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two-parameter theory of Sec. IIIA. In compari-
son with a previously calculated Compton profile
using Kunz wave functions, ' the present tight-bind-
ing calculation is in much better agreement with
experiment. The effect of overlaps on the scatter-
ing factors is presently being investigated.
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The temperature dependence of the soft mode ~0, the central peak S(q, co =0), and the elec-
tron-paramagnetic-resonance (EPR) linewidth hH above a continuous structural phase transi-
tion driven by a soft R-corner mode is calculated. In the noncritical region the important self-
energy terms leading to a central peaR at q=qR are shown to be the chain diagrams. This is
due to a particular feature of the lowest transverse phonon branch giving rise to a two-phonon
density of states po(q, (d) which is nonzero for q=—qz, (d=—0. The exponents of T —T~ found for
~0, S(qR, =0), and ~ are, respectively, +2, -2, and —2, the first being the same as that
obtained in the mean-field theory of Pytte and Feder, and the second agreeing with a result of
Cowley.

I. INTRODUCTION

In this paper a, unified lattice-dynamical descrip-
tion of continuous structural phase transitions driv-
en by a soft mode at the R corner qa = (s/a) (1, 1,
1) of the Brillouin zone is proposed. The present
situation of the problem is as follows.

(a) In SrTiOa (T, =105 K) the temperature depen-
dence of the soft mode was explained by Pytte and
Feder' as a Hartree renormalization effect. Un-
fortunately, their harmonic frequency turned out
to be imaginary, as in the work of Cowley.

(b) The connection of a phase transition with a
driving soft mode was recently formalized by show-
ing that the isothermal order-parameter suscep-
tibility has a pole which moves to the origin as

T" T'
(c) Inelastic neutron and Haman scattering have

recently revealed a central peak S(q, &u =0) near
T, in Sr Ti03 and in other crystals. ' An explana. —

tion in terms of a diffusive (q = 0) Landau-Placzek
peak was given by Feder which, however, causes
difficulties in the case q = q . This case may be
understood, in principle, in terms of a bubble dia-
gram where one phonon line is replaced by a lad-
der insertion.

(d) A phenomenological description of a central
peak in terms of a particular frequency-dependent
damping function I"(+) [Eq. (27) below] has been
proposed by Shirane and Axe and by Schwabl. 9

This function [but with I'(~) =0 as in Eq. (2'7)] has
recently been shown by Schneider to follow from
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FIG. 1. Dispersion
curve g of the lowest
transverse branch of
SrTiG3 at TED=120 K in
the I.111]direction plotted
in the reduced-zone rep-
resentation q & 2 q~, taken
from Fig. 3 of Ref. 12.

113(q, ~) = + ys(q, k)+kv)
k, v

XD(q —k, co —v)r, (q, (d;k, v) . (4)

Similar but increasingly complicated expressions
hold for the higher-order terms. Here y„and I'„
are the bare and renormalized pg-point vertex func-
tions, respectively; D is the renormalized propa-
gator; and v = + (2)(i/P) && integer. The dominance
of the two-phonon bubbles at q=-q, ~=0 owing to
the density of states (1) implies that the higher-
order terms in (2) are negligible, and that I'3 in
(4) is dominated by the chain diagrams

a, continued-fraction representation. Making use
of the connection mentioned in (b) Schnei~er also
confirmed Feder's result.

(e) The EPR linewidth /), H has recently been
measured by Muller et gE."as a function of q
= (7 —T, )/7', . They produced a critical exponent
v =-', which Schwable related to critical order-pa-
rameter fluctuations.

In terms of lattice dynamics, I'(~) is related to
the self-energy of the soft mode. In order to pro-
duce the denominator of the phenomenological I'(~)
of Eq. (2V) below, it is sufficient to sum up the in-
finite set of chain diagrams. The reason for the
importance of the chain diagrams lies in a remark-
able property of the dispersion curve ~; of the
relevant mode. Since below T, the 8 corner is
equivalent with the zone center, q -0, a reduced-
zone representation with (t & —,'q~ in the [111]direc-
tion is appropriate. In this representation, the
mea. sured dispersion curve mq for SrTi03 at a fixed
temperature' T~& T, consists of two almost touch-
ing branches as exhibited in Fig. ].. The situation
is similar for' KMnF3 and, less pronounced, for
LaAlO3. ' As a consequence of this feature the
two-phonon density of states (its particular form
is explained below)

po(q, co) = (1/&)+)fo(k, q)&(~+ ~); —~n ) )

is nonzero at the relevant values ~ = 0 and q =- qR.
This fact gives rise to an enhancement of diagram
parts consisting of two-phonon bubbles with fre-
quency —(~; -„—&ug), and consequently leads to a
dominance of the chain diagrams.

