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The zero-frequency limit of the second-order nonlinear optical susceptibility xg,)2 is cal-

culated within the framework of energy-band theory. Both vector and scalar potential repre-
sentations of the electric field are investigated. The apparent divergences of standard
finite-frequency expressions in the limit of zero frequency are shown to vanish. The two-
and three-band contributions in the scalar potential representation, describing the electric
field effect on the coherent (phase factor) and cell-periodic parts of the Bloch function, re-
spectively, are shown to combine as required by gauge invariance to yield the result obtained
in the vector potential representation, where only three-band terms contribute. In crystals
of zinc-blende symmetry, virtual electronic processes involving one valence and two con-
duction bands, originating from the I';; valence and I'y and I'y; conduction states at k=0,
dommate virtual-hole processes involving one conduction and two valence bands. The sign
of X123 is related to the Brillouin-zone average of the ordering with respect to energy of the
lowest conduction bands. The magnitude of xi is related to the average over the Brillouin
zone of the inverse fifth power of the local energy separation Ec,,(lz) between the valence and
lowest conduction bands, in contrast to the inverse third power average of the same quantity
known for the linear susceptibility X', This enhances the contribution to Xx } from small-
gap regions of the band structure in a manner similar to that also found for x @, The value ofxim
calculated for zinc-blende crystals in both the constant energy gap and the parabolic critical-
point models is consistently lower than that observed experimentally. Extended calculations
using more realistic analytic approximations to the local energy-band structure suggest that
this discrepancy is due in part to band nonparabolicity effects with additional contributions
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from enhancement of oscillator strength from the electron-hole Coulomb interaction.

I. INTRODUCTION AND SUMMARY

The second-order nonlinear optical susceptibility
x,f?,)z(wl, w,) is a third-rank tensor whose dispersion
properties have been developed within the frame-
work of both localized wave functions'™® and band
theory. ®=** Although its zero-frequency limit x{)
in the bonding orbital picture*~!® now appears to
be well understood, the corresponding limit in
terms of energy-band theory, the complement of
bond theory, is not clear. Standard finite-frequen-
cy expressions!'” appear to diverge strongly as the
zero-frequency limit is approached, and approxi-
mate nondivergent expressions, 1718 with the ex-
ception of the bond charge model of Levine,® re-
strict x{Z, to positive values in contrast to experi-
mental results.!® In addition, the relationship
among various two-band and three-band expressions
obtained in scalar potential or vector potential
representations of the electric field perturbation is
confusing. Phillips and Van Vechten!? obtained an
expression, later modified by Kleinman, ¥ based
primarily on the two-band contribution of the scalar
potential representation, whereas Bell!! obtained an
expression using only the three-band term of this
representation. Yet in the vector potential repre-

sentation, only terms of three-band form contribute.

The objective of this paper is to obtain an explicit
expression for x!& for zinc-blende crystals in both
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scalar potential and vector potential representations
of the field perturbation in order to investigate
these questions and to examine x{; in terms of band
theory. We use the one-electron and dipole approxi
mations, taking Bloch functions as basis states and
expressing x{Z} in terms of momentum matrix ele-
ments and energy eigenvalues. Energy bands are
assumed to be either filled or empty, and only the
electronic contribution to xfgé is treated. The exact
zero-frequency limit for XSL in the one-electron
approximation is obtained in Sec. II from the gen-
eral expressions obtained by Butcher and McLean. "
Following this, we restrict our attention to xZ} and
obtain this quantity in the scalar potential represen-
tation. The results show the following: (i) The di-
vergences which arise in taking the zero-frequency
limit of the general expression x{2)(w;, w,;) vanish
identically owing to symmetry, leaving a well-be-
haved expression. (ii) The two- and three-band
contributions in the scalar potential representation
have opposite signs, but the two-band contribution
is always larger. (iii) The apparent contradiction
that a two-band term arises in the scalar potential
representation but not in the vector potential repre-
sentation is one of form only—the two-band term
(representing the electric field effect on the coher-
ent or phase part of the Bloch functions) simply ex-
presses in closed form a summation over a third
band by introducing a k-space gradient operator.
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(iv) Three-band processes are of two complemen-
tary types—virtual-electron transitions from a
valence to two conduction bands, or virtual-hole
transitions from a conduction to two valence bands,
both of which may be treated within the same for-
malism although typically only the virtual-electron
process is significant. (v) The sign of xg?, is re-
lated to the Brillouin-zone average of the ordering
with respect to energy of the lowest conduction
bands. (vi) The contribution to x{} at any given
wave vector K is nearly proportional to the inverse
fifth power of the valence- to lowest conduction-
band energy separation, except for regions of very
small separation when the contribution is nearly
proportional to the inverse fourth power of this en-
ergy separation. Point (v) shows that xg; can have
either sign, and because y{2} is a three-band quan-
tity (unlike x{}’ or x{3,,), it contains information
about the average relative ordering of the conduc-
tion bands. Point (vi) shows that the contribution to
X% from small band-gap regions is enhanced with
respect to the contributions from the same region
to the linear susceptibility, where the band average
is over [E.(k)]™®. {Note, however, that since the
average of [E, (k)] must be taken over the entire
Brillouin zone, there is no simple power law relat-
ing x) to the fundamental direct gap or to any other
feature in linear optical spectra.} Point (vi) also
shows that x{2) is relatively insensitive to features
of the higher conduction band and thus behaves in
many respects as a two-band function.

