions orthogonalized to the core states of neighboring ions. A simple physical picture for
the variation of the spin-orbit splitting with state of excitation is developed and the spin-orbit
splitting of the highly excited states is shown to vary as the inverse cube of the principal
quantum number. A detailed numerical calculation for the RbC1 F center is carried out. The
predictions include an F-band splitting of —15.3 x10 3 eV, a K-band splitting of -2.2 x10+ eV,
and an F-K configuration interaction parameter of -3,8x10 3 eV. These results are in good
agreement with quantities derived from magneto-optic experiments.

%. INTRODUCTION

The optical absorptions and emissions for elec-
tronic transitions of color centers in solids are
generally broadened into bands by the electron-
phonon interaction. The typical optical spectrum
of a color center consequently does not show any
of the fine structure that may be present in the
center's electronic energy levels. However, in
the past few years it has been found that this fine
structure may be resolved by external-field tech-
niques. ' " These techniques were first applied to
the F center in magneto-optical studies that dis-
closed an unexpectedly large and negative spin-
orbit splitting in the E band. ' ' In addition, these
investigations yielded unrelaxed excited-state g
factors, ' and the relative contribution of cubic
and noncubic lattice vibrations to the broadening
of the F band

Spin-orbit structure has also been found in mag-
neto-optic experiments" ' on the K-band absorp-
tion"' of the E center. This is of particular
interest because of the controversy surrounding
assignment of this band to specific transitions.
In the present paper we shall investigate the theory
of spin-orbit effects for this absorption.

Briefly, the K band is a small absorption found
in association with the F band in many alkali ha-
lides. Typically it lies a few tenths of an eV higher
in energy than the F band, but has an oscillator
strength roughly one-tenth as great. '~ The K band
is best resolved in RbCl, and in those salts in
which it is not resolved it probably comprises the
long high-energy tail of the E band. There has
been much speculation as to the nature of the K
absorption, but Chiarotti and Grassano" estab-
lished by modulation of the F-center ground-state
population that the K band involves transitions from
the F-center ground state. Independent evidence

for this is given by the observations of d'Aubignd
and Gareyte" and of Henry' that magneto-optic
effects in the K band have the same spin-relaxation
time as the F-center ground state.

The situation with respect to the final excited
state involved is not as clear. The two most widely
discussed models proposed to account for the K
band are the following.

(i) The hydrogenic "P-state" or "many-P-state"
models that attribute the band to allowed transitions
from the F center's "1s" (I",) ground electronic
state to a "3p" state or series of "np", n ~ 3,
states with I'4 symmetry lying below the conduc-
tion band, but above the I'4 (2p) state responsible
for the E band ao.m

(ii) The forbidden-transition models in which
it is assumed that lattice vibrations mix the 1 4

(2p) state responsible for the F band with higher-
lying even-parity states to which transitions would
be otherwise forbidden. ~s

A review of previous studies concerning these
and other models has been given by Smith and
Spinolo. ~o

In ordinary optical experiments the K band shows
no gross structure, ~4 but it may be analyzed into
two overlapping bands by means of photoconduc-
tivity '~' or stress measurements. ~' For reference
such an analysis is shown in Fig. 1. The lower-
energy subband K, is the strongest and is centered
at the peak of the K band; it has a low photocon-
ductive yield. The much weaker K~ band lies at
higher energies and is reported to have unit quan-
tum yield. In the framework of the allowed-tran-
sition model, which we shall adopt here, the K,
band involves transitions to bound states, primarily
the sp (I',). The Kz band then includes transitions
to low-l, ying conduction-band states and the most
weakly bound F 4 states which yield conduction
electrons by thermal ionization.
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FIG. 1. K band of the E center in
RbCl and its analysis into the K& and
K2 subbands. After Kratzig and
Staude, Ref. 18.
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The magneto-optical studies of the K band dem-
onstrate that there is a spin-orbit splitting of the
E band' ' and a spin-orbit configuration inter-
action between the final states responsible for the
E and K bands. ~ ' The high-resolution measure-
ments of KrÃtzig and Staude' show that these ef-
fects are primarily associated with the K& subband.
However, the interpretation of these results in
terms of the proposed K-band models has been the
subject of disagreement. "'6 This stems in part
from the lack of estimates of the relevant spin-
orbit parameters in the allowed-transition model
for comparison with experiment.

The purpose of the present paper is to extend
the theory of spin-orbit effects in the F center to
the allowed-transition models of the E band. In
particular, expressions for the spin-orbit splittings
and configuration interaction for the excited P-like
states of the semicontinuum model are found and a
detailed numerical calculation for the F center in
RbCl is carried out. Although primary emphasis
is placed on the E center, the theory is general
and should apply to a variety of electron-excess
defects.

Briefly, our findings are that either of the al-
lowed-transition models for the K band give pre-
dictions in good agreement with the observed F-
and K-band spin-orbit splittings and the E-E. spin-
orbit configuration interaction. This agreement,
together with the findings that stress experiments
are best explained in terms of 1 4 final states, "' '
strengthens the case for believing that the major
features of the K band may be explained primarily
on the basis of an allowed-transition model.

In Sec. II a brief outline of the theory of the spin-

orbit interaction for defects in the orthogonalized
vacancy-centered function approach is given. A
systematic method of evaluating the relevant lattice
sums for the overlap and spin-orbit matrix ele-
ments is introduced and a continuum-approximation
method of estimating the spin-orbit matrix elements
for highly excited states is developed. In Sec. III
a numerical example for RbC1 is outlined. In Sec.
IV a physical picture for the variation of the syin-
orbit matrix elements with quantum state is given
and in Sec. V the results are discussed in light
of the available data. Readers interested in the
physics of the problem are urged to read Sec. II
up to Eq. (4) and skip immediately to Sec. IV. They
will find the intervening details somewhat dull.

II. THEORY

A. Model Wave Functions

In the allowed-transition models the spin-orbit
effects in the F and E bands are determined by the
spin-orbit matrix elements between the various
I 4 levels involved. There have been a variety
of calculations of the lowest-lying F-center I 4

state ' and several studies of the next-higher
I'4 state. 3 Higher I'4 states have been investigated
only in the semicontinuum approximation.

In the present work, wave functions found in con-
nection with the study of the K band in BbC1 in Bef.
20 will be used. They are the P-like solutions for
a spherically symmetric semicontinuum model
with a well depth of —5.92 eV, a well radius of
4. 1g, and a dielectric constant E of 3.00.

The probability density of some of the low-lying
excited states given by these solutions is shown
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TABLE I. Distribution of charge in several BbCl I'-
center states as given by the semicontinuum model for a
potential with well depth -5.92 eV, well radius 4 1+p,
and dielectric constant 3.0.

State

Is
2p
3p
4p

% of charge
within vacancy

91
24

5
2

Radius containing
90% of charge

6gp

18gp
46~p
84gp

No. of ions
within 90%

radius

0
92

I 742
10500

The spin™orbit effects in the F center have been
shown to arise from the strong electric fieMs near

in Fig. 2. Since the states of interest are those
in absorption, effects of lattice relaxation following
absorption are not included. Table I summarizes
the properties of these states, It will be seen that
the model predicts a ground state largely contained
within the vacancy in qualitative agreement with
magnetic-resonance measurements. 32 The first
excited P state is partly inside the vacancy and
partly outside as found in other F-center model
calculations. ~e The np states for n~ 3 have very
little charge within the vacancy and approach
hydrogenic functions for large n as expected for
shallow-donor states.

B. Spin&rbit Effects in Compact States

the nuclei of the neighboring ions." A quantitative
description of these effects has been developeds '3'

starting from a vacancy-centered model wave func-
tion (of the sort described above) and requiring that
the Pauli principle be satisfied by orthogonalizing
this function to the occupied states of the crystal
ions. The major steps in this procedure are out-
lined below.

