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Dispersion of the Nonlinear Optical Susceptibility X'3' in n-InSb in a Magnetic Field
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(Received 21 December 1971)

A simple semiclassical model for the nonparabolic conduction band of InSb is used to cal-
culate the third-order nonlinear optical susceptibility X '(- 3, (d&, u&, —~2) in the presence
of a dc magnetic field. In particular, we find resonant contributions when the difference fre-
quency (d2 —~& is near the cyclotron frequency or twice the cyclotron frequency. The results
of this model are compared to earlier experimental results.

I. INTRODUCTION

The study of the dispersive behavior of non-
linear optical susceptibilities has long been recog-
nized as a potentially fruitful method of learning
new information about the electronic structure of
solids. Nevertheless, relatively few useful studies
of the nonlinear dispersion have been carried out,
although the picture is expected to change in the
near future with the current and growing avail-
ability of tunable coherent sources of light such as
dye lasers. Soref and Moos~ were the first to re-
port on the dispersive behavior of the suscepti-
bility X' '(- 2v, ~, ~) describing second harmonic
generation (SHG). They measured SHG as a func-
tion of alloy composition in wurtzite ZnS-CdS and
CdS-CdSe single crystals, using a fixed frequency
laser as the source of the fundamental wave. X' '

was observed to vary monotonically with band gap.
A theory based upon a spherical band model, with

gaps and curvatures taken from the literature,
gave a good fit to the experiment. To quote Soref
and Moos, "If the properties of the semiconductor
alloy series are such that varying the band gap by
alloying is equivalent to shifting the applied laser
frequency, the dispersion of the second-order sus-
ceptibility has been determined. " The need to
make such a shaky assumption has, unfortunately,
limited the usefulness of studies of this type.

Chang, Ducuing, and Bloembergen reported on
the direct measurement of the dispersion of g'~' in
several semiconductors having the zinc-blende
structure. They used several discrete-frequency
sources to provide radiation at the fundamental fre-
quency and observed large variations in p' '. They
linked these variations with the resonant behavior
of electronic states at the critical points in the
joint density of states of the valence and conduction
bands. More recently, Parsons and Chang re-
ported on the dispersion of X in three of the
materials studied earlier by Chang et al. Parsons
and Chang used continuously tunable dye lasers
and their results differ somewhat from the earlier
results. I have recently reported on the dispersion
of y

' in InSb. I used the different discretelines

of a Co& laser and tuned through a small frequency
range, varying the second-harmonic photon energy
over a small range near the minimum-band-gap
energy. My results show surprisingly large
changes of p' 'over this small frequency range. A
correct interpretation of this result may provide
heretofore unavailable information about the effect
of the asymmetric crystalline potential on elec-
tronic states (and consequently the momentum ma-
trix elements) near k= 0 in the Brillouin zone.

We expect to see interesting dispersive behavior
when the excitation frequencies (or combinations of
frequencies) become coincident with some material-
system resonance. This approach was employed
in Refs. 2—4. However, rather than varying the
excitation frequencies, one may keep them fixed
and tune the material resonance by changing some
other property. This latter method characterizes
the approach I have taken in the work to be re-
ported in this payer. Soref and Moos's work also
belongs to this category, but the interpretation of
their results is not as transparent because the
parameter which they varied (composition) has a
multifold effect upon all the material properties.

We have studied the nonlinear susceptibility
y' '(- &us, ~„&u„—&um), which describes optical-
frequency mixing of the form &3= 2&~ —~z. In an
earlier publication, Yablonovitch, Bloembergen,
and Wynnes (hereafter referred to as YBW) re-
ported the experimental results of the study of X' '

in n-InSb as a function of magnetic field. YBW
used the experimental geometry shown in Fig. 1
to detect light at ~3, where +, and +2 were the fre-
quencies of radiation emitted by a Q-switched CO3
laser. Their experimental results are presented
in Fig. 2. The reader is referred to YBW for
further experimental details. Basically, the ma-
terial resonance which contributes to the dispersion
of X' ' involves single-electron transitions between
Landau levels within the conduction band. The
frequencies &», &z, and ~3 were all much larger
than the cyclotron frequency +, , even for thelarg-
est magnetic field (23 kG) used. YBW observed
resonant enhancement when the difference frequency
&= j 3- & l was near &, or 2~, . They point out
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the connection between this effect and Raman scat-
tering. In fact, it was the observation of Raman
scattering from Landau levels in n-InSb, as re-
ported by Patel and co-workers, which provided
the impetus to YBW. They recognized that the
same physical phenomena which give rise to Raman
scattering, also contribute a resonant term to the
real part of the Raman-type susceptibility y' '

(- &z, &„&oz, —&u, ). In order to observe the Raman
scattering, the scattered light must be detected
against a background of elastically scattered light.
A narrow linewidth and a large cross section are
two assets which enhance the detectability of Ra-
man-scattered light. Analogously, the resonant
contribution to X' ' is more easily observable if the
resonance is sharp and the resonant term is size-
able relative to the nonresonant "background. " The
"background" is due to other material transitions
far from resonance. In particular, in InSb there
is a large nonresonant contribution due to the non-
parabolic conduction-band electrons in the absence
of a dc magnetic field. YBW briefly mentioned a
simple semiclassical treatment of the nonparabolic
conduction band of InSb including magnetic field,
which gives qualitative agreement with experiment.
A more detailed discussion of this treatment and a
careful comparison with experiment are the main
themes of this paper.