II. SELF-ENERGY

1,(q, ~; k, ) =y, (q, k, )

+Z Z Q y(qk, „k)

For the explicit calculation we choose 3- and 4-
phonon interactions with factorizing vertex func-
tions y„,

~ ~1-n/2 g ( (n) (n))1/24&
n qg a ~1...+ 1

As shown in the Appendix, this form of 04 follows,
under particular conditions, from the quartic in-
teraction used in Ref. 1. With (6), the Hartree
term of Pytte and Feder simply is

11„(q)= ~,y-,
")a,

where

a(r) = —Zi y„-"' coth(-,'P(d-„)

is a, positive monotonically increasing function of T.
From (4), {5)and with the constant-lifetime ap-

proximation'

D(q, ~)= —j d~ e"'(v {q;(-f~)q;(o)))

= (dnt ((d + 2 /T 0) —(d ]

the self-energy of the chain diagrams is found to be

II, (q, (d ) = 4X,' y."'G(q, co ) .

The general expression of the self-energy above
T, can be written"

II=II +Ps+ ~ ~ ~

rl„(q) = Zy, (q, k, -k)D(k, v) (2)
k, V

is the Hartree term studied by Pytte and Feder' and

G = Go(1 —14GO)

Go(q, (d) =
/n + OO 12

d(() p(qi ()) ) i . ia )a (12)
(60+ 8 0) —co

are, respectively, the renormalized and bare
propagators of the collective coordinate
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~-1/ 2 P ( (4) &4& )&/2 q, q
k

defined as D in Eq. (9). Thus, the pole of G as
given by

III. DENSITY CORRELATION FUNCTION

The density correlation function S(q, &u) is re-
lated, through the fluctuation-dissipation theorem,
to the phonon propagator D(q, &u) by

Gp(q~ (u ) =
&&4 (14) S(q, (u) = 2-' &)(- (u) ImD(q, (u) .

represents a collective mode of the interacting
phonons. With y-' '=&u; (see the Appendix), p; in

Q

Eq. (13) is recognized as the energy density of the
phonons. Hence |"is the energy-density correla-
tion function and the collective mode describes en-
ergy propagation. Both the structure of such a
collective-mode propagator in an anharmonic linear
chain'7 and its possible effect through Eq. (10) on
the sound propagation in superfluid helium have
been studied before. ' As we shall see, however,
it is not this collective mode which is important
for the existence of a central peak in S(q, (u), but

the behavior for ~:-0 of the density of states in
Eq. (12). It consists of two terms,

In terms of the self-energy (2), the propagator
has the form'

D(q, (u) = (u- [(u —(u; —(u;II (q, (u)] ' . (20)

—Go(q ~)=Ao+i~A)+~2II(q, ~), (22)

For frequencies such that P&u «I, insertion of (7)
and (10) leads to

S(q, (u) ~ (u-'Im[(u +14(u;y-&4&a

+ 4&22&u;y O'G(q, (u) —(uo] ' . (21)

Now the multiple-fraction development of Schneid-
er' corresponds to an expansion of Gp(q, &u) in
powers of cu. We write

p= po+ py, (15) where

where po is given by (1) and

(4) &4& n(&u)", ) —n(&uo k)
yk yo-k (u —(uq-k k

(16)

&4) &4) n(&u„-)+n((u; )-, )+1
y~ - i ~. .+ &u.

(17)

which is again positive and monotonicallyincreas-
ing in T, ' and with the argument ~ —cok —cu; „- of
the 5 function. It is obvious from this that p, = 0
for ~& cu,~ and therefore, as we shall see, does
not contribute to the central peak of S(q, &u). For
the following discussion it is still convenient to
consider the complete form (15). p is nonzero in
a finite interval,

p (q, &u ) p 0, Q= c (u c 0-',

the extremities 0; and 0; being defined, respec-
tively, as maximum and minimum of cuk+ &- »„with
respect to k. In the neighborhoods of 0 and 0;,
p(q, (u) therefore behaves as (0; —&u)'/2 and

((u —0;)'/, respectively. A similar cusp-shaped
behavior occurs at any other extremum of &», k-+ co-„.