If the overlap of the ion-core wave functions y
with one another is neglected, the orthogonalized
wave function of the F-center electron Q,. is given
by Schmidt orthogonalization of the F-center-model
P function u, to the states y . Thus,

0 =(&-Z.s', ) '"( -+sg, pg),

where S, is the overlap integral (y, (u, ) and the
sums over n and P range over all occupied core
states.

The spin-orbit interaction is given in general by36

h..=-e(2m'c')-'S (Exp),
where e is the electronic charge (a negative num-

ber), m the mass of the electron, c the velocity of
light, 5 the spin operator, p the linear momentum
operator, and R the electric field through which
the electron moves. Since the electric fields are
large only near the nuclei of the ions, the inter-
action is to a good approximation
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FIG. 2. Radial probability distribution for several of the lowest states of the F center in the semicontinuum model.
These states were calculated for a Simpson potential with a well radius of 4. 1go, a well depth of -5.92 eV, and a
dielectric constant of 3.0 (see Ref. 20 for details). The arrows give the position of the indicated shells of ions. Note
that the ground 1s state is almost completely within the vacancy, whereas the 4p state has its maximum beyond the
80th shell of neighbors.
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+ 2S (P„d w) S (P,, d v)]. (7)

(3)

where the index I labels the ion at point RI and V,
is the potential of an electron in the field of the
Ith ion. Here the orbital angular momentum is
measured with respect to the Ith nucleus so that
L, =(r-R&)xp.

The matrix eLements of the spin-orbit interaction
for the orthogonalized F-center functions are then
given by"

(y, ( a„[y &=NN [(u, [h„[uy&

-ZS,.& V. )
f,.I,&-Z S,,, (u, )

I ..( q,&

+Q S,„S,,,&y, fa,.I p,&], (4)

where N, is the normalization factor (1 —$„S~,) '~~.

Subsequently, the term (u, lh„lu&& involving just
vacancy-centered functions will be referred to as
the "vacancy-vacancy" term. Terms involving

(p ih„Iu~& will be referred to as "vacancy-ion"
cross terms, and terms of the third type,
(p Ih I ps&, will be called "ion-ion" terms.

The evaluation of the sums over crystal iona in
Eq. (4) and in the normalization can be greatly
simplified if the ions in each of the various shells
of neighbors are treated as separate groups. The
simplification arises because the contribution of
a given ion may be written as products of the ion's
direction cosines times overlap and spin-orbit
matrix elements which depend only on the radius
of the ion shell in question. s For lattices of high
symmetry, the sum over ions in a given shell cor-
responds to a permutation of the direction cosines,
and the Pythagorean theorem may be used to reduce
the sum to a numerical factor times the matrix
elements.

In the normalization sums of terms involving
products of overlap integrals arise. These are
evaluated in Appendix A for an NaCL-type lattice.
In the case of a normalized P-like vacancy-centered
function the sums of the products of the overlap
integrals for the n ions in a single shell of neighbors
are found to be

S-Like core states,
Z' S, ,S,= —,'n p,"S(p„s,c)S(p„s (r);

P-like core states,

p'. S, .S. ,= —,'ng."[S(p„p.o)S(p„p.o)

+2S(p„p v) S(p„p v)]; (6}

D-like core states,

Q,'S, ,S, , = —,'nQ,"[S(P„d,o) S (P„d~o)

Here the notation g on the left-hand side of these
equations indicates a sum over the core states of
all the ions in a single shell containing n ions. The
sum g on the right-hand side indicates a sum over
the various o and g overlap integrals for a single
ion in the shell. The overlap integral S(p„s o) is
the o overlap of the ith P-like F-center model wave
function and the S-Like core state p of a single
ion in the shel. l.. Similarly, S(P, P o) and S(P„P v)
are the o and p overlap integrals with P-like core
states, and S(p, , d a} and S(p„d v) are the c and m

overlap integraLs with D-like core states. For
ease in computation, these are defined in terms of
real spherical harmonics as outlined in Appendix A.

The spin-orbit splitting of the I'4 state is con-
veniently evaluated by calculating the spin-orbit
matrix elements for the I'8 (P~~z)-symmetry va-
cancy-centered state u, having the form (3/8v)'~
(R, (r) [(x+ iy)/r] 0, where 0 is the spin-up spinner.
In a simple atomic picture this is the P state with
total angular momentum J equal to —,

' and projected
angular momentum nz~ equal to —,'. The evaluation
proceeds in a manner similar to that for the overlap
integrals and is outlined in Appendix B. The result
for the vacancy-vacancy term in Eq. (4) is

(u,
~
a..~

u, ) = n(~„+ft~~, /~g), (8)

+S(pl, p.v) l (Py, p.o)+S (Pl, p.o) l (Pj,p.v)];

(9)
D-like core functions,

g'.S. , &u~lIIOI y~&= 3ng "[S(p;,d v)X(p„d v)

+ v 3 S(P„d v) &(P„d o)

+ v 3 S(P„d v)&(Pg, d v)], (10)

where the integrals X(p~, p w), etc. , are spin-orbit
overlap integrals that are similar to the correspond-
ing S(p~, p v), etc. , but with an additional factor of
the ionic spin-orbit interaction in the integrand.
They are given in Appendix 8 by Eqs. (815) and

(816}.
The ion-ion terms of Eq. (4) are similar in form

to Eqs. (9) and (10), but are quadratic in the overlap
integrals. They are given by

P-like core states, '

where R is the radius of the shell of neighbors in
question, and X„and ~,~, are spin-orbit integrals
involving the charge distribution N, , (r)6l&(r) centered
on the vacancy and the spin-orbit interaction of an
ion. Their explicit forms are given in Appendix B
by Eqs. (89) and (811).

The vacancy-ion cross terms in Eq. (4) are
P-like core functions,

~I..~9.&=l &."[ (SPP. ) (lp, p. )
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Z s, ,s, (y lk ly ) = —,
' Q x [s(p„p )

aa a, g

xS(pq paw) +S(p„p,w)S(ps pro)

+S(p„p o)S(p„pww)]; (11)

D-like core states,

g'S, .S, ,(q. lk..lq, ) = l~ &"&.&($(p&, d.w)

function of shell radius in terms of the derivative
of the radial part of the model wave function and a
constant C,. The latter will actually be a constant
for a given ionic core state only if the variation of
the wave function over the ion cores is given by the
first few terms in the Taylor expansion. For m

overlap integrals the constant term in the expansion
is the major contributor, yielding

S(p„p w) = (3/4w)'+C, 6t,(r')/x' . (14)
xS(p&, dew) +~3S(p„d w)S(p&, d&o)

+v 3S(p„d o)S(p&, d~w)], (12)

where the A. are ionic spin-orbit matrix elements
given explicitly by Eq. (B19).

The existence of these sum rules for ions within
a given shell simplifies the problem considerably
because the ions in a shell may be treated as a group
without knowing their specific arrangement.

C. Continuum Approximation for Diffuse States

The number of ions overlapped by an excited-
state wave function increases rapidly with quantum
number, making it impractical to consider an or-
thogonalized vacancy-centered function (OVCF) cal-
culation for all but the lowest levels. However, the
diffuse nature of the higher excited states may be
exploited to develop an alternative approach to esti-
mating spin-orbit energies for these levels.

Here the aim is to find expressions for the over-
lap and spin-orbit matrix elements for a given state
in terms of its quantum numbers and adjustable pa-
rameters which may be fixed by a full QVCF calcu-
lation for a low-lying excited state. The basic mo-
tivation is that for diffuse states overlap and spin-
orbit matrix elements involving neighboring ions
may be related to the amplitude and slope of the
model wave function at the ion in question. Further,
the sum over crystal ions may be replaced approxi-
mately by an integration. The expressions for the
spin-orbit matrix elements given in Sec. II B are
then found to yield simple expressions similar to
those for atomic hydrogen.

