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We consider the question: Is there a semiconductor-to-metal transition (smooth or other-
wise) with increasing temperature in the half-filled narrow-band Hubbard model? In the
pertinent literature, with one exception, the answer has been yes. We bring to bear previous
theoretical results for thermodynamic quantities, pseudoparticle density of states, our ear-
lier variational calculation, and a new evaluation of the temperature dependence of the elec-
trical conductivity. We are forced to conclude that there is not such a transition, at least in
terms of standard terminology for "semiconductor" and "metal. " We also briefly discuss
recent experimental results of Epstein et al. on apparently one-dimensional systems in the
light of the above consideration.

I. INTRODUCTION

The narrow-bandwidth (&) high-temperature re-
gime of the Hubbard model has been studied by
several authors in the past few years. Since
the Coulomb repulsion Uis on the order of 10 eV
in many insulating oxides, the regime (b/U) «1
an~ 4T = U has been of somewhat academic interest
only. However, recent studies' of complex organic
systems seem to show that this regime is of ex-
perimental interest and warrants further theoret-
ical investigation.

Historically, des Cloizeaux' was the first to ap-
ply Slater's band- antiferromagnetism picture to
the Hubbard model. That is, he investigated the
Hartree- Foek approximation to this model; he
found a transition from an ordered antiferromag-
netic insulator to a nonmagnetic metal at a second-
order phase-transition temperature kT = ~U. He
interpreted this as a transition from a state with
disordered local moments to a state with no local
moments (in apparent contradiction to the calcu-
lated results).

A few years ago we reported that in going be-
yond the Hartree- Fock approximation we found a
variational solution to the Hubbard model that
exactly reproduced all physical predictions of the
latter at &= 0 and that gave a lower free energy
than des Cloizeaux's solution in the regime
(&/U) «1. We further noted that in this regime we
did not find a transition to a metallic state: The
localized nature of the one-electron states was
maintained for all kT &ATTN = 0(b, /U) and the solu-
tion exhibited only smooth thermodynamic behavior
for all T&T„. On the other hand, we did find a
second-order transition from a paramagnetic in-
sulator to an antiferromagnetic insulator at T = T„.

In a related development Langer, Plischke, and
Mattis' rederived some of des Cloizeaux's results
by using Green's functions; in particular, they
found the same second-order phase transition and
again interpreted it as a nonmagnetic-insulator-
to-nonmagnetic-metal transition. We had pointed
out to them ' that their result was in direct con-
tradiction to the exact behavior of the Hubbard
model at &= 0, which shows no phase transition.
In a later paper I anger advanced a corrected form
of the critical temperature, kT = U/(41nU/6), which
vanished at 4= 0, consistent with the exact result
at 4= 0. As Blackman and Esterling pointed out,
the corrected form is based on an approximation
scheme that gives a spurious term of first order in
4 to the spectral weight function. Consequently, it
is also difficult to have confidence in the corrected
form in the region of very small d.

Although Hartree- Foek theory gives incorrect
results in the narrow-band regime, it is worth-
while to consider whether it has any predictive
value in relationship to an insulator-to-metal tran-
sition. For 4= 0, the exact constant-volume spe-
cific heat C may be obtained easily. The exact
free energy is very easily calculated and C is
found by the simple well-known differentiation.
This C is seen in Fig. 1 to exhibit a smooth maxi-
mum at kT ——,'U (slightly lower than the Hartree-
Fock transition temperature). Shiba and Pincus
recently found a similar peak for the half-filled-
band Hubbard model in numerical calculations for
small numbers (2-6) of atoms when &/U= —,'. They
interpreted this peak as arising from a smooth
insulator-to-metal transition which occurs with
increasing temperature. " Considering the whole
temperature range for small but nonzero lL/U,
their' '" results are in qualitative agreement with
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FIG. 1. Exact specific heat at zero bandwidth,
C:=k(U/4AT) sech (U/4kT), is plotted in units of k against
~ =2uT/U.

our variational solution; e. g. , the specific heat
shows both a low T(kT =-4 (U) and a high-T
( = —,U) peak. Further, their speculation '" that
even for large three-dimensional crystals there
would be only smooth thermodynamic behavior at
T &T& is of course consistent with our prediction'
of the absence of a high-T transition. There does
appear to be some disagreement between our state-
ment that there is no high-T transition and theirs
that there is a smooth insulator-metal transition.
%'e present arguments that, according to common
usage, the high- T behavior is not that of a metal,
in agreement with our original claim, while the
more recent description ' as an insulator-metal
transition is misleading. Also, we shall see that
Hartree- Fock theory, while suggestive, is quite
misleading as to the physics. '