In Sec. II the model is discussed. A physical
picture of the resonant enhancement and relevant
selection rules is given. Section IG is a compari-
son of theory and experiment, and Sec. IV is a dis-
cussion of some of the limitations of this model.

II. THEORY

There are several aspects of the experimental
results which a reasonable model ought to be able
to explain. They are (i) the strength of the reso-
nant enhancement, (ii) the position of the S-like
dispersion curves as a function of the dc magnetic
field, (iii) the dependence on the angle & between
the magnetic field and the electric fields of the
light waves, and (iv) the asymptotic limit for large
magnetic fields. All of these are to some degree
accounted for by our model. The model is based
on a simple semiclassical treatment of the non-
parabolic conduction band in InSb. Wolff and Pear-
son7 first used it to account for the large three-
wave mixing observed in InSb and InAs in the ab-
sence of a dc magnetic field. Lax, Zawadski, and
Weiler~ extended it to include the magnetic field,
and we extend it even further to include terms ig-
nored by Lax et al. These terms are higher order
in the crystal momentum than those considered by
Lax et al. , but they become resonant at much lower
magnetic fields. The remainder of this section is
concerned with the details of this model. The
reader who is mainly interested in the comparison
with experimental results may skip to Sec. III. In
Sec. III reference will be made to the results from
Sec. II which are necessary for the comparison.

The crucial point in considering frequency mixing
due to nonparabolicity is that the electron's ve-
locity is a nonlinear function of its momentum. Also,
in the presence of a dc magnetic field, the Lorentz
force provides an additional source of nonlinearity
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~:—P '/2m* —p'/4(m~ )'ac (5)

This expansion is valid for Pm/2m" «eo, which
implies that the conduction band is filled only to a
Fermi level E~ «&~. For a conduction-band car-
rier concentration of n=3x10 ~ cm, &~/ec-0. 1
in InSb, and this assumption starts to break down.
However, the details of the following algebraic
procedure look considerably simpler with the trun-
cated band structure and we will use it in what fol-
lows. At the end of this section the results ob-
tained when the full band structure, Eq. (1), is
used will be summarized.

With Eq. (5), Eqs. (2) and (4) become
/

v(p) = (p/m~)(1- p /mateo) (6)

and

and negative values. Equations (2) and (3) are a
coupled set of equations from which we may find

p and v to all orders in the applied electric field.
Substituting Eq. (2) into (3) we write

p = —eZ, E, e'"&' —(1+2p'/m+e, ) "'px (u. ,
(4)

where e, = eH/m*c is the cyclotron frequency for
electrons at the band edge.

Before proceeding we note that all of the im-
portant features of our calculation appear if we use
a truncated band structure by keeping only the first
nonparabolic term in the expansion of Eq (1.),
namely

FIG. 2. Output power at 3 as a function of magnetic
field. E is the electric field vector and H the magnetic
field vector. In (a), (b), and (c) ~& is 944 cm ' and ~ is
1047 cm"', whereas in (d) ~ is 1082 cm '. The curves
are normalized at H=O and the accuracy in the experi-
mental power data at the high-field end is about 4%
(H,ef. 5).

proportional to the magnetic field.
We proceed by describing the unperturbed mo-

tion of a single electron in the conduction band by
Kane's Hamiltonian

e =-,'~o[(1+2p /m*eo)' -1]
where ee is the band gap, m" is the band-edge ef-
fective mass, and p is the electron momentum.
The electron velocity is a function of p and is given
by

v(p) =V~e = (p/m")(1+2p~/m*ee) '~~ . (2)

p = —eZgE)e & —(1 —p /m*cc)pxR~ ~ (7)

The next step is to expand P in a series of terms
of different order in E~, p =p' '+p"'+p'~'+p' '

+ ~ ~ ~, where p' ' is the unperturbed electron mo-
mentum (unperturbed means in the absence of ap-
plied electric field E but in the presence of the
magnetic field H), p"' is linear, p' ' quadratic,
andp' ' cubic in E.

For convenience, let us now introduce a notation
for the circular frame of reference established
by the presence of a magnetic field along the z di-
rection. The three, independent, nonorthogonal,
unit vectors will be e, = (x —iy)/W2, e = (x +iy) /
M2, and e. Then the vector V = V~+ V„y + V,R
may be rewritten as V = V, + V + V, = V,e, + V e
+ V,e, where V, = (V„a iV„)/W2. This notation has
the nice feature that V,&& g =+ iV, . Qne must al-
ways be careful to distinguish between a vector
quantity (e.g. , V, ) and an amplitude (e.g. , V.).
As an illustration we note that

In the presence of a magnetic field 0, the equation
of motion is

p = —eE, E, e'"~' —(e/c) vx H, (3)

where the applied electric field E is expanded in
Fourier components and ~~ takes on both positive

V, -V = i(Vx z) + (V, —V ) y = v 2 iV„y

Now starting with Eq. (7), we find f '
by set-

ting E= 0. Then, we have

y
&0& [1 (p(0))2/my~ ]/&0)x ~

(6)
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In this semiclassical treatment we shall not quan-
tize the transverse components of momentum into
Landau levels. But because of the magnetic field,
the unperturbed electrons will move in helices
with the axis of the helix in the z direction. The

x, y motion will be periodic with an angular fre-
quency given by

~0 & [1 (i (0))2/ g& ] (1O)

Thus the model sa,ys that the effective cyclotron
frequency of each electron differs depending on
its total unperturbed momentum. This directly
reflects the nonparabolicity which results in a dif-
ferent effective mass, and hence a different cyclo-
tron frequency for electrons at different points in
the band. Note that , is not time dependent. It
depends only on (P '), which is time independent.