To proceed we observe that in the case of a dif-
fuse-madel wave function which varies sufficiently
slowly over the dimensions of an ion, the overlap
integrals may be calculated approximately by ex-
panding the model wave function in a Taylor series
about the nucleus of the ion in question. For o
overlap with P-like core functions the major con-
tribution to the overlap integrals is determined by
the term in the first derivative. Writing the wave
function u, (r) as $.,(r)FP(8, 4), where +,(r) is the
radical part and F P(8, C ) the appropriate spherical
harmonic, we have for ions on a shell of radius r

The C's in Eqs. (13) and (14) are conveniently
defined for an ion on the z axis, i. e. , at the point
r=x k, by the expressions

C, = fq" &,.„.&(r ~'k)( z-~')d'r

C, = J q*„(r rk)x—d r.
Here the core function p„(r) transforming like x is
denoted by rp „.(r), etc.

As a test of this approximation the values of C,
and C, were calculated from overlap integrals for
the NaCl E-center 2p function with Na' Q core func-
tions at distances of 5.3ao and 9.2'. It was found
that even for the relatively compact 2p F-center
state, the major variation in overlap arises from
the spatial variation in N, (r) and 6t(r)/y For. ex-
ample, although 8, changed by a factor of 4 between
the two sites, CN,+2~, was constant to within 1%.
Similarly, the factor of 10 variation in S, .was ac-
counted for to within 20%%uo by Eq. (14). For the far
more diffuse higher excited states the approximations
of Eqs. (13) and (14) should be considerably better.

By a change of variables it may be shown that C,
and C, are rigorously equal to one another. This
is only approximately true for the "empirical"
values found from Eqs. (13) and (14) by using the
actual overlap integrals. This difference arises
because of the truncation of the Taylor expansion.
We shall therefore consider the C's as empirical
coefficients defined by Eqs. (13) and (14).

A further simplification arises because the over-
whelming, contribution to the spin-orbit interaction
arises from the ion-ion term for overlap with P-
like core states, Eq. (11). As will become apparent
in Sec. III, the ion-ion term for the P core states
accounts for all but a few tenths of a percent of the
spin-orbit interaction in both the 2p and 3p states
of the RbC1F center. Similar results hold for the
2p-Sp configuration interaction in RbCl and the
NaC1 F-band splitting. '

Using Eqs. (13) and (14) and neglecting all but the
ion-ion terms, the matrix elements between I',
(P, &g states become

S(P„P o) = (3/4w)'+C, et', (r') . (13)

This gives the o overlap with core state y as a &erik le&&siasim= 4,
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x Z n, I(Z C,C,A. )6l,(r, )6l (r,')/r,
a,8

shells

+ (Q C„ca,A. a )(R,(rg)(R /(rg)/r(
a,g

+ (Z C.,C„~., ) 61,'(r,')6Mr,') /r, '
] . (»)

e,g

2 N Z (C„C~,—C,.C~,) X,
~)

E m(~, (19)3' 0

where n, is the principal quantum number of the
E-center P state considered. This result is prob-
ably best interpreted as indicating that

(It 't hlot Pj)s/a, s/a kg /e (20)

where k~ is an effective spin-orbit parameter to be
evaluated from an OVCF calculation for a state
of sufficiently high principal quantum number p, so
that the continuum assumptions are reasonably well
satisfied. The detailed calculations of Sec. III
yield spin-orbit splittings of —15.3 and —3.24 meV
for the RbCl E-center 2p and 3p states, respec-
tively. Evaluation of k„ from these yields

kap/ma=-40. 9&&10~ eV

and

ksp/e = —29. 1 &&10 eV.

Since the 2p state is not sufficiently diffuse for
continuum theory to apply, it is not surprising that
these two values differ. However, it is noteworthy
that the major part-73% in this example —of the
change in spin-orbit interaction between the 2p and

3p states is accounted for by the n~ dependence
even for these relatively comyact states. Since the
3p state is the most diffuse state which could be
handled conveniently, we shall use k» for estimating
the spin-orbit interaction from Eq. (20) for n ~ 4.

Here a subscri. pt —,', & has been added to the matrix
elements to indicate that the P3&~ states are in-
volved. In the limit of diffuse wave functions the
sum over shells may be replaced by an integral
and the terms involving (R (r, ) may be integrated
by parts. This yields

&« t h..t &/&s/a, s/a

= pN, N/g (C,ca, —C,ct),)!)~aI() tR, (r')6l/(r') dr',
Npg

(18)
where p is the density of ions in the crystal.

For i=j this may be evaluated on the assumption
that the E-center wave functions are approximately
those of an electron bound to a unit point charge in
a dielectric medium with dielectric constant e. The
reSult iS4'

&« t h..t 4~&s/a. s/a

where
2pNq~N„~

kap, m= a Q (C~,ca~ C~,ca() X~s
80

(21a)

(21b)
Assuming hydrogenic wave functions, the integral
in Eq. (21a) may be evaluated from the explicit
expression for the Laguerre polynomials. This
yields

)(R„p(r ) drs at z i p 24 n(n+1)
~ Q

(- 4)"(~+ 1)(~+ 2)
(n - 2 - A) !(3+ &) ! (2+ n)'"

The quantity k„„corresponds to k„of Eq. (20) and

should be considered as an empirical constant to
be evaluated from the detailed calcul. ation of

((t)„!h„!(p„). Using Eq. (22) and the 2p-3p spin-
orbit matrix element for the RbC1 E center yields

kap sp/& = 93 6 + 10 eV

For purely hydrogenic functions, k» ~ is indepen-
dent of n except for small changes in the normal-
ization N„~,

4~ and should be approximately equal to
k„of Eq. (20). However, the calculated value is
a factor of 2-3 times larger than the values of

kap/e
a and ksp/e a, indicating that, while the con-

tinuum approximation gives order-of-magnitude
estimates of the matrix elements, it may be in
considerable error when a compact state is involved
as in the 2p-nP matrix elements. However, as
will be seen in Sec. III, the E-K spin-orbit con-
figuration interaction is dominated by the 2p-3p
term, so that approximating k~~,~ by kz~ » suffices
for estimating the small correction terms arising
from conf iguration interaction with higher excited
states.

The n dependence is striking since it is the same
as that for a simple alkali atom. 's'+ Equation (20)
also indicates how sensitive the spin-orbit splittings
of the higher states are to the choice of dielectric
constant used in the semicontinuum model.

In the case of the off-diagonal 2P-np matrix
elements the continuum approximation is probably
not reliable because the 2p state is relatively com-
pact. However, the similarity in the values of

k» and k» suggests that the state may be suffi-
ciently hydrogenic to warrant the use of this ap-
proximation to estimate the higher off-diagonal
terms from the results of a detailed OVCF calcula-
tion of ((pap! h„!(ps/.

The result for off-diagonal terms corresponding
to Eq. (20) is

&(t)apt hla I 0e»s/a, s/a =hap np s a() fz" @p(r')~p(r') dr',
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s = (1 @» ss) (Pg Pas, spy»)

where

ss = (1 —QeS, u,) (use gqSs, ss ps)

and

(23)

(24)

zs ss & pzs I ass & NzDNss QeSzs eSe ss (25)

The diagonal 3p spin-orbit matrix element is then

&e.,lh..I e„&=0 -el, ,„) '(&e.',"lI ..Ie,',"&

D. Orthogonalization of Higher Excited States

Thus far we have not considered the orthogo-
nality of the various functions P, obtained from Eci.
(1). In general these functions are not orthogonal
if they have the same symmetry. To rectify this
one might envisage making an OVCF calculation
for the various I'4 states in the following manner:
First calculate Pzs by orthogonalizing u» to the
lattice states by using Eq. (1). Then calculate a
trial function for the next-higher state /std by ap-
plying Etl. (1) to u». In general, pz, and ps's' have
nonzero overlap, but they may be orthogonalized
by a further application of the Schmidt procedure
to /std" to find the orthonormalized state Qss. This
leads to

This should hold equally well for higher excited
states.

In the numerical example discussed in Sec. III
the 3p matrix elements are corrected according
to Etls. (26) and (27). The correction is ignored
for the higher states. This should be aparticular-
ly good assumption since the major contribution
to the oscillator strength of the Z band appears to
come from the 3p state. ~o Thus, the slight lack
of orthogonality of the higher states should have
negligible influence on the total spin-orbit effects.