For q=q~, the extremity 0;~ &0 if the two branch-
es in Fig. 1 do not touch and 0;~ & 0 if they cross.
For q & q~, the two branches in Fig. 1 are shifted
by q —q relative to each other so that the chances
for crossing are increased and one has always 0;
& 0 for sufficiently large lqR —ql. This is impor-
tant in what follows. It is obvious from this dis-
cussion that l0;l «0;.

is a positive monontonically increasing function of T
(Ref. 16) and )((&u)= (e " —1) '. p, has the same
form (1) but with

S(q, &) ~ 'lm[&o —& —i&r(&)] ',
where

(uo(q, T) = &u +14&u;y-' '[a-gAp/())4 +Ap)],

(25)

(26)
g(q) = 4(&, i),)'y-"'/y-"',

and I'(&u) has the form of Refs. 6 and 9 but, as in
Ref. 10, without the additive constant

r(&u) = 5'/(y —i(u),

with

y(q, T) = —() +A, )/A, ,

(27)

(28)5'(q T) = a~;y "'/-(&4'+A-o) .
Here the only important sign is that y5 &0, which
ensures causality.

For &u» 0; we have from (12) and (18)

Go(q, (u) = &&,'n'„(q) (&u+ irp) ',
and from (11)

(29)

A„(q, T) = (2r o)" f„d(u p(q, (u)(u2(r 2o+ (u2) "
(23 )

are positive monotonically increasing functions of
T. According to (12) and (18), Go is analytic in
the complex co plane except for a cut at 0; Reer
& 0;, Imago = —I'0. Since the remainder 9 is finite
for co=0,

R(q, 0) = f d(u p(q, (u)(u ((u —3r()) (r(, + (u2)

(24)
it has the same analyticity property as Qo.

For sufficiently low frequencies such that the
remainder R can be neglected in(22), wefind, from
(21) and (11),
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G(q, &u) = &4'n„(q) [((u+ iro) —n„(q)] (so)

ImGO= —(-, m)&u[p(q, ~)+p(q, —~)] (32)

vanishes for ~ & n-. Then Eqs. (23) and (24) be-
e

come

A, = f' der p(q, v)=(l/N) X [fo(k, q)+fg(k, q)],
(33)

A, =2 f dxp(q, I'Ox)x (1+x ) ~ro-0=&po(q 0)

X402 is given by the second moment of p, and hence
n„~ n;, unless A4AO (taken in the limit 1"0-0) is
large compared to unity. Therefore, ~ » 0„ in

Eq. (so).
Inserting (30) into (21) where the factor v ' is to

be replaced by 1, since P~»1, we find

S(q, (o- ~)~ (- er 014g(u;y-' 'n„)(u (»)
Hence the fourth moment of S(q, ur), which deter-
mines the frequency ~~ of Schneider, ' exists.
(Note that in the notation of this paper &u„= ~o+6 . )
In the limit I'0- 0, all higher moments exist since

Eqs. (37) and (9) coincide in the vicinity of the
temperature T* of zero renormalization. ' This
implies that, for T= T*,

ra= r-(0)=~ /r a

These conditions will be examined in Sec. V.

1V. SOFT MODE

(se)

Since the soft mode is the low-frequency pole of
S(qs, v), we conclude from (25) that the transition
temperature is determined as the first zero of

(u, (q, , T, )=O (39)

coming from high temperatures. In order to in-
vestigate the temperature dependence of w0, Eq.
(26), we need more explicit expressions for the
positive monotonically increasing functions a(T) and
Ao(qs, T). From (8) we conclude that

a(T) 1+ O(T')
a(o) (T/e )[1+O(T ')]

Taking the limit I'o- 0 of Ao we find from (33),
(16), ~d (17)

f~(q, o)=-r,
2

dx p(q, rox)—
0

4 ' ~ ' (T/e ) [1+O(T- ')] (41)

d(o e

,„, [p(q ~)+p(q -~)]

which is finite.
The high-frequency limit of the propagator is,

according to (20), (7), (10), and (30),

D(q, (u - ~) = (u;((u' —(u'„) ',
where

(35)

co'„(q, T)=(u +re;14y."'a . (36)

w„ is the renormalized frequency of Pytte and
Feder, ' who determine the transition temperature
T, in mean-field approximation' from the condi-
tion &u„(qs, T, )=0. As mentioned in Sec. I, this
leads, unfortunately, to an imaginary harmonic
frequency, w; &0.' In Sec. IV we will see that in
our theory T, is determined instead by w0.