Next we solve for p(~&. We write p'~&=p'~'((d~)
xe'"&'. Then, from Eq. (7), we have

~ «&(&(& ) eE~ [p«(1&(& ) . f ]

x [(1-P /m* (dg ) p )& (d, ]
~ ))=(& &0& ~

plicity we shall henceforth write p(~'(&d&) =p((d&).
Consider the component p' '. This will have

frequency components at 4&= ~, —~ and 2, and
also at &+ , and 2, + (d, , all of which are of the
same order in (P&0')2. Lax et al 0i.gnored p'2',
but they took into account terms which contributed
to v((d2) in a lower order in (p' ')2. However, it
is the contribution of terms containing p' ' that
become resonant for the relatively low magnetic
fields employed by YBW. Taking only the Fourier
component with the time dependence e' "' we have
from Eq. (7),

ia~p&2&(a~)=-([ &2&(a ) Vp]

+ [p((dg) ' &p][p( (d2) ' ))])

x [(1-p /m*eG)px(d, ]~22&0& . (14)

Again, taking only time-independent terms on the
right-hand side we get

i6&dp (6(d) = —p (&)(d)X (d~

+ (2/m*a, )[p,((d&) p,"'P(- (d 2) x &d,

The expression on the right-hand side means that
the p derivative of (1 —p2/m*)(G) p&((d, is to be
evaluated at p=p' '. Thus, we have

i&dg p ((d)) = —8E) —p«((d~) X (d

+(2/m+$)(p(0)p(1)((d))p(0)x(d(11)

We will keep only those terms on the right-hand
side of Eq. (11) which have no time dependence
since we have already taken only one Fourier com-
ponent of p(~), namely p'~&((d&)e'"&', and dropped
the common factor e'"&'. Terms from the right-
hand side with a time dependence such as e'"c '
rightly belong to an analog of Eq. (11) where the
Fourier component of P"' on the left-hand side
would be P&~ &((d&+ (d, ). Such components exist but
they are not of interest to us because they contrib-
ute only to a higher order in c),/eo. The solution
of Eq. (11) is

P„"'((d,) =iez„/((d, ~ (d,"), P,"'(&d, ) = ieE„/(d,

(12)
&,"is defined by

[2(i &0&)2 (p 0&)2]/

We see that p "(&d&) has a resonance for (d& = (d,"
(not (d,). This is the normal cyclotron resonance.
Note that for the conditions of YBW's experiment,
~„~„~,"« ~„~2,&3 even for the largest mag-
netic field. Thus certain resonances, such as
those in p&~)(&d&), are never observed. The method
of solution for P"'((d&) illustrates the basic tech-
niques with which we shall now derive higher-
order components of the momentum. For sim-

+P,(- (d2)P,'"p(&d, ) X &d, ]

&& [P'" P.(~&)]P.(- ~2), (16a)

P (&) (d+ (d~) = (4&d~/m+&0)(n(d+ (d~+ (d~')

)& [P."'
P ((d&)]P (- (d2), (16b)

which yields the result

p,' '(b.&d) = w (2(d, /m*eG)(a&de (d,") '

X [P (Kg)P P (- (d2) +P (- &2)P P (N&))

(16)
One can understand the result of Eq. (1,5) by recog-
nizing that the driving term for p' '(«d) is vxH.
Due to the nonparabolicity, P'2) has a cubic term
in p as shown by Eq. (7). Clearly, the direction
of the force is given by the vector p~(d, , which
must be normal to z and involve a component of P
normal to 2. The three cofactors p in this cubic
term must be a p((d, ), ap( —&d2) and a p,'0), so that
the product goes as 8' "'. Then, either p(&d, ) or
p(- (d2) must have a perpendicular component and
the other must have a g component. If both are
perpendicular or parallel to z then p'2&(h(d) vanishes
since there is no driving force. Resonance occurs
when the driving frequency I 4~ I coincides with

These vector relationships are illustrated in
Fig. 3(a).

The momentum components with a time depen-
~ (4~~~0)tdence e" "'"~"are found from an equation just like

Eq. (14).
We find

P."(+(d —(d,') = —(4&d, /m*&0)(b(d —(d,'- (d,") '
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p'2)(» —(d0)~ (» —(d0+&u,") ~

p(2)(»+ 0)') ~ (a(u+ (u0- (u")-'
(17a)

(17b)

H f& @PC

H

and

p(2)(n& ~0) p(2)(g&+ &0) p(2)(g&) 0 (18)

Since the two expressions given by Eq. (17) are
not resonant for the (low) range of magnetic fields
we are considering, we need not be concerned with
their precise form. In fact, we will not consider
them further. A similar argument to that used
above can be applied to understand Eq. (16).
Figure 3(b) shows the vector relationships. Here
the driving frequency is (4&+&, (, and resonance
occurs when this is coincident with &,". Alterna-
tively, when (4&( =~, +~," we see a resonance.
The resonances at )«I = I, "—(d, l are not ob-
servable unless we go to much higher magnetic
fields.