A possible objection to the present treatment for
diffuse wave functions and for the tails of the more
compact states is that the wave functions found by
solving the Schr5dinger equation for the semicon-
tinuum model are really envelope functions in the
continuum region of the model potential. ~~ In this
region the wave functions should be multiplied by
a Bloch function of the conduction band. Since the
functions of interest are diffuse, only Bloch func-
tions of small wave vector A will be important
for the problem and we are at liberty to construct
these by the QPW method. 4~ Multiplying the enve) ope
function with an OP% for small 4 then yields a wave
function that is equivalent, within the effective-
mass approximation, to the orthogonalized vacan-
cy-centered function we have used.

III. NUMERICAL EXAMPLE FOR RbC1

-ezs, so& &ss'I I -I &»&

(26)

Similarly, the 2p —3p configuration matrix ele-
ment is

@zs,ss& &»I h oI &zs» . (27)

A similar sequence of orthogonalizations first to
the lattice ions and then to lower-lying states could
be carried out for the higher P states.

Evaluation of the overlap matrix element Qpp 3p
for the semicontinuum-model functions of the RbC1
F center gives a value of approximately -1x 1Q-~.

This is essentially the limit of computational ac-
curacy and will be seen to give only small correc-
tions to the matrix elements. The reason this
overlap is so small is that it is given by the sum of
the products of the core overlaps with the u's in-
volved. These overlap matrix elements reflect
the oscillations of the radial part of the u's as an
alternation in the signs of the terms in the sum
on the right-hand side of Etl. (25). It is the oscil-
lation in the u's that orthogonalize the various u's
to one another, so it is not surprising that the al-
ternation of the signs of the products in Eti. (25)
leads to almost complete cancellation in the sum.

The overlap and spin-orbit matrix elements for
the RbCl I' center were numerically evaluated using
the 2p and 3p E-center wave functions found by
Smith and Spinolo. ~0 The crystal-ion core states
were approximated by the free-ion Hartree-Pock
functions reported by Watson and Freeman44 for
Rb' and by Hartree and Hartree ' for Cl-. In evalu-
ating the various lattice sums sufficient shells were
included so that the contributions from the ions in
the outermost shell were of the order of 10 ~ or
less of those from the first bvo shells of neighbors.
For the 2p state 20 shells of neighbors (460 ions)
were included in the calculation and for the 3p
state the calculation was carried to the 85th shell
(4166 ions). In the case of the 2p —3p off-diagonal
matrix elements 40 shells (1356 ions) were in-
cluded. As will be seen from Fig. 2 and Table I,
these shells include at least 96% of the particular
electronic charge density under consideration.

The results of the calculation are summarized
in Tables II and III, which give the spin-orbit
splitiings and spin-orbit configuration interaction
parameters for the various states. The spin-orbit
splitting b is defined in analogy with the atomic
case as the separation of the I's (P,~z) and the I'

s
(Ps&a) multiplets. The negative splitting is charac-
teristic of E centers and indicates that the 1"6

(P«z) state l.ies above the I', (Ps&a) in energy
In terms of the matrix elements for the state with
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TABLE G. Calculated spin-orbit splittings 4+ of ex-
cited E-center states in RbCI. The ratio of the oscillator
strength of the individual transitions to the total X-band
oscillator strength is denoted by f„/fz and is the weighting
factor used to determine the apparent average spin-orbit
splitting of the X band. Values of f„are taken from Ref.
20 and fr is taken as g" f„.

Electronic
state

2p
3P
4p
5p
6p
7p
8p
9p

10p
11P
12p —p

(meV)

—15.3
3 ~ 2

—1.4
—0.70
—0.41
—0. 26
—0. 17
—0. 12
—0. 09
—0.07

~ ~ ~

0.5691
0. 1886
0.0863
0. 0465
0. 0278
0. 0186
0. 0126
0. 0093
0. 0066
0. 0345

J' = —,', ~~ = —,', $3~/2'3/2 used in Sec II, .we have

2( yS /2, 3/2
~
k

~

y3/2, 3/2) (26)

The spin-orbit configuration interaction param-
eter is al.so conveniently defined in terms of the
off-diagonal matrix elements between the J= —,',
m~ =—,

' states for different configurations as4

2( y3/2, 3/2
~

k
~

yS/8, 3/2)

or, by substituting for k„ from Eq. (2), as

(29a)

= Z (~"'/2~ ~(.-It,) ~.l
e""')

(29b)
The inclusion of the factor of 2 in the first form,
Eq. (29a), serves to eliminate the spin expectation
value so that g„~ ~ is an expectation value of space
operators without any constant factors (this choice
is made to simplify subsequent formulas; see Sec.
V).

In Table II the calculated values of the 2P and

3p spin-orbit splittings are listed together with

approximate splittings for the higher excited states
as estimated from Eq. (20) using kss. The third
column gives the relative contribution of the various
I' states to the area of a composite K band consist-
ing of transitions to all bound np, n & 3, states as
calculated from the oscillator strengths given in
Ref. 20. The configuration interaction matrix ele-
ments are listed in Table III. These include the cal-
culated 2P-3p interaction parameter and the 2p-np
parametersderivedformk»» byuseof Eq. (21). A
detailed comparison of these results with experiment
is given in Sec. V.

The normalization and spin-orbit matrix elements
used in finding ~„~and g» ~ are listed for reference
in Table IV. In the case of the 3P-3P and 2P-3P ma-

TABLE III. Calculated spin-orbit conf iguration inter-
action parameters 4 2p ~ =2 (Q

'3
) h„ I P '3 ) for

several states of the I' center in RbCl.

Electronic
state

3P
4p
5p
6p

—4. 79
—0.97
—0. 17
—0.02

trix elements two totals are given. They differ by
the correction for 2p-SP overlap given by Eqs.
(26) and (27), which amounts to a 2-4% effect.

A number of simplifying assumptions that limit
the accuracy of the predictions are involved in the
present treatment. One of the major approximations
is the use of semicontinuum-model wave functions.
An estimate of the uncertainty in the predicted ma-
trix elements arising from the uncertainty in the
model dielectric constant may be made from Eq.
(20). The wave functions were derived for 8 = S.
However, the optical dielectric constant of RbCl
is 2. 19 and the static dielectric constant47 is 5.0,
so that a range in e of perhaps 2. 19 to about 4 is
not unreasonable if other model potentials are var-
ied accordingly. In the continuum approximation
of Eq. (20), this range in s gives spin-orbit matrix
elements greater or less by a factor of 1.8 than
those calculated here for e =3.0.

A further approximation is that of using free-ion
wave functions for the crystal core states with no
corrections for the crystal field or the overlapping
of core states. It is difficult to estimate the effects
of these approximations since there have been few
studies of wave functions of ions in crystals. To
a first approximation the negative ions are in a
crysta1. field potential well similar to that for an
E center. This tends to bind the electrons more
tightly and there is a marked contraction of the
tail of the Cl wave function. ' This contraction
tends to decrease the overlap integrals, but it is
partially offset by the increase in spin-orbit inter-
action of the more compact wave function. The
alkali ions experience a similar potential, but with
the opposite sign so that the valence functions tend
to expand. However, the positive ions are small
and are almost completely contained within a rela-
tively constant portion of the point-ion potential.
If only the spherically symmetric component of the
point-ion crystal field is considered, there is al-
most no difference between the free ion and the
crystal wave functions for positive ions.

The effect of neglecting overlap between core
functions centered on different ions has been in-
vestigated in several simple cases involving clusters
of 4-6 ions. For typical valence-valence overlap
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integrals of the order of 0. 1, neglecting core-core
overlap was found to lead to an overestimate of
g S, S

& by roughly 15% if the sum over e was
limited to valence functions. On the other hand,
the deep-lying core states which have little overlap
with one another contribute to both g S» S
and (Q»I h„l P&), so that the error in these matrix
elements is probably less than 15%.