In Sec. III, we apply this expression to crystals
of zinc-blende symmetry using the constant matrix
element approximation. We are interested here
only in general properties, so xg; will not be
evaluated from detailed band-structure calculations,
but rather will be evaluated approximately in the
constant energy gap model, 1'®11'17+18 extended to
include explicitly the contributions of high-symme-
try regions by means of parabolic approximations
to the actual band structure.?°~% Here, the domi-
nant contribution to ¥} comes from virtual elec-
tron transitions involving the upper valence and
two lower conduction bands, arising from the sp®
states of I'y5 (valence), T'; (conduction), and T’
(conduction) symmetry at K=0. If the band trans-
forming as T'; lies on the average between the other
two, as is the usual case, then y{2} is positive.
These simple models enable X2} to be calculated
with no adjustable parameters, but the theoretical
values obtained are consistently smaller than ex-
perimentally measured values, as has also been ob-
served for x{3),.% We show for GaAs that this dis-
crepancy is reduced by extending the simple para-
bolic models to include band nonparabolicity and
Coulomb effects into the density of states. Whether
nonparabolicity and Coulomb effects would account
for the entire discrepancy can only be decided in a
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detailed calculation of x{g; using an accurate ener-
gy-band structure. Other possible corrections,
and the connections to previous models, are dis-
cussed in Sec. IV,

II. THEORY

The zero-frequency limit x{5 of x%(w,, w,) can

be calculated directly from perturbation theory,
where the electric field may be represented either
as a vector potential or as a scalar potential with

a time dependence e, n—0*. Alternatively, exist-
ing expressions’ for x{%(w,, w,) obtained in the
vector potential representation may be evaluated
using the complex frequency w,=w, =41, N-0*.

The turn-on parameter 7 is needed for investigating
the behavior of various orders of divergence as
n—-0.

A. Vector Potential Representation

We evaluate explicitly the zero-frequency limit
of the expression obtained by Butcher and McLean’
to describe the second-order conductivity relating
the crystal current component J,(¢) to two applied
fields represented in component form as &§,,e™'“1?
and &,5¢7*“2" respectively. In their paper, the
results are summarized in Eq. (25) and the discus-
sion preceding Eq. (37). The two fields become
identical in the zero-frequency limit, where w,=w,
=17, and are represented by the vector potential

K(t)=- (c/me8e™. (2.1)

The crystal polarization P(¢) is the time integral of
the current. In the one-electron dipole approxi-
mation, following the component notation of Butcher
and McLean, "

X(Z) (n)z_ e: 5 (Pﬁn(Pgln"Pﬁ'v‘*Pgn’P.g'v)
wob am3nPV e \(E,, — i27M)(E,.,— ifn)
+ P#n' (Pg'vP5n+P5'vP:‘n)

(Epoy — i7N)(E , + i)

(2.2)

+Pr‘:’u(P3‘nP5n’ +P5npgn') >
(E oy +127M)(E,, + i71)

In terms of the one-electron Bloch wave functions
In, k) we see

P%,=&-(n'K |P|#nK) (momentum matrix element),
' (2.3a)

Ep,=Eu(K)- E,(K) (interband energy). (2.3b)

The only restriction on Eq. (2.2) is that the valence
state |v, K) shall be occupied. If all three states
lv, k), In, k), and |n'k) are occupied, their total
contribution is identically zero. Therefore, at
least one of the indices #, ' must correspond to
an empty conduction band, but otherwise » and »n’
can range over all bands in the crystal (including
v). It follows directly that the only two possible
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processes, one involving a virtual hole (conduc-
tion-valence-valence or cvv), and the other a vir-
tual electron (valence-conduction-conduction or
vce), can be expressed in complementary terms in
the same formalism. The third-power divergence
of the prefactor as 7—0 in Eq. (2.2) is character-
istic of the vector potential representation of the
electric field,

Let the ground state of the system consist of
filled bands and let no magnetic fields be present.
Then, by time-reversal invariance, for any point K

ie’n

(2 Epey+ B )PE (P2, P2+ PR P% )
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in the Brillouin zone and for any band pair (z’, =)
having an interband separation energy E,.,(k),
there must exist a second band pair (m’, m) such

that?®

Epin(K)=E (-F), (2.4a)

ﬁm'm(E):—ﬁnn’(_ E)- (24b)

When this symmetry is included explicitly in Eq.
(2. 2) by manipulating the dummy indices # and n’,
we obtain

- Env)Pr‘an' (Pg'vpfn + Pﬁ'vpr‘)xn)

@) __
Xuaﬁ(n)‘ 4772m3V Uﬂl{l' < (Eﬁ'v““ hiaf)(g\nzv L4 ﬁ?n2 )

(En'v
T (B, PP NES, + 1)

_ (En'v+ ZEnU)P#'v(pg‘npgn' +PSnPZ‘n:) (2 5)
(B, + 4180 )(ES, + 507 T

@)

Note that the prefactor now diverges only as 7. A short calculation shows that X 1S real, and that the

one-band (n=%'=v) term vanishes identically regardless of crystal symmetry.

For crystals of zinc-blende
@) _ @)

symmetry where there is only one nonvanishing component x.j;= xi23, both the field and the polarization are
parallel in the (111) bonding, or &, direction.!! In this case we may take u=a=f=£, and the two-band

(n'=n#v;, n'#n=v; n+n’=v)termsalso vanish identically. Therefore, only the three-band (n'#n, n’#v,
n#v) terms contribute in zinc-blende crystals when the electric field is represented as a vector potential,
a consequence of the dipole approximation and the fact that otk w,; and w, approach zero in the general ex-

pression,
2
When Ej, ,
diverging term
ie*n

X&s(n—~0)=— T

vap’
k

and a well-behaved term

@ ie3n®

E,zw > 72~ 0 in Eq. (2.5), the energy denominators may be expanded, giving a quadratically

’ - -
Z; Engv Eni (ZEn’v“’Env)Pgn(Pﬁ‘n'Pﬁ'v +P5n'P:’v) - (En'v_ Env)P#n'(Pr?’vPSn+Pﬁ'vptaztn)

- (En'v+ 2Env)P:"v(PgnP5n' +P5nsz‘n')] (2' 6)

’ - -
XuaB:"‘m Z; EnéuEng[(ZEn'v'*Env)(4E§l'v +Env)P5n(P:n'Ps‘v+Pﬁn'P:"v)

van’
E

- (En'v - Env)(Ei'v + Eﬁu)pﬁn‘ (P:"vpgn+ Pﬁ'vpgn) -

The primes on the summation signs indicate n '#n,
n'#v, and n#v. The quadratically diverging term
is clearly nonphysical unless the bracketed part
either vanishes point by point or in summation.
This term vanishes point by point for zinc-blende
crystals as can be seen by setting p=a=B=§. Pre-
sumably, both this term and the two-band contribu-
tion from Eq. (2.5) should always either cancel
each other, or else vanish in summation over K,
but we have not found a way to prove this for an
arbitrary crystal class.