Comparison of Eqs. (35) and (9) shows that the
limit co- ~ is not consistently described in our
theory. We expect Eq. (9) to be a good approxima-
tion in the domain of the one-phonon pole, ) co ~

~ max~;. This implies that our expression for the
density of states p(q, &o) also is expected to be val-
id in this domain, and hence that Eqs. (29) to (31)
should not be-taken too seriously. This does not
affect, however, the low-frequency behavior which
is the main interest of this paper. For small ~,
comparison of (25) with (19) shows that

Introducing the abbreviations

&4(r;"'/(u;„) a(0) = c(,
g(q, )/a(0) = c,/c, ,

Eq. (26) becomes, for q=q

(u', (q, T)/&u; =1+c,q, (T)

(42)

(4s)

—c,q, (T) [1+q, (T)] ' . (44)

We require this expression to be positive in the
limit T- ~.' This implies that p, & 0 and hence
that p2& 0 and A4& 0. From the latter condition we
conclude that q&2(0) and e~ are positive, as is e, .

In order for Eq. (44) to have zeros it is neces-
sary that the minimum at T= 0 of 1+cyp, must be
smaller than the asymptote at T- ~ of czar~/
(1+F2), or that

1+ cg & c2 . (45)

T /, e=( ,c- )I/, cl. (46)

For T& T, , Eq. (44) is a monotonically increasing
function of T. Hence there exists a temperature
W & T, such that

mo(q P )= &,„.
For ca/(1+ c&)» 1, we find

(47)

For c,/(1+ c,)» 1, the highest zero is T, » ez, and
we find from (44), (40), and (41)

D(q, (u):-(u;[a) +i(ur(0) —(oo] ', (37) T*/ei = c~/cq» 1 (48)
and we obtain self-consistency by requiring that
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2*=- (T —.T, )/T, = (c, -1)-' . (49)

The explicit temperature dependence of (44) is
easily found to be

o/o(qR, T)//do = e/e+ = (T —T~)/(T —T~), (50)

valid for c2/(1+c1)» 1, T, » 82. The temperature
dependence of Eq. (50) is identical with that of the
mean-field approximation' of Ref. l. On the
other hand, we have, from Eqs. (36), (40), (48),
and (49),

o/„2(q, T)//o/; = I+c,q/, (T)

=1+(1+I/e*) T/T* . (Sl)

To get a feeling for the orders of magnitude let
us consider the model where y-' '=y-' ' =w; in Eq.
(6). Then Eqs. (8) and (33) with (16) and (1V) im-
ply a(T- ~) =Ao(q, T- ~) = 2ko T, so that Eqs. (40)-
(43) lead to 2ko8, = a(0) = c, /A4 and 2k282 = 1/X4 =g/

Since g = 4(12/A4)2, we find with (46) that T, /82
= c2 —1=4(&2/A4) —1. The assumption T, /82» 1
together with (49) then imply that 2* « I, which is
compatible, e.g. , with the temperature T*=120K
of Fig. 1.

We next derive an expression for &oo(q, T) away
from qR. Since 2qR is a reciprocal lattice vector
we have co;;= co»,„+-, and y-'"' .= y- '„- so that be-
cause of (1), (16), and (1V) p has the same proper-
ty, and, according to (23), A„does too. There-
fore, Eq. (26) also implies

~o(qR q T)= 1oo{q/1+q T) (s2)

V. CENTRAL PEAK AND EPR LINEWIDTH

and a Taylor-series expansion in q, combined with

(50), leads to the general form

o/o(q& —q, T) = c/o~+ Po(q) q'+ 0(q', ~q'), (53)

wh~re q=q/q, c.o= o/;„/e*. This shows that at T
= T* the renormalization is negligible, (do:—co;, at
least not too far away from q . In particular, Eq.
(53) gives a horizontal tangent of o/o at q which,
for T= T*, is in agreement with Fig. 1.