In addition to uncertainties in the wave functions,
the positions of the ions neighboring the F center
are not well known. For simplicity they have been
chosen to be at the normal lattice sites for a perfect
crystal. However, the errors introduced by this
choice are probably less than 10/0 because the total
spin-orbit interaction is rather insensitive to the
exact positions of the nearest-neighbor ions.

Considering all the approximations and the numer-
ical methods involved, a reasonable estimate is that
the calculated spin-orbit interactions are probably
good to a factor of 2.

IV. PHYSICAL PICTURE OF VARIATION OF SPINARSIT
SPLITTING KITH N

The physical picture behind the large negative
spin-orbit splitting of the I' band was developed in
detail in Ref. S4. The essence of the argument is
that the F-center wave functions must have a num-
ber of loops and nodes in the vicinity of the ionic
nuclei to ensure their orthogonality to the occupied
core states and the correct behavior near the nu-
clei. " This structure corresponds to a nonzero
angular-momentum state as viewed from the ionic
nuclei where the spin-orbit interaction is large.
In the case of the 2P state this local angular momen-
tum is, on the average, opposite in direction to
that of the total wave function as viewed from the
center of the vacancy. This locally negative angular
momentum yields the negative spin-orbit splitting.

In the present paper we have to consider how the
spin-orbit splitting changes with state of excitation.
The detailed numerical results show that two effects
are involved: (a) the change in F-center wave-func-
tion amplitude near the ions and (b) the oscillations
of the wave functions in the higher excited states.

To understand the first of these it is useful to
consider initially the term g S, in the normal-
ization. This sum is a measure of the amount of
F-center state in the neighborhood of the ions and
—unlike the spin-orbit interaction-it decreases by
only 6/0 on going from the 2p to the Sp state even
though the maximum in the electronic charge density
moves from -7.4ao to -29ao (see Fig. 2). The
reason for this approximately constant overlap for
two states with spin-orbit interaction differing by a
factor of 5 is that the predominant contributor to
the overlap sum is overlap with S -like core states,
whereas the spin-orbit interaction arises primarily
from overlap with P-like cores.

The overlap with S-like core states is determined
by the local S-like component of the E-center-model
wave function»»»(r). This is roughly a measure of
the amplitude of u»(r) at the nucleus of the ion in
question, so that the overlaps are proportional to
V '", where V is a measure of the volume occupied
by the E-center electron. The number of terms
involved in a summation over all the overlapped
ions is itself proportional to V, so the portion of
g S»~ arising from S overlaps is independent of
the extent of the wave function.

Now, the spin-orbit interaction arises from the
presence locally of nonzero angular-momentum
components of the F-center wave function»»»(r) near
the host lattice ions. In the present case the major
contributors are the P-like components. Unlike the
8-core-state overlaps, the overlap with P-core
states falls off faster than V ', so that summations
quadratic in P-function overlaps can be expected
to decrease as the electronic state becomes more
diffuse. Qualitatively this can be seen by noting
that the P-like character of the unorthogonalized
model wave function u»(r) is proportional to the
gradient of »»»(r) at the point in question. Thus,
a summation in the squares of P overlaps is pro-
portional to a summation of the square of the gradi-
ents of u»(R and, hence, is very crudely related
to the kinetic energy of the state in question. The
latter decreases in going from one bound state to
a higher one, so that a similar decrease is expected
in the spin-orbit interaction. In the present cal-
culation the decrease in the spin-orbit interaction
arising from the de,.",rease in the local P-like char-
acter of »»»(r) was dm»timated by summing the contri-
butions to the SP-state spin-orbit splitting from
the various shells of ions without regard to sign and
comparing this with the 2p-states splitting. It was
found that -40.6% of the total decrease in spin-orbit
splitting arises from the decreased P-like charac-
ter in»»»»~(r).

The remaining 59.4% of the decrease in spin-
orbit interaction results from the oscillations of the
SP state and the resultant alternation in the sign of
the individual ionic contributions as a function of
the ion's distance from the center of the vacancy.
This is illustrated in Fig. S, which shows the radial
part of the Sp wave function and the average per-ion
spin-orbit contribution of a C1"ion as a function of its
position. It is evident that the single oscillation of the
Sp wave function results in several oscillations of the
ionic contribution to the spin-orbit splitting.

The details of this are most easily seen for the
ion-ion contribution to the spin-orbit interaction
Eqs. (11) and (12). Since the P-cr overlaps are
generally larger than the corresponding p-~ over-
laps and both are much larger than D-core over-
laps, the major contribution to the spin-orbit in-
teraction is from the terms in Eq. (11) involving
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TABLE IV. Calculated normalization and spin-orbit interaction matrix clem~ 4 ~ lements for the RbCl & center. Energies are
given in units of 10 3 eV.

Normalization N„&
Overlap (P& I Pmi&~)

(@8/2, 8/2
~ 8 ~

ys/2, 3/'2)//v~

Ion-ion terms

Vacancy-ion cross terms

Vacancy-centered terms

Total

Total corrected for gp-mp
overlap

2p state
n-m-2

l.48

—2. 33(3)

+0.002

—0.001

20 33

3p state
n-m-3

—O. 509(5)

+ 0.0008

—0.0001

—0.510

-0.533

2p-3p configuration
interaction n=2, m =3

-0.01

—1.11(2)

+ 0.001

—0.0005

—l.11

S,S,. Very roughly, the o-like overlaps are pro-
portional to the radial derivative of the model wave
function Bu;/Br [see Eq. (13)], and the v-like over-
lap is similarly related to the azimuthal derivative
Bu, /88, which has the same sign as the function it-
self. These derivatives have oscillations that are
out of phase, so that their product S,S, displays a
number of damped oscillations. These oscillations
are indicated in Fig. 3, where the axis is divided

into four regions. In the first region (which is
within the vacancy) both Bu/Br and Bu /88are pos-
itive and, were there ions here, they would yield
a positive spin-orbit interaction. In the second
region, Bu/Br is negative, but Bu/88 is positive,
yielding a negative contribution to the spin-orbit
interaction. In the third region both derivatives
are negative and the spin-orbit contribution is pos-
itive, while in the fourth region the derivatives
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have opposite signs, giving a negative spin-orbit
contribution again. Of course, there is some de-
parture of the sign of the total spin-orbit interaction
from this simplified picture at the borders of the
regions because we have considered only the S,S,
terms in this qualitative discussion. However, the
calculations show that the neglected terms give only
slight corrections to the argument.

In the case of the 2P-nP matrix elements the ef-
fect of the decrease in local density of the nP state
becomes much more important. In these matrix
elements the 2P part remains the same, but the
np part becomes more diffuse as n increases. Thus,
there is a rapid decrease in the joint amplitude of
the 2p and nP functions at the surrounding nuclei
and consequently a decrease in the matrix element.
In addition, as with the diagonal matrix elements,
the np state oscillates more with higher n, giving
rise to regions of spin-orbit contributions with al-
ternating sign that further decrease the matrix ele-
ments. Since the decrease in the product of 2P and

np functions is quite rapid, the off-diagonal terms
decrease much faster with n than do the diagonal
terms. This can be seen by a comparison of Tables
II and III or Eqs. (20) and (21).

V. COMPARISON OF THEORY WITH EXPERIMENT

A. Moments Analysis and Overlapping Absorption Sands

Magneto-optic experiments carried out in the
Faraday orientation provide a direct measurement
of the F- and K-band spin-orbit interaction. Since
the K band appears to be a composite band, the
calculated splittings cannot be compared directly
with experiment; rather, a weighted average must
be used. In the present section we consider how

these averages should be taken.
In the magneto-optic experiments of interest here

the dichroism of circularly polarized light or the
Faraday rotation of linear light is measured for
propagation parallel to the magnetic field.
These measurements are most profitably analyzed
in terms of the change in moments ' of the ab-
sorption bands with magnetic field and spin polar-
ization. For the present discussion it is sufficient
to consider the zeroth- and first-moment changes.