Expressions similar to Eqs. (15)-(18) result
from considering 2&, instead of &. However,
these become resonant only at much higher mag-
netic fields and will not be considered.

Due to time-reversal symmetry, there is no
SHG or second-order difference mixing (i.e. co-
herent radiation emitted at ») from conduction
electrons in InSb. Even though an individual elec-
tron may have a momentum component such as
p(2)(»), and therefore a velocity component at &&,
this component is proportional to p' '. When the
current is found by summing the velocity over all
electrons, there is complete cancellation between
electrons in time-reversed states. For each elec-
tron (momentum p' '), with a given contribution
6U(d0)) to the current at 4&, the time-reversed
electron (momentum —P(0') contributes —6()(b (d).
The lack of radiation at 4& from conduction elec-
trons may naively be interpreted as implying that
no electrons have second-order momentum com-
ponents P' '. In fact, as we have explicitly shown
for this case, each electron may have a component
such as p' '(b, (d), and the next step is to show how

this may combine with another P' ' and p' ' to give
a nonvanishing macroscopic current at a frequency
such as 3 = 21 —+2.

First observe that one may also find p '((u2). It
will be proportional to 0),/(0)2+ (d,") and will also be
ignored since it is small for the largest fields used
by YBW.

We find the third-order current v(0)2) from Eq.
(6). This may be expressed as

v(~)=-{[p(~) &,P[p(-~) &,]

-(0}
pz

/
l-

(0}
Pg

RESONANCE
WHEN

i a-c

pz f2') p ) p~(-fu~) xo]

(b)
H 2 f2'

pg (-cup)

/ RESONANCE
I () ' WHEN

Cti~ -f2l~k f2IC C(0} II

— -(0}
Vg

(p(~ p~(~))) p~(-fu~) x cuc

FIG. 3. Relationship between the various momentum
components and the force term which drives the electrons
in circular orbits in the plane normal to H. In (a) the
driving force has a time dependence g~ "&""2' whereas in
(b) the time dependence is g' "& "2'"c

Here,

+ Ip (~) 7p]fp(&g) ' &p]jv(p)
~

p=p«& . (19)

p(2)(g) p(2)(g~) p(2)(» ~0)+p(2)(g~ ~0)

Using Eq. (6), Eq. (19) becomes

v((0 ) = —(1/~*'& )([P( )]'p(- )

+ 2[p(&~) p(- &2)]p(0)))]

(2/mg2& g[P(2)(~) .P(0)]g(& )

+ [p"' p(0)))]p"'(~)

+[p(~~) p"'(&)]p'") .
In Eq. (20) we must again be careful to keep only
the terms with the correct time dependence. For
example, each p(2)(» —(0,) must have a cofactor
p,' ' as well as p(0)~) to produce the net correct time
dependence. Taking only these terms, substituting
Eqs. (15) and (16) into Eq. (20), and setting

p (b &u —&u, ) =p,(»+ 0),') = 0, after considerable re-
arranging we obtain

v((02) = (1/m*2to)([p(&~)]2p(- (()2)+ 2[p((0() ~ p(- &u2)]p((()~)] + (1/m* a0)[4(p,' ')2/m*E(,, ]

+c + P 1 P+ +2 +P» 2 P» 1 P+ 1 + P- 1 P+ 1 P» 2 + P+ 2 P- 1 P» 1
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-~,(&~+ ~,") '([p,(~)]'p (- ~) +p.(- ~a) p(~) p (~) + [p (~,) p(~) Ip(- ~)+ [p (- ~~) p.(~)]p,((()&)} I

+ (1/m~ace) [4(P(0))a/m*ee][P, (~,)]a[P,(- ~(()&o, (a&a —u&,
' —&u,") ' -P (- &u())&u, (d&v+ &so+ u&,") '] . (21)

This important result has the following features.
First, there is the nonresonant contribution given
by the first term on the right-hand side of Eq. (21)~

If we use the results of Eq. (21) for &u, = 0, we sim-
ply reproduce the result of Wolff and Pearson. ~

We call this first term v». The two resonant terms
each have a factor (p(0))3/m*ee, which, averaged
over the Fermi sphere (assuming kT«c~), is pro-
portional to e~/ee. In addition, for H = 0, &u, = 0
and these resonant contributions vanish. Thus, if
we measure )P)(H= 0) we have a calibrated value
with which to compare y' '(Hw 0) and thereby assess
the relative strength of the resonant and nonreso-
nant contributions. Since electrons with different

values of (p'o')a will have different effective cyclo-
tron frequencies, we see that these electrons will
be resonant for different magnetic fields. Thus
g(3), which results from summing v(&,) over all
electrons, will have significant broadening even in
the absence of damping.