The well-behaved term, Eq. (2.7), is the correct
zero-frequency limit of 2, Its form may be
greatly simplified for crystals of zinc-blende sym-
metry, by evaluating it in the bonding direction &.
For sign consistency, let £ represent the positive
(111) orientation of the electric field [electric field

(Epry + 2E,, (B2, + 4E,, )Pl (PLPE . + P2 P2L)].

(2.7)

[

pointing from the metal atom at — % ay(1, 1, 1) fo the

anion at ++ay(1, 1, 1) in the unit cube in standard

coordinates'*]; then p=a=B=£, and xiZ} is given by

x&=3V3x2, (2.8)
where?*
3?:63%3 ’ ¢
Xﬁ; = +W n%i Pvn me'Pf'x’v
£

E,.
X(ﬁ— (2E% ,+ 3E 0 Ep + ZE?W)) . (2.9)
n‘v nv

Equation (2. 9) is different from the explicit band-
structure expressions previously obtained by Butcher
and McLean” and by Bell, ' which is not obvious
here but which will be shown in Sec. I B.?2®
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B. Scalar Potential Representation

In this section, we consider for simplicity only
the term x5}, and rederive Eq. (2.9) in the Coulomb
gauge where the electric field of Sec. II A is repre-
sented by a scalar potential — § -Xe™, n—0*. By
the invariance of the Hamiltonian to gauge trans-
formations, it is clear that the final result must be
the same.?® Nevertheless, the scalar potential
representation leads directly to nonvanishing con-
tributions from both two-band and three-band terms
in contrast to the results of Sec. II A where only
three-band terms remain. This apparent contradic-
tion is due to the intraband transformation proper-
ties of the dipole matrix element (n'k’|X|nk) be-
tween Bloch states, and has resulted in confusion in
the correct expression for xﬁg in the zero-frequen-
cy limit in the Bloch function representation. We
show here why the previous zero-frequency expres-
sions obtained by Butcher and McLean’ and by Bell™
are not complete, and do not agree with the correct
expression given by Eq. (2.9).

The one-electron wave function ¥,g(¢) evolves
from the unperturbed Bloch eigenfunction | nky et nit
of the Hamiltonian H; under the action of the per-
turbation term

H'=+e§0-§e"‘, n—-0* (2.10)
according to

Dopt)=[12 GO H'+ GRH'GGH' + +++ ||nk e ™nkt

- (2.11)
where
Gz=1/(Buz+ilm - Hy) (2.12a)
GY%=1/(Ez+ 2in—- H,y) . (2.12b)

The second-order susceptibility can be calculated
by evaluating the polarization operator directly to
second order in 30:

B Z Gl %)

:X(l)'§+l<(2):_gg+"" (2.13)
We find
(@) el K |xt| 0k’
Xeer (M) === 2 (kg |xt[nk ")
. Uipan!
koo Ry k!, RO

xR’ |8 |0 K"y K" |t |vk)
X[(Eyp — Epz— i27m) YE 00 — Epg— irm)™!
+ (B g = Eygy + i) N(Epger = Ejg— ilm)™

+ (EnE’ - Evfo +ihn)-l(En’K" - Evi0+i2h’n)-1] .
(2.14)
Note that the prefactor is well behaved in the limit
n—0, in contrast to the result obtained in the vector
potential representation,
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The form of Eq. (2.14) has been influenced by the
fact that matrix elements of X in the Bloch function
representation are not well defined, since Bloch
functions are eigenfunctions of the momentum
operator and extend in principle over all space.
The meaning of interband Bloch matrix elements of
X can be interpreted by taking the expectation value
of the commutator identity [x, H]= (i%/m)P. Intra-
band matrix elements can be determined either by
direct evaluation from the Bloch form e'¥%, (K, X),
or, alternatively, by using the definition of the
group velocity B,,(K)= (/m)V;zE,(K) with the above
commutator, One finds?’

s&"—(i{—)— dpep, n'#n (inter) (2. 15a)
'k | % |nk) ={ M@nnlk)
2 +i0pd Ve A(K’, K)], n'=n (intra)

(2.15b)
where f(K’, K) is the function of K and K’ multiply-
ing the matrix element, and the 6 function is evalu-
ated following differentiation. Equation (2. 15b) re-
quires that the wave vectors K belonging to the
(same) states (¥, and |¥,,) appearing in Eq. (2.13)
be individually distinguished. We do this by adding
a subscript 0 to the wave vector of the left-hand
state. The final 6 function between K and EO which
results is eliminated by the extra sum over EO in
Eq. (2.14).