In reaching these conclusions, we were helped
by the results of Sec. II. There we study the elec-
trical conductivity as a function of temperature and

frequency in the narrow-band regime. The con-
ductivity in this regime has been studied previously
by other authors. Brinkman and Rice studied the
mobility of a single hole in a half-filled band at in-
finite U (Ohata and Kubo'4 considered this mobility
in the further limit, T= ™).Bari, Adler, and

Lange utilized the degeneracy of the ~= 0 ground
state to obtain the conductivity for kT «4 «U as
a function of electron concentration.

In this paper we are strictly concerned with the
conductivity of the half-filled band in the regimes
kT„&kT & U and kT &U» h. Accordingly, the re-
sult of most interest to us is that of Kubo. Kubo
used a Green's-function decoupling scheme which
originated from Hubbard' to obtain a two-particle
Green's function and an expression for o'(v) that
can be adapted to the regime of interest. o'(e) is
a function of T and electron concentration and con-
tains a dc part as well as optical peaks at &=+ U.
In this approximation scheme, the optical peaks
are broadened but the dc part contains a 5-function
peak in e. Kubo emphasized the behavior of the
optical conductivity at T = O'K, whereas we are
mainly concerned with the temperature dependence

II. CONDUCTIVITY CALCULATION

From the Kubo formula" the dissipative part of
the conductivity is written

p 8
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where J is the current operator. For the single-
band Hubbard model
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where B~ are the components of the lattice-site
position vectors parallel to the external electric
field, tq; is the hopping integral, c~, and g&, are
the electron creation and annihilation operators, 0
is the crystal volume, and p is the density operator
appropriate to the Hubbard Hamiltonian,

H= Q tiic(~ci~+ Ugn(, n(, .t
(2)
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Equation (2) is based on the assumption that the
Wannier function w(r) associated with the lattice
point at the origin satisfies w(r) =w*(r) =w(—r).

If we use Eq. (2) in Eq. (1) we obtain
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of the dc part for a half-filled band.
The idea of Hubbard's decoupling scheme is to

treat the zero-bandwidth problem exactly and
make approximations only in quantities that vanish
with bandwidth. Since the conductivity explicitly
contains a product of two current operators [see
Eqs. (1) and (2)], the ratio (7/& can be obtained
exactly in the limit of zero bandwidth. In Sec. II
we obtain the expression for o'(e) to this order by
straightforward statistical averaging. The result
agree s with Kubo's Green' s-function approximation
to this order. Further, we find that the higher
corrections found by Kubo do not qualitatively alter
our analysis, and therefore we use the simpler ex-
pression [Eq. (6)] for &(e). For comparison, we
also consider a simple two-band model of a semi-
conductor with no electron-electron interactions.

In Sec. III we use the results of Sec. II to help
us reach the conclusions mentioned above and pres-
ent further discussion. One consequence of these
conclusions is that the very recent papers' '" do
not enlarge our physical understanding of the nar-
row-band regime of the Hubbard model beyond the
picture that had been presented earlier.
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here z = Tr(e ~ " ~"'), N = Q (n«+n„), and p is the
chemical potential (equal to 2U in the half-filled-
band case); also we take &(q = & if 1R~ —Rq I

= s
(lattice spacing) and f,&

= 0 otherwise. We see the
explicit appearance of a product of two hopping pa-
rameters, as mentioned above. The difficulty
comes in evaluating the trace in Eq. (4) and it is
for this reason that approximation schemes must
be developed.

We note, however, that the trace can be per-
formed straightforwardly at zero bandwidth (it
can, of course, also be done at U=0). Thus, with
H= Ug, n„n&„we have
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Equation (4) reduces to
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where q is the number of nearest neighbors, g is
the number density, e, is the occupation number
for a given site and spin, and l refers to its near-
est neighbors. The trace is easily calculated in
the Wannier basis using the grand canonical en-
semble, and the following identities are found:
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Thus the conductivity becomes
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It is easy to verify that Eq. (3. 14) of Ref. 16 re-
duces to Eq. (6) for the half-filled-band case. The
former qualitatively differs from Eq. (6) only in

that the optical peaks are broadened. The 5-func-
tion peak in the dc part is common to both expres-
sions and the T dependence is qualitatively the
same for b, «U. Thus for simplicity we shall con-
centrate our discussion on Eq. (6). The optical
conductivity does not vanish as T 0, and corre-
sponds to optical excitations across the Mott-
Hubbard gap, in analogy to optical excitations in
band semiconductors. Although Kubo' stressed
the differences between the two types of optical
processes, it is interesting to note that(for U» kT)
the thermal gap in the dc conductivity is equal to
half the optical gap, in agreement with the analo-
gous situation in band semiconductors (see below).