The zeroth moment, or area under an absorption
band's line-shape function, 5~ is a measure of the
probability of the transition(s) involved. It may be
varied by an external perturbation which mixes
nearby configurations (with differing absorption
strengths) into the state(s) for the transition in
question. In the allowed K-band model adopted
here, the orbit-Zeeman and spin-orbit interactions
have off-diagonal matrix elements connecting the
I'4 levels responsible for the E and K bands. Con-
sequently, an exchange in area between the two
bands occurs when an external magnetic field is

applied and whenever the electron spins are po-
larized.

A straightforward calculation ' of the change
in zeroth moment of transitions to the np state
taking into account mixing with the 2P F-band state
to first order yields

x (p s H (@sls, sl s
~

g
~

ysl s, sl s )

~(ED~I t =+ (R' rb &aH+s ~no(3n) ~ (31)

where &„s is the spin-orbit splitting of the nth p
level and

g = (ys~s~ ~s
~

L,, ~

ys~s&s~s) (32)

Again there are two terms in the moment charge:
a temperature-independent diamagnetic term
arising from the orbit-Zeeman interaction and a
temperature-dependent paramagnetic contribution
from the spin-orbit interaction. Because we are
concerned with spin-orbit matrix elements, we
shall limit discussion to the paramagnetic terms
in what follows.

In the many-P-state model the observable F-K
configuration interaction matrix element and the
K-band spin-orbit splitting are averages over the
whole K band. To derive these average values we
note that in the many-P-state model the area AN
of a band involving transitions to the 3P, 4p,
Np states is given by

N

(33)
«+3

where A„ is the area of the band resulting from
the np state. Then using the expression for AA/A

Here E„~ is the energy of the np state, and A& and
A„are the zeroth moments of the I' ("1s—2p")
band and the nj Z-band component ("1s-np"), re-
spectively. The quantity (S,) is the thermal average
of the z component of electron spin in the ground
I", (1s) state. The subscript s/I and the sign v in-
dicate that the negative sign is to be a,ssociated with
right-hand circularly polarized light and the posi-
tive sign with left-hand circularly polarized light. '
dA„consists of two parts: a diamagnetic (temper-
ature-independent) change arising from orbit-Zee-
man configuration mixing and a paramagnetic
(temperature-dependent) part which depends on the
spin-orbit interaction and the spin polarization.

The change d(E) in first moment —or average
energy-may be calculated in similar fashion. To
lowest order it is not affected by configuration in-
teraction and the result is the well-known rela-

i8 13 58
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of an allowed transition, Eq. (30), we have for the
paramagnetic part

(34)
where E~ is the average energy of the composite
band and the average spin-orbit matrix element
is given by

g rN E
(

n

n &3 ~n +E

x(y~ ~ ~
~h ~ps~ ~~3)

The firstmoment of the compositeband, (8„), is

(36)

so that

(37)
Now, Eq. (37) may be divided into its paramag-

netic (temperature de-pendent) and diamagnetic
(temperature-independent) parts. The paramagnetic
part, which is of interest here, may be simplified
by using the experimental observation" that the
change in absorption is approximately proportional
to the absorption at low temperatures where para-
magnetic terms dominate. This will hold for the
composite band provided that (4A„)„„=cA„, where
e is the same constant for all n. In this case the
double sum in the second term of Eq. (37) consists
of pairs of terms having opposite sign which cancel,
leaving just the first term involving 6(E„). Then,
from the expression for r (E„)for allowed transi-
tions, we have for the paramagnetic change in first
moment,

(1/(sg)~(z„)
~

&;

where

(3S)

In the present work the values of g~ ~ and 4~ were
evaluated by approximating A„/Ar by the ratio of
the oscillator strength of the transition involved to
that of the K band as calculated from Eq. (33).
Numerical values were taken from Ref. 20 and as
an example the ratios for N= ~ are summarized in
the third column of Table II.

A point that is often glossed over in discussion
of relations like Eqs. (30) and (34) connecting off-

diagonal matrix elements with zero moment changes
is the question of the phase of off-diagonal matrix
elements. Since the phases of the various state
functions involved are arbitrary, the off-diagonal
matrix elements have arbitrary nonzero phase fac-
tors. These phases, of course, are not observable,
but an uncritical examination of Eqs. (30) and (34)
makes it appear that they can be determined. The
explanation is that a choice of phase has tacitly been
assumed in deriving the formula for the change in
area of allowed transitions. This choice is implicit
in the replacement of the ratio of dipole matrix ele-
ments for transitions from the ground state to the
excited states under consideration by the positive
radical (Aa /A~)'~~, where Az~ and A„~ are the areas
of the shape functions for transitions to state y@,
and state p„~, respectively.

This replacement is valid if the two dipole transi-
.tion matrix elements have the same phase. In the
case we are concerned with, the transition matrix
elements are determined mainly by the regions of
the excited states within the first node. '4 Thus for
Eqs. (30) and (34) to hold, we must require that

Pz~ and P„~ have the same phase in the region near
the origin. In the present calculation the conven-

',tional choice of real radial wave functions with a
~positive loop between the origin and the first node
has been made to satisfy this condition. Hence,
within our choice of phase, the sign of the off-diag-
onal matrix element is meaningful.

B. Current Experimental Situation and Comparison with Theory

a. E-band sPin-orbit sPlittings. The spin-orbit
splitting of the E band, 4~, in RbCl has been mea-
sured by Gareyte and d'Aubigne, ' d'Aubigne, 55

and Brown et al. '" Moments analysis of both Far-
aday rotation and circular dichroism data yields
valuesfor ~~ rangingfrom —15&& 10 to —17& 10 eV.
They are listed in Table V together with the pre-
dicted splitting of —15.3 & 10 ' eV. The agreement
between theory and experiment is embarrassingly
good, especially for the Faraday rotation data of
Brown et al.

b. K-band sPin-o~bit splitting. A first moment
change in the K band was originally observed by
Brown, Cavenett, and Hayes 6 in Faraday rotation
studies. They found a weak rotation at the posi-
tion of the K band in colored RbCl which was about
80 times smaller than the E-band rotation. In the
approximation of a rigid shift of the band the mag-
nitude of the first moment change may be estimated
from the observed rotation, the E-band splitting,
and the line shapes via the formalism of Mort
et al. e [especially their Eq. (10)]. This yields an

approximate K-band splitting &~ of —3.6 & 10 ' eV
in RbCl. Circular dichroism measurements allow
a very much better separation of the magneto-optic
effects of the E and K bands. Using this technique,
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Band

Experiment

(me V) Method

Theory

States (meV)

TABLE V. Observed and predicted F- and K-band
splittings for the F center in RbCl. The splitting 6 is the
energy difference between the I'8(P3/2) and the I'6(Pf/2)
states and is given in units of 10 3 eV. The negative sign
indicates that the 1"6 state lies above the I'8 state. Pre-
dicted average splittings are given for several possible
composite K bands involving np states with g ~3; for de-
tails see Sec. V. The abreviations MCD and FR stand
for magnetic circular dichroism and Faraday rotation,
respectively.

d'Aubignd and Gareyte
QIXR

Salt (S~) A» „(mev)
KCl 0.026 —1.9
KBr ~ ~ ~ ~ ~ ~

KI ~ ~ ~ ~ ~ ~

Rb Cl 0.106
RbBr 0.174
RbI ~ ~ ~ ~ ~ ~

5 6c
—12.0

KrMtzig and
1 A~

(s, ) A~» „
0.039
0.113
0.134
0.106
0.152
0.322

Staude

~EK
(meV)

-1.8
—4.6
—3.5

4 2c
—6.8

—10

TABLE VI. Observed paramagnetic zeroth moment
changes for right-hand circular-polarized light and the
derived E-K spin-orbit configuration mixing parameters.
Energies are given in units of 10 3 eV.

K (entire
band)

K& (subband)

MCD
—15.1 FR
-17.1' MCD

—3 6~ FR

—3.9e MCD

—15.3

3p+4p
3p+ 4p+ 5p —2.6'

~Calculated from Eq. (34) using I'- and K-band areas
and energies given by Luty, Ref. 19.