Using Eqs. (2.15), we obtain from Eq. (2.14) the
following contributions, listed in order of increas-
ing number of contributing bands.

a. One-band term., We find

3 3
ngl:_ﬁfnfvz -a%?_ EnE-

-

nk

(2.186)

This is the low-frequency limit obtained by Butcher
and McLean.” This term diverges as the third
power of 7 if the sum is finite, but since the bands
are either filled or empty, the summation over K
vanishes identically. The analogous result in the
linear susceptibility is well known, where it leads
to the Thomas—Reiche—Kuhn sum rule in the Bloch
representation.?® Since this term vanishes iden-
tically for filled bands, it does not represent the
true zero-frequency limit except in nonequilibrium
situations which cannot be treated in perturbation
theory but require the use of the Boltzmann equa-
tion, The sum of all third-power divergent terms
which would have arisen in the vector-potential
representation if time-reversal invariance had not
been used in Sec. II A, could have been transformed
into Eq. (2.16) through the use of sum rules.
Therefore, the zero-frequency limit of ) obtained
by Butcher and McLean is not complete.

b. Two-band terms. The three possible com-
binations of two-band terms (' #n=v, n'=n#v,
n#n'=v) can be transformed by straightforward
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but tedious calculations into the following form:

3e’n ) (mewa
27]7}’[ név akf Eiv >

_387 s [Py 8 (P
zmz n¥v it Env 8k5 Enu
k

8P\ P
—(’%‘—Im)—é—"—] . (2.17)

nv

Xeer, () =

Both terms are real. The first term diverges as
n”! but for filled bands the summation vanishes.
The second term is well defined in the limit n—-0
and does not vanish: It is the second-order analog
of the term which describes the perturbation limit
of the Franz—Keldysh effect in third order,® and
represents the contribution of the phase factor or
long-range coherency part of the Bloch function in
the scalar potential representation of the electric
field.

It is surprising in view of Eq. (2.9) that a two-
band term should contribute. This apparent con-
tradiction can be resolved by explicitly evaluating
the gradient operator by means of E-ﬁperturbation
theory. We find?®’

¢} wa 3E,, _Z_f /Pl ; 1 1
ok, Pf’”__E"U ok, m :‘:’ Pt Epn " Epy)

(2.18)
1t follows directly from Eq. (2.18) that the ex-
panded form of Eq. (2.17)is

3ie’n®
Xikty =+ 37

’ - - £
Z Pﬁnpfm'va'v[En’ln<En"lv +En3)

’
n' v,
|3

+ELEZ (EZ - EZ)]. (2.19)

n=n'v\~ny n'v

This is a three-band expression. The operator Vv,
simply represents in closed form a summation
over a complete set of intermediate states, and the
contradiction is resolved. This is a “new” term
in the sense that it has not been included previously
in Bloch function representations of x®,
¢. Three-band tevm. The only three-band
term in the scalar potential representation is in-
dependent of 1 to lowest order and can be written
;53
ngg; =+%§,§5§ 'Z ' Pinpfm'pi'n[E;}n(_ ZE;?‘,E;E ] .
n" v
k (2.20)
This term is also real, and this is the term con-
sidered by Bell, ' Its sign is opposite that of Eq.
(2.19). Note that the term in parentheses in Eq.
(2.20) completes the square of the first term in
parentheses in Eq. (2.19), so that the “two-band”
contribution is always the larger of the two and de-
termines the sign of the complete expression. A
quick calculation shows that the sum of Egs. (2.19)
and (2. 20) is equal to Eq. (2.9), demonstrating
gauge invariance explicitly.
The relative contributions of the “two-band” and
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“three-band” terms to sz, are shown in Fig. 1.
The curves plotted are the square-bracketed parts
of Eq. (2.19), Eq. (2.20) times — 1, and Eq. (2.9),
each multiplied by the smaller gap (either E,, or
E,,) to the fifth power. The sign of the curves in
Fig. 1 assumes that E,,, E,, >0 (vcc or virtual-
electron process) and that E,, is the smaller gap;
if E,., were smaller, then each expression would
reverse its sign, and the sign of the ordinate scale
in Fig. 1 would also have to be reversed. The
point of Fig. 1is to demonstrate that neither a
two-band nor a three-band model will be adequate
enough to completely describe 2} in the scalar
potential representation, although there exist cer-
tain ranges where each is approximately equal in
magnitude to the exact result (if one is willing to
ignore the fact that cince two- and three-band con-
tributions have opposite sign, then one of the two
must have the wrong sign). It is also interesting
to note that for the range which is physically in-
teresting in most crystals, 1.25<E,.,/E,, <2.3, the
total is equal to 1 within 10%. In this approxima-
tion Eq. (2.9) becomes

3ie’n® v+ PLPL.PL E,
@) ~ E vnt nn'Lny n'v .
= e 0 1,25< 22 <2,3;
Xese zmav n'yp,0 E?:v Env
K (2.21)

i.e., we have the remarkable result that the exact
value of the larger gap is relatively unimportant
(except for lying within the given limits), and that

\ -
\
! \
! \
! Wt
4 M. TWO-BAND
\ .
\ \\
\ Y
+ ~
— \ \\\ —
\. = = ~ ~
\ 9
X TOTAL

o} 1 | 1
1 2 3
Env/Eny (Eqy/Eqly)

FIG. 1. Relative contributions of the two- and three-

band parts of xf.%; to the total expression in the scalar

potential representation.
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the contribution to x{; is proportional to the in-
verse fifth power of the smaller gap at any given
wave vector K of the Brillouin zone. We note that
it E,.,<E,,, then E,., and E,, must be interchanged
in Eq. (2.21), and the entire expression multiplied
by — 1. Thus the magnitude of x® is a measure of
the band average of the inverse fifth power of the
energy gap between valence and lowest conduction
bands, and its sign depends on the relative average
ordering of the two conduction bands » and n’. We
note, however, that these relationships are strictly
valid only if the momentum matrix elements are
independent of l_f, which is a good approximation in
small-gap regions of the Brillouin zone. In Sec.
III, we show that the band n corresponds to the
singly degenerate conduction band in crystals of
zinc-blende symmetry, and since this is normally
the lowest-lying conduction band, x®’ is positive in
agreement with experiment.

