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The magnetic field dependence of the components of the adiabatic susceptibility tensor of
powdered and single-crystal specimens of cerium magnesium nitrate have been measured in
the Curie-law limit. The single-crystal results are in good agreement with thermodynamic
calculations, while the powdered results show deviations at higher fields. The smallness of
the field dependence of the perpendicular component of the susceptibility tensor suggests its
use in thermometry at low temperatures in finite magnetic fields. The coefficient in the
asymptotic expression for the heat capacity C@= bl& is found to be b/8=6. 16+ 0.1 (mK) .

I. INTRODUCTION

The thermodynamic treatment of the ac suscep-
tibility of a paramagnetic salt in the presence of
a static external magnetic field was given by Casi-
mir and du Pre. ' In the adiabatic limit (where
the spin system cannot relax to be in equilibrium
with the lattice) and for a material with an iso-
tropic g factor, they found that the component of
the magnetic susceptibility parallel to the external
field is given by

of the susceptibility tensor for such a system do
not vanish; the perpendicular components are,
however, considerably smaller than the parallel
component (for CMN they are approximately eight
times smaller). In Sec. III, we present a series
of experimental measurements, which are then com-
pared with the theory. In the course of these mea-
surements, a more accurate value for the coeffi-
cient b in the expression for the specific heat was
determined.

II. THEORY
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where c is the Curie constant defined Np~~ /ks, and
the spin specific heat is C„=b/T . The remain-
ing symbols have their conventional meanings. As
given here, this expression is valid in the Curie-
law limit. It is also known, under the above re-
strictions, that the diagonal components of the
susceptibility tensor in a plane perpendicular to
the field axis are independent of the field~ [Eq. (9a)
of Sec. II).

It would be useful to have an expression for the
effect of a magnetic field on a powdered specimen,
in particular, powder formed from crystallites of
a material with an anisotropic g factor, such as
cerium magnesium nitrate (CMN). This salt plays
an important role in low-temperature thermometry
and must often be powdered in order to make ther-
mal contact with either an experimental apparatus
or with liquid He and He- He solutions. A knowl-
edge of the effect of an applied field on the suscep-
tibility would permit one to make corrections for
the apparent shift in the temperature if measure-
ments were made in the presence of an external
field.

In Sec. II, we derive the susceptibility tensor for
a powdered salt with an axis of symmetry and a g
factor isotropic in the plane perpendicular to that
axis —the case with CMN. We shall show that the
field dependence of the perpendicular components

dT=(I/C„)5 dM. (2)

From the magnetic equation of state M= M(R, T),
we can compute

dM= ~ d + — dT . (3)

In this section we derive an expression for the
adiabatic susceptibility tensor of a powdered spec-
imen of CMN. We proceed as follows. (1) We
first calculate the adiabatic susceptibility tensor
in a coordinate system that is aligned with the
CMN crystal coordinates but with the static field
in an arbitrary direction. (2) Next we transform
the susceptibility tensor by rigid-body rotations
involving the Euler angles into a coordinate sys-
tem with the new z axis aligned parallel to the
magnetic field. (3) Finally we average over the
Euler angles to obtain the required results for a
powder.

The first law of thermodynamics for a magnetic
system is given by

dQ=dU —H ~ dM,

where Q is the heat transferred, U is the internal
energy, I is the magnetic field, and 1R is the mag-
netization. The adiabatic condition requires dQ = 0.
The change in internal energy is given by dU
= C~ dT, where C„ is the he~t capacity. Equation
(I) then becomes
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Eliminating dT between Eqs. (2) and (3), we obtain

The low-lying energy levels of the spin system
in CMN are given by E„=+,'pz(-g, H„+g,H,
+g'„H', )'~'; here ps is the Bohr magneton while

g„and g, are the trigonal axis and basal plane g
factors, respectively. From the free energy
F = NkT-in/„e z~ ~r, we can calculate the mag-
netization M = SE/88; in the Curie-law limit, we

find

M„=-,' cg, (H„/T),

M, = —,
' cg, (H, /T),

M, = —,
'

cg „(H,/T) .