"Calculated from f»» y»» (——y» (L~ )x») in the notation
of Ref. 18. See Refs. 18 and 46.

Although the zeroth-moment change for RbCl is the
same for both sets of experiments, the values of fzK
differ slightly because of minor differences in K- band
area and energies given in Refs. 18 and 19.

P„" snp 20 2

~Early reports of splittings of - —24 eV (Ref. 5) were
based on a rigid-shift analysis of data which was later
shown to be inappropriate. These numbers have conse-
quently been omitted in this table.

Y. M. d'Aubignd, Ref. 55.
'F. C. Brown et al. , Refs. 8 and 56.
The author's approximate analysis of data of F. C.

Brown eg aE. , Ref. 16.
'E. Kratzig and W. Staude, Ref. 18.
%'eighted averages calculated from Eq. (39).

Krgtzig and Staudesv, se have measured both the
zeroth and first moment changes in the K band.
These authors report a splitting of the K, subband
in RbCl of —3.9 & 10 ' eV. ' The splitting of the
K~ band was too small to be measured.

It should be noted that these measured splittings
are less than would be expected on an alkali-atom
model. For comparison Brown et al. ' estimated
that the K-band Faraday rotation would be ~6, of that
of the F band for an atomic n 3 dependence on prin-
cipal quantum number; experimentally the observed
rotation is less by a factor of ~« .

Several calculated values for the K-band spin-
orbit splitting are given. They are the splitting of
the SP state 4» and the weighted averages for com-
posite bands involving transitions to 3p and 4P
states, to 3p, 4p, and 5p states, and to all bound
nP states for n ~ 3. The agreement is good, es-
pecially if the K, band is associated with transi-
tions to the first few excited states for n ~ 3.

c. F-K configuration interaction. The change
in area of the K band resulting from mixture with
F-band states by magnetic perturbations has been
investigated in a number of salts by d'Aubigne and
Gareyte" and by Krltzig and Staude. 'a For refer

TABLE VII. Observed and predicted F-K spin-orbit
configuration mixing parameters )~K for RbCl. Energies
are given in units of 10 eV. Average values of A+K are
given for several possible composite K bands involving

gp states for n~3; for details see Sec. V.

Experiment
~FK

(meV)

—5.6

—4.2

States in
K band

3p
3p +4p

3p+4p+ 5p
g"

g np

Theory
~FK

(meV)

—4.8
4 4b

11
—3.8"

From d'Aubign6 and Gareyte, Ref. 15,
K-band areas and energies given by Luty,

"Weighted averages calculated from Eq.
cFrom Kr'atzig and Staude, Ref. 18.

using I'- and
Ref. 19.
(»).

ence all their published results are compared in
Table VI; here both ( S,) ' (hA»/A»)'„'" and the de-
rived off-diagonal matrix elements are given.
Krhtzig and Staude do not report the zeroth moment
change itself, but rather derived quantities related
to the off-diagonal orbit-Zeeman and spin-orbit
matrix elements. However, for comparison with
d'Aubigne and Gareyte's results we have chosen to
use their analysis in reverse and have calculated
back to the observed area change. The agreement
between the two sets of experiments is quite good,
especially for RbCl.

Theoretical values for the spin-orbit parameter
are given in Table VII. The values are based on
assumption of K-band transitions to just the 3P
level, and composite bands involving the 3p and 4p
states, the Sp, 4p, and 5P states, and all bound np
states for n ~3. Again, the agreement is good,
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Material

NaCl
NaC1
RbCl
RbCl
RbCl

Matrix element

2p diagonal (type I)
2p diagonal (type II)
2p diagonal
3p diagonal
2p-3p off diagonal

Positive
ion
(%)

4.5
7.3

60.3
68.5
64.1

Negative
ion
(%)

95.5
92.7
39.7
31.5
35.9

TABLE VIII. Relative contributions of positive and
negative ions to the E-center spin-orbit interaction in
NaCl and RbCI. Types I and II refer to Gourary and
Adrian's designation of trial functions (see Ref. 57).

of 2. Considering this, the agreement between the-
ory and experiment is far better than would be ex-
pected a priori and is easily within both calculational
and experimental error. Thus, the allowed-transi-
tion model of the K band correctly predicts the
band's observed magneto-optic parameters. This,
together with the conc1usions drawn from stress
experiments ii, 27 strongly supports the Mott-Gur-
ney ' assignment of the K band to allowed transi-
tions of the E center to a series of bound excited
states lying above the bound state responsible for
the F band.

especially if the K, band is identified with transi-
tions to the 3p state and perhaps the next few higher-
energy P states.

C. Comments and Conclusion

In Table VIII the relative contributions of cations
and anions to the F-center spin-orbit matrix ele-
ments in RbCl found in the present calculation are
compared with the values found previously for NaGl.
The striking difference between the two salts is
that in NaCl the Na' ion contributes less than 8%
of the spin-orbit interaction, whereas in RbCl the
Rb ion contributes over 60%%uq. This difference rein-
forces the conclusion drawn in Ref. 34 that in the
salts of the light alkalis the halide ion, though not
the nearest neighbor, dominates the spin-orbit
splitting because its wave functions are diffuse and
lead to large overlap integrals. Only for the heav-
iest alkali ions does the effect of a large nuclear
charge overcome that of the smaller overlaps to
allow the alkali ion to make an important contribu-
tion to the total spin-orbit interaction.

In the case of the experimental K-band param-
eters it should be stressed that the data have been
treated within the framework of the rigid-shift ap-
proximation. This holds both in the work of KrKtzig
and Staude"' and in the present author's rough
analysis of the K-band Faraday rotation data of
Brown et al. ' In the original estimates of F-band
splittings in RbC1 the rigid-shift approximation led
to overestimates by a factor of -1.6-1.8. A simi-
lar overestimate in the rigid-shift values of 4~ can-
not be excluded. Furthermore, since the shifts are
most pronounced near the peak of the Kband, con-
tributions from the tail may have been neglected
to some extent in experiments in which the separa-
tion into K, and K~ bands was not made. This would
tend to emphasize the lower excited states and con-
sequently overestimate the experimenta1 quantities
for the composite band.

In comparing the calculated and experimental
values it must also be borne in mind that the esti-
mates in Sec. VI indicate that the predicted values
are probably good to somewhat better than a factor

The expressions for the normalization and the
spin-orbit matrix elements involve lattice sums of
the form/, S, „S,,r, g,~S, , S,s(rp )h„[yg, and

g,S, (p„}h„lu,), where the sums over a and P
run over all occupied core states. In the case of
centers with high symmetry, these sums may be
reduced from a sum over all ions to a sum over
shells of ions in which the terms are independent
of the specific arrangement of the ions within the
shells. As an example of this reduction consider

S, S, r for the particular case of u a I', func-
tion transforming like 6l(x) x/x. We treat sepa-
rately the S-, P-, and D-like core states of an ion
located at the general point (X„Y„Zr)on the shell
of radius R = (Xr+ Yr+ Zr)

The overlap of u, with an S-like ion state p ~ is

S& .s =(u&
I & s& =frS(P~ s o) (Al)

where lr =Xr/8 is the x-direction cosine of the ion
and S(p„s o) is the overlap of the vacancy-cen-
tered P-like function with the S-like core function

p s. Then the sum of the squares of the overlaps
in the shell is

S( S r
——Q lr S(P(, s o) S(Pr, shirr)

= —,'n Q"S(p„s a) S(Pr, s (r) .