The above discussion assumes a vcce virtual-
electron process, for which Eqs. (2.9) and (2. 20)
apply directly with the condition that » is a filled
band and both # and #’ represent empty bands.
Here, both orderings of intermediate states (n-#’
and n’-n) give identical contributions since both
matrix element product and energy terms change
sign in Eq. (2.9) with interchange of » and »’. For
cvv virtual-hole processes where v and n=v" are
filled and #’ is empty, then the sum over both
valence bands for a given ordering results in the
exactly the same expressions, but with a minus
sign:

N 3ie’n® » PP P
£t 23V g E* B,

X Eyo(2E% +3EE e +2E,,0)  (2.22a)

. 3ie'n r PP P, E,,
eV o T B, NP E, <23

nyy,v°

k (2.22b)
where E,, is the larger gap, for each conduction
band n. Thus, the above discussion concerning
signs, representations of the electric field, and
two- and three-band contributions, also applies to
virtual-hole processes.

We note that Eq. (2.9) can also be obtained di-
rectly from the third-order correction to the ener-
gy, given by stationary-state perturbation theory®:

E® :;—i‘;s— 888 T
4 n’ ,{.v

R 2 |0 TRy = (R |t |0k
E,,

1t | iy L
((vk|x |nk)Em)

— Gy ) 23 ] |v§><vﬁ|xflvﬁ>)
nv

= - 8848, (2.23)

where n#v and n'#v. The matrix elements are
evaluated with the help of Eqs. (2.15), using the
convention that the operators v, from intraband

‘matrix elements operate rightwards only. Thus,

the second term vanishes identically in summation
over the Brillouin zone. By using the identity

P P1
Z} v (——!ﬂ —m ) =0
13 K Env Env —b?l:

the two-band (#'=n) contribution from the first
term is seen to be equal to the two-band contribu-
tion given in Eq. (2.17). Since the three-band
(n'+n) term in Eq. (2.23) is identical to Eq. (2.20),
the result follows. This method is suggested for
obtaining the band formulation of x*®.

III. APPLICATION: CRYSTALS OF ZINC-BLENDE
SYMMETRY

Equations (2.9), (2.21), and (2, 22) represent the
main result of Sec, II, simplified to describe
crystals of zinc-blende symmetry. In this sec-
tion, we apply them to various crystals of zinc-
blende symmetry, calculating sp®-band contribu-
tions to x{%) in a constant energy-gap model ,1*8-11+17:18
and also calculating the relative contributions from
the regions I" and A in the Brillouin zone by means
of approximate analytic expressions for the energy
in these high-symmetry regions, 2722 The calcu-
lated sign is found to be in agreement with experi-
ment, but the theory consistently underestimates
the observed values of xg; Possible reasons for
this are discussed in this section and also in Sec.
Iv.

The tetrahedral bonds of zinc-blende crystals
are formed primarily from the sp® orbitals of the
constituent atoms, and give rise to energy bands
which transform at k=0 as I'; (valence v'), T'y;
(upper valence v), Ty (conduction c), and TI'y5 (up-
per conduction ¢’), in the usual order of increas-
ing energy.® Flytzanis and Ducuing* have sum-
marized the reasons why y{Z should be related
mainly to these orbitals in the bond picture., Simi-
lar conclusions are obtained in the band picture by
noting that remaining bands tend to be relatively
far removed in energy from those generated from
these orbitals. The three-band form of Egs.

(2.9) and (2. 21) represents no limitation since the
bonding and antibonding combinations of sp® orbit-
als always results in more than three bands in any
crystal, The results discussed here are not ex-
pected to apply to crystals where d bands hybridize
substantially with the sp® bands.
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Since detailed band-structure calculations are
not available over the entire Brillouin zone, ap-
proximations must be made. We use the standard
assumption that the momentum matrix elements
are constant over the entire Brillouin zone and
equal to their value at T'. Bell has discussed the
validity of this assumption and has pointed out that
it is equivalent to the constant matrix element ap-
proximation in the theory of the linear dielectric
constant. These matrix elements are calculated by
constructing the zinc-blende wave functions from
the basis wave functions of a fictitious homopolar
semiconductor by means of a perturbing antisym-
metric potential; the solution is straightforward
and worked out in detail elsewhere. 323 The re-
sults can be expressed in terms of the zinc-blende
matrix elements

wlpley=P,,=+iAP, (3.1a)
<U‘p‘c’>:Pvc':—iQy (31b)
lelple”y =Py =+iAPV/W,, (3.1c)

where P and @ are the momentum matrix elements
between the I'y5. valence band and the I'; and T'y5
conduction bands, respectively, of the fictitious
homopolar semiconductor; V is the matrix element
of the antisymmetric potential between the TI'y;
valence and I'j5 conduction bands, and if E is the
Ty5. — I')5 energy gap, then

W,=+{E+[E*+ @V ]2},
A=[1+ (V/W P,

(3.2a)
(3. 2b)

All quantities P, @, and V are positive in standard
coordinates [anion at gay(1, 1, 1)]. Mixing of the
T, valence and T, conduction band in the homopolar
semiconductor is assumed negligible, Following
Bell, we assume that P, @, and E depend mainly
on the lattice constant ay and are given for all
materials by means of a suitable interpolation from
their values in Si, Ge, and «@-Sn:

P=(7.15a5/ay)li/ag , (3.3a)
Q=(0.365+1.65a,/ag)li/ay , (3.3b)
E=(9.02-0.55a,/ag) eV, (3.3c)

where ay is the Bohr radius. V is determined
from Eq. (3.3c), and from the observed value of
the E | transition energy of a particular crystal by
means of the equation

V=4 [(Bof - B2, 3.4)
In the constant matrix element approximation,
only three-band combinations of I'jz;— I'j5— I'; sym-
metry will contribute to x{Z}, which restricts atten-
tion to the virtual-electron process vee ' and the
virtual-hole process c’v'v. By Egs. (3.1) and
(2.9), either will give a positive contribution to