B;= (21/) (V/N)k Ty-'. 'y.' ', o/„-.

Evaluating (58) we find

p, (q, &u)=B;(b / )(~ —Q;)'/ 8(&o —Q;),

(s9)

(eo)

where the brackets ( ) mean average over the di-
rection k'.

Inserting (60) into (23) yields

A, = 1TB- (b2 ) (-,'ro)' I(Q. /ro),
where

(61)

1/, 1+ (x2+ v)'/

[ v+ (v2+ 1)1/2]l/2

~ 1
( v2+ 1)-1/2 [ + (v2+ I )1/2]-1/2

I(v) is a positive monotonically decreasing function
with the asymptotic behavior

(33) is legitimate, on p(q, 0). As we saw in Sec.
II, p, =0 for ~&co; and pa=0 for &&0;. Now, in
the case when the two branches in Fig. 1 do not
touch, Q; & 0 and Eq. (33) gives us A, (q„, T) = 0,
while for row 0 we may still get A, (qo, T) wo, ac-
cording to (23). Thus, p, is of no consequence for
the existence of a central peak near q~, but po is
crucial and the central peak depends sensitively
on the relative magnitude of 0; and I"0. So we
have to evaluate A, more carefully.

Near ~ = 0; the main contributions to the k sum
in (1) come from the neighborhood of the minimum
of z; „--~»„. The latter has the form

o&; -„—&o„-= Q;+ b;(k k—;)2, (sv)

where the position k; of the minimum is fairly
close to the center of the Brillouin zone (see Fig.
1) and b; will in general depend on the direction of
k —k;. Inserting (5V) and (16) into (1) yields, for
+=0;, IQ; I «ep;«A~T,

p, (q, ~) = B;(2v) ' J d'k' 5 (o1 —Q=, —b;(k')k"),
(se)

where

From Eq. (25) the height of the central peak is
found to be

(2i v I
)"', v- —~

I(V) = 1/2(2/v) ', v-+~ . (63)

s(q, o)~ r(0)~ (s4)

which according to (53) diverges as e at q=q„.
Its width, defined by S(q, b, &o) = —2'S(q, 0), ' is

ao/ = o/2o/I'(0) (ss)

and goes to zero as & at q=q„. For this result it
is essentia. l that

1'(0) = 5 /y= 34go1-y~ 1A1(1+A4Ao) (se)

is finite for q-qR and T~ T, . This depends crucial-
ly on A, or, provided that the limit I'0- 0 of Eq.

From (60), (61), and (63) we immediately recover
the general result (33) for the case I"o-O, which
vanishes for 0;~ 0. This shows that in order to
have a central peak at qR, in the case where there
is no crossing of the two branches of Fig. 1, I 0

must be of the order of the minimal distance 0;IZ
of these branches. This is quite satisfactory from
the point of view of the self-consistency conditions
(38), the second of which requiring, according to

. (39), that 4 I'o be small while the first demands that
1"0 is nonzero.

A more quantitative evaluation of Eq. (56) con-
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but according to (53) (see also Fig. 1), (s+;„g/
Sk)„o=0. Since IQ;„I «~; (see Fig. 1), we
have from (65) and (66) k; = 2~; /c and

b",„=c /4u&;

Inserting this into (64) yields, combined with the
first condition (38) and neglecting the anisotropy
of the phonon velocity c,

(I o/(u; )'~'= —', ~o v'((u;„/cd)' . (68)

According to Fig. 1, co;~ «cq&, which leads us to
conclude that I'o= I'(0) « ~;s, and hence that the
second condition (38) is well satisfied. But in ad-
dition we see from (55) that at T= T* & T, the cen-
tral peak is completely washed out over the entire
soft-mode peak, n, ~/~o = ~o/I"o» 1, in agreement
with observation.