Equation (21) simplifies considerably when the
conditions of YBW's experiment are invoked. In
their case, E(&u, )((E(&uz) and u&, &«u„&ua and we see
from Eq. (12) that p((u, )lip(&ua)I(E. We define

&(&0+ ~as) ~ fl [3(p(0&)2+(p(0))2]/myq

(22)
Then, we have

v(~z) = —(3/m' me)[p((u&)] p(- (uz) + (4~,/m* ee) [(p,' ') /m*&g] [(A(d) —((d,") ]

x( {2{P(x)Pp(-x)+(P (»)I'f (-»))(a- —;")-{2(P(»))'P(-»)+It(»)I'P(-»))( &+»"))

+ (4~./m*'e~)[(p'")'/m*~e][p. (~~)]'[p ( ~~)-(~~ ».—') —p,(- ~~)(&~+»,')] [(&~)'- (».')'] '. (23)

1k ~ ~'[(g~)8 (2~t)a]-l

&& [(P,'")'/2m'~e] sin'8 e,) (24)

For the colinear geometry appropriate to the ex-
periment of YBW, 8 is along z, and. the propagation
vectors k of all the light waves are normal to
With p' 'lIE, p&" is normal to k and H. The com-
bination p (- &ua) —p,(- &()) = —i(p,(- &())x e ) is in
the direction of k and therefore does not contribute
to the radiation. So, in rearranging Eq. (23) we
omit terms containing this combination.

In terms of the angle 8 between E and H, we have

Ip~l = Ip isin8 and ip, I
= Ip icos8. Also ea is the

unit vector in the E direction, e, = z, and e, is the
unit vector normal to z and k. Then the result is

v(~s) = —(3/m "&.)[p(~x)]'Ip(- ~a)
I

xfe —~~ &o"[(h&o) —(e'') ] [(p' ') /2m*a ]

&&(sin 8cos8e, +cos 8sin8e, )

l

The total current at co3 is found by summing over
electrons.

& (~,) = —(e/V) Z v(~,),
cond. band

(26)

J(~s) = - (e/4") 5 I
p'"

I

'(f
I
p"'If«)

J (fAv(&u, ), (26)
solid angle

where f(c) is the Fermi-Dirac distribution function.
Most of this discussion has been applied to the

truncated-energy-band structure given by Eq. (6).
The entire procedure may be repeated starting with
Eqs. (1)-(3)with the following result:

where V is the volume of the crystal. In the approx-
imationof a sphericalband givenby Eq. (5), Eq.
(25) becomes

v(&u, ) = —(3/m*ee)[p(&u)]alp(- a&a)
l ([4 'a-84 '' ((p' ') /2m~co)+16k ((p' ') /2m*to) ]ez

~,(o,"[(&~) —(&u,") ] [(p,' ') /2m*~o]A [1 —6A (p,' ') /2m~co] (sin 8cos8e, +cos 8sin8e, )

—~~ ~'[(&~)'- [2(u,')'] [(p"')'/2m~a, ]A-'[1 —SA-'(p,"))'/2m*e, ]' sin'8e, ) . (2'7a)



J. J. WYNNE

Here A = 1+2(p'o')3/mateo and

~ A-1/2[1 2A-1(p(0))2/2m@g ] (27b)

-g(3[1 A-~(p(o&)3/2m*~o] . (2Vc)

Equations (27) are the full band structure analog of
Eqs. (13), (22), and (24). Note that the coefficient
of e~ in the first term of the right-hand side of Eq.
(2V) has already been averaged over the angular dis-
tribution of unperturbed electron momenta in the

conduction band, but not over the radial distribution.
The current may be found by using Eq. (27) instead
of Eq. (24) in Eq. (26).

To conclude this section we shall discuss the
polarization dependence of the resonant enhance-
ment from the point of view of a simplified quantum
model. We picture the conduction band in a mag-
netic field as quantized into Landau levels spaced
by energies of -I~, . In Fig. 4 we show this con-
duction band. The expression ~ for the nonlinear
current density at &u3= 2&v~ —+3 is proportional to
a sum of terms like

& p„(nl plk)(k Ip" A (tu, ) jI)(jl p ~ A (—+3) li)(i lp ~ A(cu, ) In)
[C, —e„-a'(2(u, —(Oo)][&, —e„—1((u, —~3)](&;—&„—k(u, )

(26)

Here p is the momentum operator, n, i, j, and k
are the electronic states and A (At) is the photon
annihilation (creation) operator of the quantized
field. The particular matrix element we have
written corresponds to the four-photon process
depicted in Fig. 4. There are many other contrib-
uting processes but this one illustrates the reso-
nant enhancement for I(&u~ —&uo) = &&

—&„. We label
the Landau levels by the quantum number I and con-
sider only intraband transitions. The initial state
of the four-step process is labeled n. p„ is the
occupation number of this state.

It is important to realize that nonparabolicity is
required for the nonvanishing of the sum given in
Eq. (28), where only intraband transitions are con-
sidered. '3 But to the first order, we do not con-
sider the effect of nonparabolicity on the selection
rules for e1ectric dipole transitions between Lan-
dau levels. These are

p l H ~ al = + 1 and p II H ~ b l = 0

Noting that A(u&, ) II E(&u, ) we consider the following
possibilities: (i) When E(&uz) II E(&uo) II H, we must
have j=i =n. Thus && —E„=0 and there is no en-
hancement. This is physically reasonable since
the electrons are not being driven perpendicular to
the magnetic field. (ii) When E(&uo) J. H, and
E(&u~) tl H, then i=n, but j=n+1. For j=n+1,
&&

—E„=Ico„and we have resonant enhancement
when &u~ —&no= ~, . (iii) If E(~~) tl E (&uo) J. H, then
withi =n+1, and j=i+1=n+2 we find &&

—&„=2h~„
and we have resonant enhancement when &~ —v~
= 2~, . These rules are consistent with the results
of our semiclassical model which shows the proper
dependence on the angle between E(&u, ) tl E(&u3) and
H.