(5a)

(5b)

(5c)

For the temperature range of interest (T) 15 mK)
the heat capacity of CMN is given approximately
by C„=b/T, where b is an experimentally deter-
mined constant. From Eqs. (4) and (5) and the
heat capacity we can calculate the adiabatic sus-
ceptibility tensor in the crystal coordinate sys-
tem. The result is

Ql

1+(c/4b) (g,H„+g,H, +g „H,)

,' g ', [1+(—c/4b)(g ', H„'+ g'„H', )]

(cg~/16-b) H„H,

-(cg ~g „/16b) H„H,

—(cg /16 b) H„H„

—,
' g', [1+(c/4b) (g,H „+g „H,)]

—(cg ig „/16b) H„Hi

(cg ig „/16b) H„H,

—(cg egg/16 b) Hy Hg

—,
'

g '„[1+(cg 'J4b) (H'„+ H,')]

(6)

This completes the first part of our calculation.
The orientation of an individual crystallite in a

powdered sample may be specified by the Euler
angles y, 8, and g. Equation (6) gives the sus-
ceptibility tensor in the crystal coordinate system
(x, y, z) and we must determine the corresponding
tensor in the laboratory coordinate system (x,
y, z ). The z' axis is parallel to the magnetic

I

field axis and is specified by the polar angles y
and 8; thus H„= cosy sin8, II, = siny sin8, H, = cos8.
The g degree of freedom corresponds to a rota-
tion of the crystallite about the magnetic field axis.
A vector r in the crystal coordinate system is
transformed into a vector r in the laboratory sys-
tem by the Euler matrix R; i. e., r =R ~ r, where
R is given by

cosy cos8 cosg —siny sing siny cos8 cosg+ cosy sing —sin8 cosg

8 = —cosy cos8 sing —siny cosg —siny cos8 sing+ cosy cos$ sin8 sing

cosy sin8 siny sin8 cos8

The susceptibility in the laboratory frame is then
given by

~p
Xs=R .Xs ~ R (8)

where R is the transpose of R.
The powdered specimen must have macroscopic

rotational symmetry about the magnetic field axis;
thus, the averaged susceptibility tensor is diagonal
with the basal plane components equal. It is then
sufficient to calculate only (y ~)„.„.and (y ~),... .
After some calculation we obtain

(c/4T) (g', cos'8+g, ', sin'8+ (cH'/4b) g', g '„)

1+(cH /4b) (g ', sin 8+8 „cos 8)

(c/4T) (g, sin 8+g „cos 8)
1+ (cH /4b) (g, sin'8+g „cos'8) (Sb)

We must now average Eqs. (Sa) and (Sb) over all
possible orientations of the crystallites. Thus

b
Xi= 2H2

cH ~ 1+(cH /4b) g,
4b " (cH'/4b) (g, -g „)

g =(y~)„.„.=(1/8v ) f f f (yz)„.„.sin8d8dydg,
(10a)

y„=(y ~). ..=(1/4w) f f (y~),... sin8 d8dy .
(10b)

Qn performing the above integrations, we obtain
2cH

+
4 g g
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xta,nh
~

g g" (1la)1+ (cH2/4b) g
'

b cH cH -1/ 2

XII 2 1 1+ g g (gg gn)
2 2 2

c 4b g', -g„11b
1+ (cH /4b) g ~~j

Expanding to lowest order in H, we obtain

2 1 2
C gi+ 2gu

3 T 4

2 2 22
+.. . , (12a)10 b 16

2 1 2

(H)
c g J. 2 gll=3
V

H2 4 1 2
g A+ 2 g J.g II + 8 g II (12b)

5 b 16

Equations (lib) and (12b) were given previously4 for
the case g„=0; for CMN the terms in g, may be
safely neglected. The equations reduce to the
usual Casimir-du Pre results for the case of an
isotropic g factor.

III. EXPERIMENT

Susceptibility measurements were made on sev-
eral specimens of CMN, each of which was in-
serted, in turn, into one of our standard thermom-
eter coil formers, which was aligned with the coil
axis in the horizontal plane. A description and il-
lustration of the unit has been given elsewhere, '
but some of the pertinent specifications are re-
peated. The coil system was made up of three
coils; the two inner coils comprised the secondary
and the outer coil the primary of a mutual induc-
tance. Each section of the secondary was wound

with No. 44 A%6 ML insulated copper wire and
was 1.78 cm long. The inner section had a mean
diameter of 1.43 cm with a total of 2040 turns; the
outer section had a mean diameter of 2. 03 cm with
a total of 1023 turns. The two sections of the sec-
ondary were connected in antiphase and were then
balanced at room temperature relative to the pri-
mary to one part in 3000. The primary was wound