Finally, we calculate the EPB linewidth &H
which is obtained from

(67)

n.H~ (I/N)ZS(q, 0) . (69)

Making use of (53) and describing the anisotropy
around q in the form

V.(q) = [1 —(1 —~)~']P. , (70)

where f =q q~, the leading singularity of &B is
contained in

(&&

(4H)„„ f dr f q dq

x(&,s+P,[I-(l-n, )g ]qy (71)

where q„(f) is an angle-dependent cutoff. In the
case that q„(f)x0, for all angles, one finds

(n.H)„„,~c ',
with

v= —, if 0& +&1 .

(72)

(V3)

firms this observation. In the model y&
'= +; used

earlier we have for T= T* that &4gru;y 4'(I+ &4Ao)
o

=&a;/(2ksT*). Since V/%=a =(wv 3/qa), expres
sion (59) is B;=x'3 ~ koT*/(4'). Assuming I 0; I/
I'o ~ 1, so that according to (62) I= I(0) = —', , insert-
ing (61) and the above estimates into (56) yields,
for q=qR

I'(0):——W n (b ~.) ur- q I'~ (64)

b;~ can be determined from (57) and from the fact
that for small k one has cug=ck. For k-0 and q
=q, (57) is still a reasonable approximation and
reads

(65)

The derivative with respect to k of (57) yields for
these values of k and q

BOOL P
k = —2Q" k

'IZ

In the "two-dimensional" case' ~=0, one has
instead of (Vl)

(nH). .."f dq f q. dq. [~oo+ Poq'] ',
where q„= (1 —f')'~ q. Here the result is

(74)

v=1 if g=0 . (75)

Critical fluctuations have been neglected in the
present work. In a lattice-dynamical treatment
they are essentially described by the ladder inser-
tion of the diagram considered by the authors of
Bef. 8. This diagram has the form of mode-mode
coupling theory and therefore is expected to be im-
portant in the critical region. However, no criti-
cal exponents have as yet been obtained in this way.
Our purpose was to show that in the noncritical q

domain above" T, the important diagrams are the
chains which lead to a consistent description of all
the points enumerated in Sec. I but with a, real
harmonic frequency.

The most interesting feature resulting from our
theory is the occurrence of a central peak S(q, 0).
With Eqs. (54), (56), (22), and (11)this central
peak can be traced back to the propagator t" of the
collective coordinate o; of Eq. (13). Since &; is
essentially the energy density, we conclude that the
central peak can be understood as occurring from
energy fluctuations. This gives support to Feder's
theory, '' with the important qualification, how-

ever, that for T & T, it is the extreme short-wave
part q=q of &; that is important. This means
that a thermodynamic treatment leading to a Lan-
dau-Plaezek peak is not applicable. However
Feder's theory can be understood as an "analytic"
continuation from a hydrodynamic q-= 0 to q = q
It is also in this sense that the frequency (d„of
Schneider is justly called "adiabatic. " Indeed the
adiabatic limit is defined as "first q- 0 then m

These values of the exponent v are to be expected
in an q domain where critical fluctuations are un-
important. In comparing this result with the ex-
ponent found in Bef. 11, one should bear in mind
that this comparison only holds for the "fast-fluc-
tuation" regime valid for q~0. 01. From Fig. 2 of
Ref. 11 one deduces v =-', for e= 0. 01 (T= 106.7 K)
and v = 1.0 for o = 0. 09 (T= 115 K). [Ncte that v is
obtained from the slope in Fig. 2 of Ref. 11 by ad-
dition of &(I+o) '.] We conclude that for 10V~ T
~ 110 K the exponent v is determined by the ("fast")
critical fluctuations (v:——', ), while for T= 115 K the
critical fluctuations are negligible and v is deter-
mined by the mean-field value 1.0 valid for the
"two-dimensional" ease' g=0. This is in fair
agreement with the experimental value ~ = 0. 017
+ 0. 010 obtained in Ref. 11.

VI. CONCLUSION
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-0"20 such that, in Schneider's notation, ' (d„(q)
» Az(q), A2 being the damping. If now q is con-
tinued from q = 0 to q = q this inequality is pre-
served so that co„becomes high frequency.

The important fact giving rise to a central peak
in our theory was recognized to be the quasitouch-
ing behavior of the two halves of the lowest trans-
verse-phonon branch exhibited in Fig. 1. This
led us to conclude that the two-phonon density of
states po(q, (()) of Eq. (1) is nonzero for the rele-
vant values q=q~, ~-=0 and, consequently, gives
rise to a. dominance of the chain diagrams. Of
course, other models ' may also give rise to a
central peak.