Ne also note the consistency with the results of.

spontaneous Raman scatterings where it was found
that for laser light propagating parallel to H, and
therefore E& ~H, Stokes-scattered light showed the

following properties:

&u, = &u I, —~, with E, I I H

~, = co~ —2x, with E, ~ H

f(&u3, H) = const'
i
z(~3, H)

i

Xt /„

FIG. 4. P1ot of &-vs-
kj (fixed k~) for H along
the g direction. With
H& 0 the allowed states
condense from the smooth,
almost parabolic curve
to discrete levels sep-
arated by - Iu, . The
arrows represent a four-
photon process which may
show resonant enhance-
ment.

III. COMPARISON OF THEORY AND EXPERIMENT

As mentioned above, in the absence of a mag-
netic field, we have the vanishing of the terms which
display resonance. Thus, if we measure the three-
wave mixing power in zero magnetic field, we can
calibrate our experiment. By this we mean that
we keep constant the parameters affecting the laser
power, mode structure, focused beam width, etc.
and measure the power at co3 as a function of mag-
netic field. YBW noted that the coherence length
was constant for their experiment so that all changes
inpower at &, were due to changes in g"'. The
current [Eq. (26)] is related to p

' by the relation-
ship J(&u3) =i~3 g"'E (~,)E(~,)E(- ~3). The signal
power is proportional to I J(&u3) I . YBW wrote
J((03) JNR(td3) + J„so(u&3). They considered J'„„to
be real and J„E, (the resonant contribution) com-
plex. Then, with t~REsl«l~N/I, they wrote
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—constx[(JNR) +2(JNa' J~sq)],

where J'»8 is the real part of Z„ES. Here I(&o~) is
the power generated at ~3. The normalized power
is then

I(&us, H)/I((us, 0) = 1+ 2(J NR
~ JRES)/(ZNR)

= 1+ 2(XRzs /XNR )et!I (3) &3) (29)

YBW's equation (3) is the result of substituting Eqs.
(24) and (26) into Eq. (29). YBW did not actually
plot Eq. (29) and compare it in detail to experiment.
They recognized the qualitative agreement between
theory and exyeriment, but their statements about
the details of the agreement were necessarily vague.
Only by numerically calculating I(u&s, H)/I(es, 0) as
a function of H, and comparing to experiment can
we make more definite statements about the suc-
cesses and failings of the model. We will do this
comparison using both Eqs. (24) and (2V). The ex-
perimental curves given in Fig. 2 are related to
one another through the parameters ~ and 4w, the
values of which are experimentally known for each
of the four curves. Thus, the four curves taken as
a group, rather than individually, will be compared
to the model.

Unless other values are explicitly specified, we
used &~=0.235 eV, "m*=0. 013Vm, and T=15'K.
Using these values, our first calculated plots showed
much too narrow a linewidth with rather sharp peaks,
although the resonances occurred at approximately
the correct magnetic fields. It became apparent
that damping had to be introduced to get a better fit.
This is not unexpected in view of the measured mo-
bility of YBW's sample. We carried out a Hall-ef-
fect and resistivity measurement on the sample
usedby YBW. From 4. 2 to VV K the sample had
a mobility p, = V5000 cm /Vsec from which the re-
laxation time is calculated to be 7 = 6~ 10 3 sec.
In wave numbers one finds 1/v- 9 cm ~. This is of
the same order as the broadening seen in Fig. 2.
Since we don't know what the appropriate relaxation
time is for p' ', we leave this as an adjustable
parameter and simply replace h&u by h&u —i/v. This
is substituted into Eqs. (24) or (2V) and the real
part of the current is calculated in accordance with
Eq. (29).

As for n, the carrier concentration, our Hall-ef-
fect measurement gave n= 5.4&&10 cm . Using
this value the calculated curves showed amplitude
changes at the resonances which were noticeably
larger than those of the experimental curves. Thus
we treated n as an adjustable parameter. The value
of n which provided a good fit thus became one of
the criteria by which we could judge the model.

For the truncated band structure [Eq. (24)] we
achieved the fit shown in Fig. 5. n and 1/v were
independently varied to achieve this fit. There is
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0.9—

0.8

l,2-
8=65

I I
I I

I.O---

IO —-—

09—

0.8

l.2—

I.O =-

0.9-
0.8

10
H (ke)

j

l5 20 25

FIG. 5. Comparison of theory and experiment using a
truncated band structure IEq. (24)I. Here g =2. 19x10
cm ~ and 1/v =16 cm ~.

some tradeoff between these two parameters since
either larger (smaller) n or larger (smaller) 1/r
tends to broaden (sharpen) the curves and push the
structure to larger (smaller) magnetic fields. How-

ever, the precise form of the curves depends on m

in a different manner from its dependence on 1/v.
Figure 6 gives the shape of the curves for a much
smaller value of 1/v' in order to show the detrimen-
tal effects of almost ignoring relaxation-time
broadening. Here n has been correspondingly re™
duced in order to get a reasonable match of ampli-
tudes. It is clear that the fit in Fig. 6 is inferior
to that of Fig. 5. Using the measured value, m

= 5. 4&& 10 cm, the truncated band structure re-
sulted in curves which were grossly in disagree-
ment with the experimental curves, irrespective of
what value for 7 was used.