X&) only if the T, band lies on the average between
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the I'j5; bands, Therefore, the ¢’v’v virtual-hole
process always results in a negative contribution,
but since typically E,., > E., the normally positive
vee’ virtual-electron process dominates by over an
order of magnitude (except possibly for SiC, where
E,. is probably small®*)., We consider explicitly
only the virtual-electron process vee’. In this
approximation, note that the momentum matrix
elements are completely determined by experimen-
tal measurements,

The simplest approximation to the interband en-
ergies is to replace their detailed variation with
constant average or effective gaps®® 1718 defined
so that the linear dielectric constant €,(0) is un-
changed. For most zinc-blende crystals, the low-
est conduction band is that arising from the T, state
at K=0. In this crude model it is justifiable to
neglect the remaining conduction bands and define
the constant energy gap E by

4’ 5 2PLP,

€1(0)"1:W ot m (3.5a)
5 64ne’i?P?
T e 3.5b
T2 3may E° ( )
In Eq. (3.5b) we have used
P =(1/V3)(P* 4+ P¥+ P?), (3.6)
A/ V2,1=8/a. 3.7

The factor of 3 arises from the assumption that the
lowest valence band I'; contributes nothing, and
that the lowest of the three valence bands of I'j5
symmetry at K=0is sufficiently lower in energy so
its contribution is half of each of the other two.
The factor of 2 for spin degeneracy has been in-
cluded in Eq. (3.7). Values of ay/ay, €,(0), E, and
the average gap E, calculated by Van Vechten® are
given in Table I for each of the nine zinc-blende
crystals for which {2 is known. E and E, do not
differ by more than a few percent for any crystal
in Table I (this is also true for the remaining VI,
III-V, and II-VI materials listed by Van Vechten;
the poorest agreement occurs for the four II-VI
compounds listed in Table I, mainly because Van
Vechten explicitly takes the d-shell contribution
into account while we do not.) Average gaps can
be defined in several different but physically rea-
sonable ways®*~3%; our point here is that the average
gap E obtained via momentum matrix elements, the
k-space volume, and the restricted use of the sp®
orbital bands agrees well with the average gap E,,
and therefore to interpret E as a dominant average
gap appears reasonable within this model.

A straightforward calculation using Eq. (2.21)
with the preceding model yields

@ 20e’7®

14
X123 =+, 3 5% F AZPZQWC (3. 8a)
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TABLE I. Comparison of the experimental and theoretical values for xf%; calculated in the average band model. The
energy E is the average energy obtained from €;(0). E.y is the average energy obtained from the experimental values
of Xg%
X3} (expt)® X3 (calc)
Crystal ag/ag® €2 Ey(eV) E (eV)* E(eV) E g0 (€V) (107% esu) (107 esu)
GaAs 10.684 10.9 4,44° 5.19 5.00 4,20 90 38
InSb 12. 242 15.7 3.16° 3.74 3.49 2.79 330 110
GaP 10.300 9.1 4,78° 5.74 5.68 4,88 52 24
GaSb 11.561 14.4 3.27° 4,08 3.96 2.92 300 70
InAs 11.406 12.3 4, 44° 4.58 4,29 3.41 200 64
ZnSe 10. 710 5.9 7.84 7.06 6.30 5,84 22 15
CdTe 12,246 7.2 5.3 5.38 4,66 3.91 80 33
ZnS 10,222 5.2 8.4° 7.84 7,17 6.46 17 10
ZnTe 11.510 7.3 7.84 5.76 5.14 4.21 73 29

2Reference 35.

PData tabulated in Ref. 18 [see note added in proof at
end of Sec. IV].

M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys.
Rev. 154, 696 (1967).

= +—§§%@ xé%’AzQ—W‘E. (3.8D)
The same valence-band contribution assumed in

Eq. (3.5) has been used in Eqs. (3.8). In standard
coordinates V>0, so x23>0. Values of x\z calcu-
lated within this model using the values of E

listed in Table I are compared with experimental
results on Table I. It is evident that the concept of
an average gap cannot be extended within this model
to calculate x{2). Obviously, the reason is due in
part to the fact that an energy value which accu-
rately represents (by its definition) the band average
of [E,,(K)]® might not be a good representation of
the band average of [E,,(K)]™ since k-space regions
having smaller interband separation should enter
with greater weight in the latter average. This has
been demonstrated® for x‘*, where the effective
average is [E,(K)]®. As an indication that this is
probably correct (but may not be complete) we treat
E=E,, as an adjustable parameter to be calculated
from Eq. (3.8a) using the experimentally deter-
mined value of x{Z). The average energies E SO
obtained are also listed in Table I. They follow
closely the averages E but lie about 0. 8 eV lower,
as expected from the difference between the aver-
ages of smaller and larger inverse power, We
point out that E,; does not correlate with any
particular feature of the optical spectrum (although
in the II-VI compounds, it is quite nearly equal to
the energy E, + 4,) and that to make any such identi-
fication would probably obscure the physics of the
process. The true energy average is that defined
by Eq. (2.9) and not [E,,(K)]®; for very small band
gap materials (InSb, InAs, GaSb) this function be-
haves more like [E_ (K)]™, and thus the very strong
enhancement of the I' point contribution encountered
in x® is not present to as great an extent here.

43, P, Walter, M. L. Cohen, Y. Petroff, and M.
Balkanski, Phys. Rev. B 1, 2661 (1970),
¢J. W. Baars, in II-VI Semiconducting Compounds,

edited by D. G. Thomas (Benjamin, New York, 1967),
p. 631.