of No. 40 A%6 ML insulated copper wire, had a
length of 3. 66 cm and a mean diameter at the cen-
ter of 2. 14 cm. The primary had compensating
windings at each end to produce a nearly uniform
field over the length of the secondary (which was
0. 5 cm longer than the specimen). The primary
field (-0.05 G) was scanned with a test coil and
was found to be 0. 8% lower at the end of the sec-
ondary than at the center, rather than 0. 1% as cal-
culated. The static magnetic field was provided
by a pair of Helmholtz coils which were mounted
on a crude goniometer; the axis of the coils could

be adjusted such that it was perpendicular or par-
allel with the axis of the thermometer coils. This
Helmholtz pair was calibrated to —,'% using a ro-
tating-coil gauss meter.

To make the measurements, a specimen was in-
serted in the thermometer coils and the apparatus
was then cooled to approximately 1. 1 K by pump-
ing on the helium bath. In the case of the single
crystal, the c axis was aligned in the direction
perpendicular to the plane of rotation of the Helm-
holtz pair so that there would be a susceptibility
for both field directions. After the drift rate of
the bath had diminished to about 0. 1 mK/min, the
susceptibility was measured in successively higher
fields applied both parallel and transverse to the
axis of the measuring coils. The susceptibility
bridge used was a modification of one proposed by
Maxwell and was operated at 1700 Hz.

Since X(H) ~ M(H) —Mo (where M is the mutual
inductance of the bridge) is the experimental quan-
tity sought, it was necessary to calibrate the sys-
tem in zero field for each sample used in order
to obtain the bridge constant Mo. The contribution
from the Van Vleck temperature-independent sus-
ceptibility is lumped into the constant Mo. ' lt had
been determined previously that Mo was indepen-
dent of the applied field. The calibration was per-
formed in the same manner as is customary for
establishing a temperature scale, although in this
case over a more limited temperature range. The
He bath was controlled at a predetermined pres-
sure and the temperature was determined by mea-
suring the vapor pressure of liquid He. A least-
squares fit of the bridge reading M to 1/T yielded
the constants Mo and A in the equation

M =A/T+Mo .
For the frequency used, ~v» 1 up to 1.6 K, the
maximum temperature of the calibration, so that
the susceptibility was truly adiabatic.

Measurements were made on a sphere of com-
pacted powder, a single crystal, and a cylinder of
loose powder. The sphere was 1.270 cm in diam-
eter and was machined from a cylindrical com-
pact made of 80-vol% CMN and 20-vol% reagent-
grade AgCl (& 10 ppm Fe). The single crystal was
a slab 0. 5x l. lx2. 2 cm; the loose powder was
from the same material used for the compact but
no AgCl was added. The packing fraction of the
loose powder was not in excess of 0.65. The CMN
was prepared from reagent-grade Mg(NOS)z ~ 6HzO
and the best commercial Ce(NO~)3 ~ 6H~O, which
contains about 1% other rare ea, rths, principally
La. The stoichiometry was established to 1% by
analyzing for Mg and Ce (i. e., total rare earths).

The data for the various specimens are plotted
as (Xo —X)/X vs c H /b; here we have defined
c'-=,'~grec where c /R=3. 82x10 9 G K . We have
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FIG. 1. Low-field plots of )((H =0)/)((H) —1 vs
c'II~/b for a single-crystal slab, compacted-powder sphere,
and a loose-powder cylinder. Thesolid lines show the ex-
pected theoretical behavior. The upper and lower por-
tions of the figure show, respectively, the behavior of the
susceptibility measured parallel and perpendicular to the
static field H.

and experiment for powders were made with Egs.
(1la) and (lib) rather than with the power-series
expansions given in Eels. (12a) and (12b). With the
field applied in the parallel direction, the reduc-
tion in susceptibility is smaller than calculated,
whereas with the field in the transverse direction
the effect is greater than calculated. Careful tests
were performed to rule out the possibility of mis-
alignment between the measuring field and the ap-
plied field. A measure of the precision can be ob-
tained from the fact that the correction for the
earth's magnetic field deduced from the data, 0. V8

G, was in excellent agreement with the measured
value 0. 8 G. To eliminate the possibility of spuri-
ous signals, the susceptibility was measured at
4. 2 K in a field of 105 G applied in the parallel and
transverse directions. Since ~v«1 at this tern-
perature, no field effect was expected and none
was observed.