Here we have used the fact that in the NaCl lattice
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APPENDIX A: EVALUATION OF LATTICE SUMS FOR
NaCl-TYPE LATTICE
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the n ions in the shell lie at points that are per-
mutations of the triplet [X„Y„Z,] so that —,'n
have lz =+Xz/R, ', n ha—ve lz=+ Y, /R, and , n h—ave

lz=+ Zz/R.
For the three P-like core states transforming

like x, y, and z the overlaps of an x-like F-center
function are

(u,„lq.,„& =l zs(p„p.o)+ (1 l,')—S(p„p.w),

(u«„l ««z~«~& = lzmzS(p„p a') —lzmz S(p„p,w),

( u«„ l 0»,) = lznz S(p «, p o) —lznz S(p«, p w),

(A3)

+ (1 l,') S(P—„P.w) S(P„P.w)]

= s'n Q '[S(p„p,o)S(p„p,o)

where S(p„p o) and S(p„p w) are the a and w over-
laps of a P-like function centered on the vacancy
and the P-like core functions p ~. Here li, mi,
and nI are the direction cosines of the Ith ion re-
lative to the center of the vacancy. Summing these
products over the ions in a single shell yields

Z'S, .S., z= Z'[l'S(P„P.o) S(P„P.o)

but in the NaCl structure the product of direction
cosines limi sums to zero. Similar arguments
hold for overlap with other symmetry core states.

( «p «
l: h„ l «p,&

= e, + e, + e„
where

e, = N«N, (u«
l h„l u, ),

ea = —N«Nz ( ~ S «,~(+~I hiol uz&

(81)

{83)

+ Q S, ,(u, l h„ l y, & ), (83)

APPENDIX B: EVALUATION OF SPIN-ORBIT INTEGRALS

In Ref. 34 the method of calculating the spin-
orbit interaction was outlined; however, several
questions have arisen concerning the details of
evaluating the integrals involved. Both the over-
lap and spin-orbit elements may be evaluated readi-
ly by the "n-function" expansion technique of Low-
din. 5 As an example of this we consider the
terms in the expression for the spin-orbit elements
in the particularly simple case where the u's trans-
form like a J'= ~, mz = 2 state. From E«1. (4) we
have

2S(P„P,w) S(P„P,w)]. (A4)

Using the equations given in Ref. 38 for D-func-
tion overlaps yields a similar result for the D-
core states, but with S(p„p o) and S(p„p w) re-
placed by the D-like o and w overlaps S(p„d o)
and S(p„d w).

For convenience we have considered only an F-
center function transforming like x; however, by
symmetry these results also hold for the functions
transforming like y and z. Furthermore, they
hold for any linear combination of these functions.
This is generally true, since cross terms of the
form g S,„S»are zero. For example, in the
case of S-core states of ions in a single shell this
cross term is

e3 N«Nz Q S«, ~S«« ~ z(p~ lb„l ««z««& (84)
e~g

e shall treat these terms separately and for sim-
plicity limit consideration o the ions in a single
shell of radius R with ions at (X„Y„Z,).

Consider the special case of a vacancy-centered
function transforming like Y, and with spin-up,

u, = «R, (r) Y,'0 = (3/Sw)'zwS, (r)[(x+iy)/r]&, (86)

where 4 is the spin-up spinner. Using the differ-
ential form of T,z of E«1. (3) yields

(u«lh-Iuz &
= (3/16w)a'Zz f«ft«(r)$, (r)$(rz)

x[(x,+yz+x, X,+y, Y,)/r ]d r . (86)'

Z S«„, S»= Q lzmzS(p„s o)S(p, , s o),
(A6)

Here the coordinates xr are measured from the
ion, i.e. , rz=r —Rz, etc. E«luation (86) maybe
written in terms of real spherical harmonics as

(u, lh„luz& =5 Zz( ,' f [r $«—(r)61«(r) Y««, o(r)][rz $(rz)Y««0(rz)]d r

—(1/2&&) f [r 2$«(r)Sz(r) Yo 0(r)][rzs)(rz) Ys, o(rz)]d~r + —,
' WSXz f [r «il«(r)Nz(r)Yo, a(r)]

x [rz $(rz)Y~ ~(rz)]d r ~ —,
' W3 Yz f [r «R«(r)Sz(r) Yo ««(r)][rz)(rz)Y« ~ (rz)]d r] (87)

Here Yz, „(r) denote the real spherical harmonics
involving sinM«P, and Yz, „(r) are the harmonics
involving cosM«P. The integrals are now in the

form of a spherically symmetric function centered
on the vacancy times a function centered on the
Ith ion transforming like YL, &. Since the function
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centered on the ion involves $(rl&, which behaves
like xl near the nucleus, it is convenient to take
the ion nucleus as the origin of coordinates and
express r $, (r)$,(r)Yo o(r) in an o.-function ex-
pansion about this point. This choice leads to an
additional factor of r~~ in the integrand from the
volume element and thus avoids integration over
a singularity.

As in Appendix A, the individual integrals may
be most conveniently expressed in terms of the di-
rection cosines of the ion involved and integrals
dependent only on the shell radius. This yields

&u&
I "so

I
u& & =ZIP „—(1/~5) [nI ——,'(l, + m, )] x,„

+ ,' v 3(f-,'+m,')ft~„.), (86)

where the &'s are given by

)„=—,'eo f [r 6i, (r)(R, (w)Yo o(r)][r ((r)Yo o(r)]d r,
(89)

,'a f—[r6t, (r)(R&(r)Yo o(r)] [r ((r)Yo o(r)]d r,
(810)

f [r 6l, (r)6iq(r) Yo, o(»1 [rg«) Yi, o(r)]d'~ .
(811)

For ease in applying Lowdin's expansion techniques
these integrals are to be evaluated for an ion on the
z axis, that is, withe'=xi+yj+(z-R)k. Summing
over the n ions in the shell then yields

&u» I @S.I uy) = n(&..+ ft &.p. /~3) (812)

Evaluation of q2 is facilitated by using the
Hermiticity of h„ to transform the first term of
Eq. (82), yielding

e2= —&&~[K (S, &u~l&solPN))*

+RA ~ &u, I k„l cpo)] . (813)

The matrix elements involving the spin-orbit opera-
tor are clearly zero for 8-like core states. For
P- and D-like states Eg. (813) is most easily eval-
uated by considering the products S,&u~ lie„l p )
as a unit. For our particularly simple case where
both g, and g~ have spin up, only the L, component
of L need be considered.

Substituting for u from Eq. (85) leads to an ex-
pression for g S„,&uq I h„l cp & involving a product

X(p„p o)=-,'h' f $~(r)Yf o(r)g(r)(R (r)Yg o(r)d r
(815)

and

~(p, , p.v) = -,'h' f6t, (r) Y, ,(r)g(r)e..(r) Y, ,(r) d'& .
(816)

For the D-like core states the sum over the shell
of ions is

Z.'s. , &u,.lh„l q. &= ~Z."[s(p„d.v)x(p„d.v)

+~3S(p, , d„w)X(p„d o)

+&3S(p„d o)X(p„d w)], (817)

where the X's are similar to those defined by Eqs.
(815) and (816), but with Y, o(r) replaced with

Yp o(r) and Y~ &(r) rep»ced with Yo &(r ).
The ion-ion term &3 may be handled in exactly

the same manner as the vacancy-ion terms in Eq.
(813). The result for P-like core states is

~,, oS~, NSo, g &Wnl~~l&s&

= ~Z. ,&. , [S(p„p.v)S(p„p,v)

+S(p„p.v)S(p„pe) +S(p„p.~)S(p„p,
(816)

A similar result holds for the D-like core states,
but as in Eq. (817) an additional multiplicative fac-
tor of W3 occurs in the terms involving products
of o and g overlays. In both expressions X ~ is the
ionic spin-orbit integral given by

X., =ff[e.(r)Y..., ;(r)~]I..[6t,(r) Y„, ,( )ri]d'~

=5~( ) (,&
—,'O'f (R, (r)N (r)g(r)r'dt, (819)

where p is the Kronecker-5 symbol.

of the squares of direction cosines and integrals
depending only on the shell radius. For P-like core
states, summing over the n ions in a shell yields

2'.s. , &u,. I a„l y. &= ~Z."[S(p„p.v)~( p„p.v)

+S(p p )~(p p &+S(p p ) (p, p. )1

(814)
Here the X's are similar to overlap integraj. s, but
include the ionic spin-orbit interaction. They are
conveniently defined in terms of an ion of the z
axis and are
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