By making analytic approximations to the inter-
band energy, 2?2 the contributions from the high-
symmetry regions at I" and A in the Brillouin zone
can be treated more accurately to investigate
possible enhancement of x{2 from the low-energy
regions of the Brillouin zone. Only GaAs will be
considered since its intermediate-valued band
gaps are representative of most zinc-blende mate-
rials, and these gaps are large enough to allow the
use of Eq. (2.21) which does not involve param-
eters (energy gaps and masses) of higher conduc-
tion bands. We have obtained very similar results
for InAs, InSb, GaSb, GaP, and ZnTe (and GaAs)
using the more exact form given by Eq. (2.9) when
known or estimated values'! of higher interband
parameters are used.

Using the selection rules appropriate to the T
region of the Brillouin zone, Eq. (2.21) can be
written

w.V

2) _ 5 2 3
X2} = (0.0888 eV°) P Q(W)aa

Ky
XI kidk, EG(k,), (3.9)

0

where P and @ are in atomic units (agz/7%) and Ky is
a cutoff taken to be one-fourth of the distance from
T to X. This cutoff restricts the above integral to
about 1, 6% of the total volume of the Brillouin
zone. Each valence-band contribution is to be
calculated separately, and the three contributions
from the light hole (lh), heavy hole (hh), and spin-
orbit (so) interaction are considered only to the ex-
tent of modifying the interband energy gaps and re-
duced masses at I" in the parabolic approximation

E ()=E,+ PR3 /211, . (3.10)

Values used in the computation, as well as the total
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contribution to xgé from this region, are given in
Table II for GaAs. For comparison, we also give
the total contribution to €;(0) calculated in this
model,

A similar calculation can also be performed for
the eight regions lying between I" and L. Making
use of selection rules and summing over inter-
mediate conduction bands, we find for each of the
two upper valence bands along A the contribution

x&, = (1.21 eV®)P2Q (%)(E.a )ag

ct ay

Kz
xj k,dk,E3(,), (3.11)
0
where P and @ are in atomic units, %, is the com-
ponent of K measured perpendicular to the (111)
axis (longitudinal symmetry is assumed), and &, is
a cutoff vector taken to be half the distance from
L to K. The cutoff in the (111) direction is taken
as 3 of the distance from I to L. Also shown in
Table II are the relative contributions from the A
directions evaluated in the simple parabolic ap-
proximation given by Eq. (3.10). The regions T’
and A together comprise less than 40% of the
Brillouin zone, but contribute 64% of the total value
of x{&) calculated in the average band approxima-
tion, suggesting low band-gap enhancement is
significant.

A more representative estimate is obtained if
one uses a nonparabolic approximation to the ener-
gy. One such approximation,

E.(k)=E (1 +1Pk%/2uzE,)*

S E,+ Pk%/2u+ O(RS), (3.12)

is a generalization of the two-band model® (for
which z=3%). This is the simplest nonparabolic
form still retaining the parabolic variation for
small 2,. The exponent z is an adjustable param-
eter; Fig. 2 shows that by choosing the proper
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FIG. 2. Fit of the nonparabolic analytic expression
defined by Eq. (3.12) to the actual interband energy
variation of the light-hole—conduction-band pair in the
A direction for GaAs calculated in Ref. 31, The abscis-
sa is the fractional distance from I' to X,

value of z it is possible to achieve a very good fit
to the actual energy bands over a much larger re-
gion in the Brillouin zone, in this case to the cal-
culated variation in the A direction of GaAs ob-
tained from K- p calculations.® Although nonpara-
bolic refinements should have little effect on reso-
nance behavior, as has been demonstrated in cal-
culations of electroreflectance spectra,® it should
have a substantial influence on average parameters
such as long-wavelength susceptibilities. This is

TABLE II. Contributions to €(0) and xf%g from high-symmetry regions in GaAs for various analytic models of the
interband energy. The results shown here are typical of the zinc-blende compounds listed in Table I,

T, 1.6% r A, 38% A A+T
lh hh S0 Total - Ey Eq+4y Total Total
Parabolic  Hev/mg 0. 035% 0.058% 0. 0462 0. 086" 0. 086"
E./eV 1.43° 1.43° 1.77 .. 2.93° 3.16° ..
€,(0) 0.11 0.20 0.11 0.42 1.9 1.6 3.5 3.9
X33(10°8 esu) 1.7 3.5 1.2 6.4 9.8 7.4 17.2 24
Non. z 0.33 0.40 0.50 .. 0.3 0.3
parabolic €1 0.33 0.41 0.18 0.92 2.7 2.3 5.0 5.9
X210 esu) 4.8 6.9 1.9 13.6 15 11 26 40
Coulomb  €,(0) 0.13 0.27 0.13 0.53
X33 (107% esu) 2.4 5.3 1.7 9.4

*Reference 11,

PReference 31.

°Reference c of Table I.
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supported by the calculated contributions to x{Z}

and €,(0) shown in Table II, obtained with Eq. (3.12)
where z has been chosen by a best fit for each
valence band. This more realistic approximation
increases the calculated contribution to iz by
nearly a factor of 2.

A final correction which should be included is the
band-edge oscillator strength enhancement by the
electron-hole Coulomb interaction. This correc-
tion is necessary (and sufficient) to explain quanti-
tatively the observed absorption coefficient in
GaAs,* Ge,*! and GaP,* and the observed low-
field electroreflectance spectra of Ge,* at the
fundamental absorption edge. This correction can-
not be explicitly included in the bond charge calcu-
lations but must be represented as a local field
factor, unlike the band theory where explicit treat-
ment is possible.