We wish to reiterate that the loose powder and
the compacted powder with AgCl gave the same
results. Thus, a rotation of the crystallites by

IO

taken gal= 1, 84 and g, ~

=0 Figure 1(a) illustrates
the parallel and Fig. 1(b) the perpendicular compo-
nents of the susceptibility at low fields. The cor-
responding high-field data are illustrated in Figs.
2(a) and (2b), respectively; here H is the applied
field, and b is the leading term in the magnetic
specific heat, C„=5/T + ~ ~ ~ . We have used the
single-crystal data to determine b and find 5/R
=(6.16+0.1)x10 K . The value of b given by us
in a previous publication was 6.4x10, which is 3%
greater than the one given here. However, the
previous value was determined on a powder over
a more limited range of field; the new value 6. 16
x 10 is, therefore, to be preferred. This value
is also in excellent agreement with the recent val-
ue 6. 10&& 10 quoted by Hudson and Pfeiffer,
which was obtained by thermal techniques.

One can see from Fig. 1 that the single crystal
follows the Casimir-du Pre relation very well in-
deed. Further, there was no transverse field ef-
fect for the single crystal, as is to be expected
from the theory. The data for the compacted and
loose powders agree with each other but do not
agree well with the theory for values of cH /b
greater than 0. 3. All comparisons between theory
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FIG. 2. High-field plots of X(H=0)/X(H) —1 vs
c'H2/b for a single-crystal slab, compacted-powder
sphere, and a loose-powder cylinder. The solid lines
show the expected theoretical behavior. The upper and
lower portions of the figure show, respectively, the be-
havior of the susceptibility measured parallel and per-
pendicular to the static field H.
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the static field would appear to be ruled out,
since no such rotation is possible for a compacted
powder with a binder. Further, the effect of the
parallel and transverse fields is in the opposite
direction for a simple correction. The fact that
the single-crystal results agree with theory would
argue against some peculiarity of the CMN itself
(e. g., spin-lattice relaxation anomalies, 0 rare-
earth impurities, etc. ). Any discrepancies due to
a difference between 8 and II should be negligible

because of the small magnetization at the tempera-
tures used here. The deviation of the experimen-
tal results on the powder from theory cannot be ex-
plained at this time.
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Crystals of calcium fluorophosphate Ca~p(PO4)6F2 have been grown from melts of various.
compositions. Optical and ESR measurements have been performed on samples before and
after various treatments such as a uv irradiation and a thermal quench. Two kinds of defect
centers have been detected: color centers produced by the irradiation, and more basic de-
fects present in the samples before irradiation. The identity of two of these basic defects has
been established and their role in the formation of the color centers has been deduced.

I. INTRODUCTION

Calcium fluorophosphate, often referred to as
FAP, crystallizes in the hexagonal apatite struc-
ture and has a unit cell with the formula
Ca,o(PO4)SF2.

' It has been investigated extensively
partly because of its commercial importance as the
phosphor in most fluorescent lamps and partly be-
cause of the richness of its defect structure and its
color centers. Single crystals can be prepared by
melt- or flux-growth techniques, while powder
samples similar to those used in lamps can be pre-
pared by solid-state-reaction techniques. Optical
measurements made on such crystals or on pow-
ders show strong absorption in the uv region of the
spectra near 250 and 190 nm which is not a prop-
erty of the perfect crystal since its strength is

found to vary from sample to sample. ' Owing to
the magnitude of the absorption, it has been at-
tributed not to trace impurities but to lattice de-
fects or to some common impurity like oxygen or
hydroxyl which might be incorporated in large amounts.
Previous attempts to control its strength have been
successful in powders but not in single crystals.

Efforts have been made to identify the center
(hereafter called the X center) responsible for the
absorption at 250 nm (called the X band). John-
son, Swank, and Piper, Kravitz, and Swank have
exposed crystals of fluorapatite to radiation from
an x-ray source and have been able to partially
convert the X center into various new defects.
ESH measurements have been very successful in
identifying many of the paramagnetic defects made
and can also be used to reveal the complex interac-