The use of the full band structure does not give
very different looking results when n and 1/v are
adjusted. A good fit is shown in Fig. 7 and it looks
very much like Fig. 5 with some small quantitative
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FIG. 6. Comparison using truncated band structure
anda=e. ssx10'~ em~ and 1/v=8 cm

differences. On the other hand for the same values
of n and 1/r as used in obtaining Fig. 5, the full
band structure gives a much worse fit.

Although there is not much to choose between
Figs. 5 and 7, we note that the n value chosen for
the full-band-structure calculation is much closer
to that determined from our Hall-effect measure-
ment. Fig. 8 shows the fit obtained using the mea-
sured value of n and a slightly larger 1/r The fit.
is very reasonable although not as good as that of
Fig. V. Thus by this criterion, the full band struc-

tore gives better results than the truncated band
structure. Furthermore, the far too small value
of n used to obtain Fig. 6 is another indication that
relaxation-time damping is an important considera-
tion. We note that in giving values for n with each
calculated curve, we were careful to relate n to
the Fermi level in a consistent fashion. n was cal-
culated with the truncated or full band structure
accordingly.

The broadening built into the model by letting
each electron have a different effective cyclotron
frequency is not really essential to a good fit to
experiment, provided that we treat n as adjustable.
The line shape can be adequately accounted for by
relaxation-time broadening alone, by a judicious
choice of an "average" effective mass. Instead of
Eq. (24), we use the expression obtained from Eq.
(24) by replacing &u„~,', and ~,"by an average
cyclotron frequency (&o,), =eH/m, *c. Then, if we
use m~ = m* = 0. 0137m, we obtain the result shown
in Fig. 9. The calculated curves are displaced too
far toward lower magnetic fields. This problem is
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FIG. 7. Comparison using fuII band structure [Eq. (27)]
and m=3. 46x10 cm and a/~=17 cm '.



l.2

I .0=

0.9

0.8

0.9-
—0.8C)

l.2—

0.9—

0.8

I

I-65'

Op TICALINNOERsION

IV. DISCUSSION

iclassical m odel ise clear
x erimen

It should be
s ' der standing

s of easyp yh..e....
esort to edttation and no

ctrons in a
lnterpre a
dynamic a1 descllp 1

this
are

1'model has its mos 1

'K for a magneoccupied
obl

d than is e
' level &&(H)ln terma thnk '

ffinclude the e
namelyd nt term to-i p

e first-order app
—3+10 cm

H cm ' (wherem*c = 6.
where g=

Thus for a
leve s1 of the same

I .2— l.2-
8=90'

0.9—

0.8 I

10 I5
H(kG)

I

20 25

0.9—

I.2—

tructure andfu11 band strun using truCompansoFIG. 8.
g =5.4x],

I.O =-

roduces*=0.01V2m which prec tified by e —0.

1 tr
e tfits o

ter than
er than m si

at k=0 have an
h band edge.
i hi h its'

1 flatter as onewhich is prog

' is chosen
the Fermi level.-~-- ~t' t'i ld l 1 fothe zero m t

c are

level ls t m t
in calcu a

erimenta cT ebe s o
ct but they showo p e

e
f the impor

ce on 4~,on 8, the
including

pendence
the gener l

nances. As

gis remar
especially athe re al problem, e

l.2—

I.O — =-

0.8

l.2—

I.O =
0.9-

0.8 I I

IO l5
H (kG)

25

ison u ncated band stru ctureison s ng t nca e

1.0" cm-', an=2. 19x



J. J. WYNNE

1.2-
0

I.O:=-

0.9-

0.8

1.2—
8=65

0.9-

IO -----=

0.8

1.2-

I
0'---

0.9-
I I I I

5 IO 15 20 25
H(kG)
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and neglecting broadening in ~, but with m,*=0.0172~,
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splitting is - 44 cm ~. We see that we are approach-
ing the quantum limit for our highest fields and the

semiclassical approach is expected to break down.
In particular, for the unperturbed electrons, p,' '

is no longer a good quantum number and it is in-
correct to consider the electrons as having a con-
tinuous distribution of pp' and a corresponding dis-
tribution in ~,' and ~,". On the other hand, the
correct solution shows that ~, , which really repre-
sents the splitting between two levels with 4l = a I,
is a function of p,' ' and will therefore have a con-
tinuous distribution. This par tially justifies the
semiclassical ayyroach.