H, „,=Q Ze„„-n„y, ,
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(8)

where n„p, are the occupation numbers for Bloch
functions with band index v, wave vector k, spin o;
there are two electrons per site or per k vector.
Neglecting interband transitions for the purpose of
calculating the low-frequency response, the current
operator appropriate here is an obvious generaliza-
tion of Eq. (2):
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Here the hopping integral f(g =No g t)), ex'p[ik (0)
—%q)] and c„~,is the Wannier-function creation op-
erator for band v. But then J commutes with Eq.
(8), so that Eq. (1) gives directly

2M
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where v„y is the component of the group velocity
8 'V'pe„p parallel to the external electric field and

f„f is the Fermi-Dirac distribution. If both bands
are narrow and if we call the gap V, then the above
becomes, to lowest order in the bandwidths,

where (v~) is the average of v„t, over both bands
and f( ,' PU) is gi—ven by Eq. (7).

III. DISCUSSION

Referring to Eqs. (6), (7), and (10), we see that
the dc conductivities of the two models show the
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FIG. 2. Temperature dependence of the dc conductivity,
as given by Eq. (7), is p1otted against x=2AT/U.

The dc conductivity exhibits the temperature depen-
dence (as shown in Fig. 2)

f( PU-)= 'P-Usech' ,' P-U.

We now consider the simple two-band noninter-
acting-electron model of a standard semiconductor
(a band- model semiconductor). The Hamiltonian
is
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same temperature dependence, contained in f(z PU).
From the plot of this function in Fig. 2, we see
that the conductivity starts at small values at low

T, rises to a smooth maximum at k'T —3 U, and then
approaches zero slowly (as 1/T) as T-~.

It is probably not surprising that the conductivity
is very small at low T and increases with increas-
ing T—at very low T there are essentially no
"carriers" and as T increases the number of car-
riers increases rapidly, causing the rise in con-
ductivity. In the band model the carriers consist
of Bloch-function holes and electrons thermally
excited across the band gap. In the case of the
Hubbard model, it is much more difficult to give
as simple and accurate a description of these car-
riers since the energy eigenstates are not single
Slater determinants and the Hartree —Fock approxi-
mation is so poor. But we can use the thermal-
single-determinant approximation (TSDA), which
is the one used in Refs. 2 and 9 (and which gives,
in the variational sense, the best description in
terms of approximate energy eigenstates which are
single Slater determinants) to give us an idea as to
these carriers. The fact that the lowest-free-
energy solution in this narrow-band regime that we
know consists of Wannier functions at all T &TN
suggests that we may view these carriers as doubly
occupied sites and empty sites. In fact, Eq. (6)
may be viewed as a conductivity calculation for the
thermodynamic state that our variational solution
describes. The energy increase for each pair,
doubly-occupied-empty site, is U (the Mott —Hub-
bard correlation gap). But once we have such a
pair, there is another state of the same energy re-
lated to it by a charge transfer; hence there is a
matrix element of J connecting the two states giv-
ing a contribution to the zero-frequency conductivity.

The decrease in conductivity with T at high T
might be somewhat surprising since there are no
phonons (or analogous excitations) to cause a
scattering of the carriers, which continues to in-
crease with T It is seen f. rom Eq. (1) to be a quite
general property, at least for any model with a
finite number of states. We believe that the physics
behind this effect is simply the fact that when kT
becomes the dominant parameter of the system,
the random distribution of thermal velocities will
eventually dominate the drift velocity in an electric
field, so that as T-~, o'-0.

Let us use our results [Eqs. (6) and (10)] to try
to settle the controversy pointed out in the Intro-
duction. We must first ask what we should mean
by the terms semiconductor and metal —we will
consider two definitions, each of which has prece-
dence in usage.