Coulomb effects are most easily treated by
modifying Eqs. (2.9) and (2.21) into a density-of-
states structure by replacing the k-space integra-
tion with

@ AEK))~ [n(E)dE . (3.13)
For direct transitions we find
2
e (3.14)

"E)=FEie B, <)

in terms of the imaginary part of the dielectric
constant €,(E) and the interband matrix element
-ﬁcv. From the known expressions for €,(E) in the
simple parabolic and continuum exciton approxima-
tions

n(E)=2n(2u/1®)"?(E - E)'?
E >E, (simple parabolic)

4ot / - (3.15a)
T v -
n(E)=13 ¢ ev\?n‘) €,(0) a3

o G

E>E, (continuum exciton). (3.15b)

The discrete exciton contribution has been omitted
in Eq. (3.15b); it can be included approximately by
extending E, down to the lowest exciton bound-state
energy. The use of the continuum exciton density
of states introduces a screening factor €,(0)™ into
the calculation, Nonparabolicity effects are not
included in Eqs. (3.15).

The values of {2} and €,(0) calculated from
Egs. (2.21), (3.13), and (3.15b) in the vicinity of
the I point in GaAs are also shown in Table II. It
is evident that the Coulomb interaction has a much
stronger effect on x:2} than on €,(0), which may be
an indication of the true origin of local-field cor-
rections in the bond picture. The 50% increase in

x{g; calculated for GaAs is typical; we note in fact

that if generally applicable and combined with non-
parabolicity effects, the resulting value for x&
would be in range of experimental uncertainty. We
emphasize, however, that a detailed calculation
from an accurate band structure would be required
to be able to satisfactorily draw this conclusion,
and that our treatment of the Coulomb interaction
by means of a density-of-states argument neglects
possible excited-state interactions and is therefore
phenomenological.

IV. DISCUSSION

" On the basis of approximate model band struc-
tures for crystals of zinc-blende symmetry, it
was shown in Sec, III that the one-electron approxi-
mation to x{Z} in the energy-band formalism con-
sistently underestimated experimental values, but
that a detailed consideration of nonparabolicity and
electron-hole Coulomb interaction effects reduced
the discrepancy. Previously proposed approxi-
mate expressions have generally obtained much
better agreement without these refinements, It is,
therefore, of interest to investigate these expres-
sions in detail.
The approximate expression proposed by Bell!!
is
X{g; =§;i—ﬁ x(l) (26‘;3 ’

(4.1)

which gives reasonably good agreement with ex-
periment, However, if Eq. (4.1) was obtained
from the interband part of the scalar potential
representation as stated, then a factor of E/E
~3 is missing and the sign is wrong; if in fact it
was obtained from Eq. (2) of Bell’s paper (our
starting point) then a factor of 3 is again missing,.
In addition to this factor, better agreement is also
obtained because the optical transition E| is as-
signed the function of the average energy instead
of the somewhat larger energies E and E,. We note,
however, that these discrepancies donot affect Bell’s
dispersion results, which were calculated from
the general finite-frequency expressions. The
result of Phillips and Van Vechten (PVV), 7 jater
extended by Kleinman, *® contains elements of both
bonding orbital and band theory, and its literal
interpretation in terms of energy band structure
is not clear, However, the use of the intrastate
matrix element (alx|a) is analogous to the intra-
band contribution of the scalar potential represen-
tation., The intermediate conduction band I'; does
not appear explicitly but its function is assumed in
the ground-state mixing term [e.g., as in Eq.

(2. 21), where the state I'j5 appears only in matrix
elements], and it appears as the ratio C/E,.
PVV’s result differs from Bell’s result by sub-
stituting C for V, E, for Eg, and multiplying by
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4
% \(Ee\(E,
0'46(10a3)<ev><Eg ’

and thus has a somewhat more complicated depen-
dence and is generally larger. Kleinman’s modifi-
cation, *® which makes use of the f~sum rule, can
be expressed by

et 1, QC (B )”2
Xizs=%, " X g, EE\13.6 eV

D. =.

4.2)

4.3)

All expressions are similar, differing by factors
of order unity. The bonding orbital theories™ are
the real-space complements of the band picture
and are related only in the average sense.

Spin-orbit (so) splitting has been included only to
the extent that it affects various energy gaps and
interband reduced masses. However, in the pres-
ence of so splitting, it is possible to get an addi-
tional contribution to x{2} from the so-split valence
bands and the lowest conduction band, °»10+1
Rustagi'® has calculated its effect using a two-band
model and found it to be substantially smaller than
the measured value. Cardona and Pollak®! have
performed a rough calculation to show that it should
account for about 10% of the three-band effect con-
sidered here. In further support of this result,
Aspnes*® has estimated the contribution of the so
interaction to x® in the vicinity of the E, transitions
for GaAs from the linear electroreflectance data
of Kyser and Rehn*!; the value obtained amounts to
about 10% of the calculated band contribution at
these points, in good agreement with the estimate
of Cardona and Pollak.

Extension of the theory of crystals of wurtzite
symmetry was not attempted here because the zinc-
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blende results indicated that the simple model band
structures used were not adequate. Although our
calculations indicate that the discrepancy between
theory and experiment is reduced as the band
structure is made more accurate and Coulomb ef-
fects are included, we emphasize that a detailed
calculation with an accurately computed energy-
band structure would be required in order to deter-
mine satisfactorily whether these corrections are
adequate.

Note added in proof. Since this paper was sub-
mitted, several of the experimental values of x{z}
given in Table I have been revised downward sub-
stantially [B. F. Levine and C. G. Bethea, Appl.
Phys. Letters 20, 275 (1972)]. For GaAs,
10%x{z}(esu) = 43 should replace 90; for GaP, 20
should replace 52; for ZnS, 8 should replace 17
(values for the remaining compounds are not given).
Thus the predictions of 38, 24, and 10, of the aver-
age band model for GaAs, GaP, and ZnS, respec-
tively, are now in very good agreement with experi-
ment. However, this model is crude and this
agreement should not preclude more rigorous com-
parisons of the theory by evaluating Eq. (2.9) with
accurately calculated energy-band structures.
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