At a field of 20 kG, using the above approximation
values, only the (E=0, s =+-,'), (E=O, s= ——,'), and
(E= 1, s =+-,') levels would be occupied. Clearly,
for lower fields more Landau levels are occupied
and our approach increases in validity. This seems
to be an explanation of why our curves calculated
from Eqs. (24) and (2V) fit the experiment much
better at lower fields than at higher fields. The
calculated curves are too broad for the higher res-
onance (n ~ = &u, ). If we restricted the broadening

by replacing (p,' ') /2m*le in ar,' and &u,
"by (E+ —,

' )
her, /eo and letting I take on only discrete values,
the resonances would certainly sharpen and prob-
ably fit better. We did let ~, take on a fixed value
for all electrons (Figs. 9 and 10). The resulting
excellent fit, shown in Fig. 20, points up to the fact
that the precise distribution of co, is not so im-
portant, provided that n is suitably adjusted.

The use of an adjustable value for n in the cal-
culations is necessary to get curves which have the
correct amplitude. We see that our model attributes
a resonant contribution to each electron which is
too large relative to the nonresonant contribution.
This fault of the model is highly dependent on the
choice of band structure as can be seen by the dif-
ference between Fig. 5 and V. Perhaps here also
a quantum approach would improve matters. In any
case, the full band structure is clearly the best of
the models we have considered. Using n = 5. 4&& 10'6
cm 3 only the full band structure gives a reasonable
fit to experiment, as shown in Fig. 8.

If one wishes to incorporate more of the quantum
features, it seems wise to go completely over to a
quantum approach. This appears to be necessary
in order to include the effects of the electron spin.
YBW were limited by the maximum field (23 kG)
available from their magnet, and were not able to
see the resonance for 4m =gp jI Thi.s would have
required a field of ™50 kG for 4&-100 cm '. Cer-
tainly for this field we would be in the quantum limit
and our approach would completely break down. On

the other hand, if one chooses a smaller 4&, it
might be possible to see the resonant contribution
of the spin-flip type of transitions for fields as low

as 23 kG. However, we see no way to incorporate
the effects of spin into our semiclassical approach.
There is no cia'ssical analog of the spin comparable
to our picture of electrons moving in circular or-
bits as a classical analog to electrons quantized in
Landau levels.

In conclusion, we have discussed a semiclassical
model describing the resonant contribution of con-
duction electrons in InSb to the three wave mixing
in a magnetic field. The model is useful in pre-
dicting the size of the resonant enhancement and
the polarization dependence.
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Optical Properties of Substitutional Donors in ZnSe

J. L. Merz, H. Kukimoto, K. Nassau, and J. W. Shiever
Bell Telephone Laboratories, Murray Hill, Neu Jersey 07974

(Received 22 March 1972)

Five substitutional donors have been observed in ZnSe: Al, Ga, In, Cl, and F. By mea-
suring the I2 lines and the two-electron transitions associated with each, the donor binding
energies have been determined. These are found to be close to the effective-mass value and
vary from 26.3 meV for Al to 29.3 meV for F. Excited states of the complex formed by the
exciton bound to the neutral donor were observed both in the region above the I2 lines and in
the two-electron transitions. The electron effective mass was measured from the Zeeman
splitting of the 2p states of the donors to be m=(0. 16+ 0.01)m,. For each donor, a doublet
was also observed at lower energy than the I2 lines; these doublets are believed to be the cor-
responding I3 lines. The binding energies of excitons both to the ionized and the neutral donors
were found to vary linearly with the donor central-cell correction. Most of these results are
closely analogous to the properties of CdS and CdSe.

I. INTRODUCTION.

Considerable progress has been made recently
toward understanding the nature of donors and ac-
ceptors in the II-VI compounds CdS and CdSe by
studying the optical properties of large numbers
of these crystals which have been systematically
doped with the appropriate impurities. Through
a detailed study of the Cl donor in CdS, Henry and
Nassau' unraveled the complicated two-electron
transitions and identified excited states of the ex-
citon bound to the neutral donor, the so-called Iz
line. This was extended by Nassau et al. ,

~ who
determined the chemical identity and binding ener-
gies of six substitutional donors in CdS. The same
authors have recently studied the optical proper-
ties of shallow acceptors in CdS and CdSe, and
have identified the two-electron transitions of a
donor in CdSe. Comparatively little is known
about the substitutional impurities in the Zn com-
pounds, however. In particular, the properties of
ZnSe, a wide band gap (-2.8 eV), n-type semicon-
ductor which exists in either the cubic or hexagonal
form, are little understood.

In this paper, the properties of the substitutional

donors in cubic ZnSe are investigated in detail.
The I2 lines resulting from the radiative recombin-
ation of excitons bound to neutral donors have been
chemically identified for five different donors,
along with the corresponding I~ lines (excitons
bound to the ionized donors). Two-electron transi-
tions are also identified for four of the donors.
These transitions also result from the radiative
recombination of an exciton bound to a neutral do-
nor, but instead of leaving the donor in its ground
ls state (which gives the I2 line), the donor elec-
tron is left in an excited state (2s, 2p, etc. ). Two-
electron transitions were first identified in GaP,
and shortly thereafter were observed by Reynolds
et al. in the II-VI compounds CdS, 6 CdSe, ~ and
ZnO. In addition to these two-electron transitions
in ZnSe, it is also found that a number of two-
electron transitions arise from excited states of
the three-particle bound exciton complex, that is,
the two electrons and one hole that are bound to the
ionized donor impurity. Such excited states have
also been seen by Henry et al. , ' and by Maim and
Haering using luminescence excitation experi-
ments in Cds. A fifth donor (F) has been identified
by the observation of its I3 lines.