One possibility is simply to define a material as
a semiconductor when do„,/dT &0 and a metal when
«~, /dT & 0. This definition has empirical founda-

tion: do~, /dT &0 in a semiconductor as a result of
thermal population of carriers; do~, /dT & 0 in a
metal due to the T dependence of the scattering
cross section (e. g. , due tothermalphonons inmost
metals). Of course, there are no external mecha-
nisms in the Hubbard model (by definition) to
cause do'~, /dT& 0, and we have accounted for this
behavior of the model in a preceding paragraph.
If, however, one wished to abstract the empirical
rule, then our result, Eq. (6), provides a basis for
the characterization' ' ' of the narrow-band high-T
regime of the Hubbard model as showing a semi-
conductor-to-metal transition. ' But this definition
immediately demands that the two-band model de-
scribed around Eq. (8) be characterized as showing
a semiconductor-to-metal transition, as seen by
comparing Eqs. (6) and (10).

Such a usage is contradictory to the usual view-
point. This viewpoint has been given explicit def-
inition only for noninteracting-fermion models,
or for electron models treated in the Hartree or
Hartree —Fock approximation (where the wave func-
tions are single Slater determinants). In these
cases, this view defines a semiconductor as a
material' for which there is a gap in the density of
states at the Fermi level, and defines a metal as
a nonsemiconductor. In other words, this view-
point regards the structure of one-electron energy
spectra and energy eigenstates as the basis for the
distinction between a semiconductor and a metal.
Clearly then the two-band model, which according
to the definition of the previous paragraph shows
a semiconductor- to- metal transition with increasing
T, does not show such a transition according to the
usual definition; it is rather characterized simply
as being a semiconductor.

It was in the spirit of the usual definition, which
we will call a microscopic definition (as opposed
to the previous "macroscopic" definition, which
depends entirely on the sign of do~,/dT), that we
stated that there is no transition to the metallic
state (when 4/U «1) and characterized this narrow-
band regime simply as a localized magnetic semi-
conductor. Our reason for these statements is that
for 0 & &/U «I the one-electron states which gave
the minimum free energy within the TSDA are loca-
lized fee' all temPexatuxes, suggesting that the
microscopic electronic structure remains essen-
tially constant as T increases above T~. This
suggestion is strongly supported by the fact that
the exact pseudoparticle density of states' is com-
pletely independent of T for &= 0, and so for very
small & we expect that the gap in this density of
states (the Mott-Hubbard gap) will be very insen-
sitive to T, certainly not approaching zero with
increasing T.

We do not intend to actually develop here micro-
scopic definitions for the terms semiconductor and
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metal which would be satisfactory for general
interacting-electron systems at arbitrary tem-
perature. ' A tentative suggestion (again limiting
ourselves to normal crystalline materials) might
be to follow Hubbard and consider the pseudoparti-
cle density of states' at finite T as taking the
place of the ordinary density of states when one
"turns on" the interactions. In any case, it is
clear the the recent description' '" of the narrow-
band high-T regime of the Hubbard model as ex-
hibiting a smooth semiconductor-to-metal transi-
tion differs from the earlier description as a
localized semiconductor for all T with no transition
to the metallic state only by reason of the difference
in definition of the words. There is no marked
difference in any of the physical predictions that
have been made, the correct qualitative behavior
existing in the approximation (TSDA) of the earlier
work. (Although, for the reasons given above, the
use of the term metal-insulator transition here is
contrived and misleading. )

The Hartree-Foek approximation, on the other
hand, gives one-electron energies which change
with temperature, the gap approaching zero at a
high temperature (U/4k when 4= 0), thus suggest-
ing a significant change in electronic structure,
and a corresponding insulator-to-metal transition.
However, this contradicts the true behavior of the
density of states, as we have pointed out, and hence
is quite misleading concerning this physical quan-
tity.

We comment that if one adopts the macroscopic
definition, it should be realized that the nature of
the high-T "metal" in the narrow-band regime of
the Hubbard model is quite different from the usual
broad-band metallic state. One reason is that at
kT & 3 U, one necessarily has O'T» ~ in the narrow-
band regime (& «U), so that one certainly could
not think even approximately of the transport pro-
cesses or thermal quantities as resulting from
Bloch-wave excitations across a well-defined Fermi
surface. Furthermore, a picture of this state as
a gas of free or Bloch electrons would be grossly
erroneous, since e.g. , this picture predicts a very
small specific heat (C in this picture is zero at
6= 0), whereas the exact specific heat decreases
quite slowly for T & ~ U (Fig. 1).