Indeed, Cowley ' has obtained a central peak at
q = 0 from the simple bubble diagram with the same
phonon of finite width occurring in both lines. As
Cowley points out, this diagram would vanish at
q =0 for a nonpiezoelectric material, such as
SrTi04, owing to the symmetry of the three-phonon
vertex; for q= ~ this is, of course, not the case.
It is interesting that Cowley obtains the same
temperature dependence —

q of the central peak
as in our Eq. (54).

In Silberglitt's treatment, ' one line of the two-
phonon bubble is replaced by a pair of lines which
is treated self-consistently and therefore, pre-
sumably, reproduces part of the ladder insertions
of Ref. 8. This "dressed" phonon pair therefore
also represents a collective mode which is of the
type of second sound because it has long wave-
length. In this terminology our short-wavelength
collective mode q; may be called "collisionless, "
i.e. , nonhydrodynamic second sound, an interpre-
tation which has been proposed earlier. '~ '
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of Ref. 1],

+terms in (H(q)), (AS)

where P~; is the canonically conjugate of Q„; de-
fined by

i[Ho Qqq]
= (u),qP~q . (A4)

The unitary diagonalizing matrix e~(A', q) is deter-
mined by the equations

e, (p, , q)8, (q)=e, (p, q), &, p=l, 2, S

~) q~) )(] ex (4 q) = 0

(A8)

(A8)

where

(A7)

and gi», (q) are the Fourier transforms of the ma-
trices in Eqs. (4) and (ll) of Ref. 1, respectively,
and (A7) is explicitly given by Eq. (10) of Ref. l.
We note that Eq. (A5) implies e„(q) =1 for all X, q,
so that 7 = 2/~", H„(1) is local in 1, whereas in the
coordinates of Ref. 1 T is nonlocal in l.

The vertex function in Eq. (Al) is defined by

4

2 ~ Iu. (qs)

+ E I'~, (q, +q, .), (A8)
s&s'

where I'~~. (q) are the elements of the matrix defined
in Eq. (19) of Hef. 1. Making use of the trigono-
metric identity

2cos0 —2 costs+ cos ns + ns'
$= l S&8'

I would like to thank T. Schneider for valuable
discussions and information about his own work,
and G. Harbeke, R. Klein, K. A. Muller, E. F.
Steigmeier, and R. K. Wehner for discussions.

APPENDIX: THE PYTTE-FEDER INTERACTION

Pytte and Feder's interaction Hamiltonian, Eq.
(16) of Ref. 1, can be written in the form

= 8 II e' "~ 2 sin —,
'

o,~, (AQ)

81',",)(q, q4) =21'2 II rg(qg)

(A10)

where P, ,o~ =~ 2vn, ~ being an integer, the par-
ticular form of the matrix I'(q) implies that Eq.
(A8) takes the form

where

«44, (q4)44, (q4))(; (444)44; (444)S & 4)4) (4(()
S=. l

S"- l

etc. , where I', and I'z are defined in Eq. (18) of
Ref. 1 and

H(q) =(H(q))+Z e(&, q)(d, ~'Q)„-„

is the Fourier transform of R(l) of Ref. 1. The
normal coordinates Q„; and polarization vectors
e(X, q) are determined by the diagonalization of the
harmonic Hamiltonian Ho= T+H, [Eqs. (4) and (ll)

y, (q) = 8" ' ~q~zsin-,'q

with' P, = g(l, 0, 0), etc.
In tiae particular case where the unrenorrnalized

frequency M~. is independent of 3, we have from
(A8)
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(A12)

If we further put I'~ =0 in (A10) and assume T & T,
so that (R(j))=0 in (A2), Eq. (Al) becomes a
sum of three terms:

4

e„=(lr, I
— Z E II a;"'r (q-))

q). ..q4 ~q )t S g S

XQ . . . Q 6 Zq) . (A13)
4

On restricting the q's to the body-diagonals g
= q(+ 1, + 1, + 1), q ~ ~/a, H4, reduces to our Eq.
(6) for H4 with X4 = 12I', , aqy-' ' = e' '" sin —,

'
qa and

Q~; —Q; (the factors e''" only contribute a sign for
umklapp processes).
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