Concerning the smoothness of the high-T be-
havior we remark that our prediction of the ab-
sence of a high-T transition when 0& 6/U«1,
even for infinite three-dimensional systems, lends
credence to the recent speculations ' ' to this
effect. This is so because the TSDA (on which our
prediction was based) is quite similar to the mo-
lecular field approximation to the Heisenberg spin
model, an approximation which is notorious for
consistently overestimating the likelihood of the
occurrence of a phase transition. In accordance

with this, the TSDA gave a sharp (second-order)
transition at a Neel temperature TN (as expected
in three dimensions, but not so in one dimension)
and yet gave smooth behavior at high T, independent
of dimensionality.

We conclude with a brief discussion of the ex-
perimental results of Epstein et a/. In their in-
terpretation of the data, they use a narrow-half-
filled-band Hubbard model with a correlation gap
U that renormalizes to zero above some tempera-
ture. In our studies we have not found a T re-
normalization of the correlation gap and, further,
are not aware of a theory that does predict renor-
malization in the narrow-band regime (and gives the
correct 6= 0 behavior, of course). Epstein ef al
also claim to observe Pauli-like behavior in the
susceptibility; this too has not been evidenced in
our theory or any other theory of the narrow half-
filled band. Lastly, it is interesting to see if their
observed conductivity can be accounted for by the
simple picture of a correlated semiconductor that
we have presented here. If we simply apply our
result using the experimentally suggested param-
eters (U= 0. 17 eV, 4= 0. 021 eV), we find that the
conductivity maximum T~ would occur at ™U/3k
-670'K, over three times the observed' value of
200 K. Actually, to determine U and 4 the con-
ductivity at low T was assumed to behave accord-
ing to an activation energy equal to one-half the
so-called Hubbard gap U-4~&~. Our result, Eqs.
(5) and (6), supports that assumption in the sense
that it is the same to 0 (b'). This suggests that
possibly the finite-& result may be approximated
by replacing U by U-4~&~ everywhere; this would
reduce T„ to - 330 K, still somewhat high. One
obvious modification of the model would be the in-
troduction of lattice vibrations and their interac-
tions with the electrons. For example, if we take
a relaxation time in our dc conductivity that goes
as I/T (due to phonons) then this additional T de-
pendence lowers the maximum from ™330 to- 200 K.

The foregoing analysis suggests that the observed
conductivity vs T might be understandable on the
basis of the Hubbard model modified by the inclu-
sion of phonon scattering; however, there is as
yet no theoretical evidence that this model would
explain the susceptibility data. Further, present
theoretical results suggest, as discussed in this
paper, that this model is not consistent with the
believed' mechanisms for the observed behavior—
namely a temperature renormalization of the gap
and a consequent metal-insulator transition. (In
particular, the theoretical arguments advanced
for these mechanisms were shown here to be
completely incorrect. )

late added in proof. A recent exact calculation
[D. Cabib and T. A. Kaplan, Phys. Rev. (to be
published)] for the four-site four-electron Hubbard
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model showed no sign of the experimentally ob-
serveds leveling of the inverse susceptibility at high
T. Further, this work shows that a pronounced
minimum in the inverse susceptibility should be
expected to occur at lower T (= A'/U), in contra-
diction to the observed behavior, and concludes that

the Hubbard model is probably seriously deficient
as a model for the experimental system.
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als.

2'Related attempts seem to be limited to zero tempera-
ture [W. Kohn, Phys. Rev. 133, A171 (1964); C. Herring,
in Magnetism, Vol. IV, edited by G. Rado and H. Suhl

(Academic, New York, 1966)].
An approximation different from Hartree-Fock, but

also having a T-dependent gap at 4=0, and therefore al-
so misleading, has been given by S. Doniach, Advan.
Phys. 18, 819 (1969).

23In a preliminary accountof thepresent work [R. A.
Bari and T. A. Kaplan, Bull. Am. Phys. Soc. 17, 358
(1972)] we stated that our analysis "suggests that the Hub-
bard model is not sufficient to explain the observed be-
havior. " In citing this preliminary account, H. R. Zel-
ler [Phys. Rev. Letters 28, 1452 (1972)] exaggerated
our statement by saying that "it (the Hubbard model) fails
to explain the T dependence of 0." The text of the pres-
ent work gives a more precise statement of our conclu-
sions.


