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Inelastic scatterin of 1' h
'

g ight near an exciton resonance is considered, usin a la '

scription of the scattering process. We bt '
h f ' . ' ci encess. e o tain the following results: for incident f

approaching the resonance from bel th B illow, e r ouin shift increases ve n

' cl en requency

resona e xtrali esa e" d' t d 'h' ' ' etopre l.c e with intensities corn arable to
fo o t t ' t ad of th fe o e amiliar Brillouin doublet. Numeriumerlcal calculations of the Brl.llouxn

r are given: The shifts and extra lines seem to be observable.

I. INTRODUCTION

The eigenmodes of a system consisting of a crys-
tal and a radiation field have been denoted polari-
tons. For a system consisting of a semi-infinite
crystal (for z &0) and a vacuum (s &0), a polariton
consists of the sum of incident plus reflected light
field (for z &0), plus polarization waves (for s &0).
The relative amplitudes of the constituents of this
entire mode are determined by the asymptotic con-
ditions (at s = —~), and by the full set of boundary
conditions [Maxwell plus additional boundaun ary con-
i ions (ABC)]. Hence a complete description

of an elastic or inelastic scattering process in-
volves calculation of a transition from one such
polariton to another.

The dispersion curves inside the infinite or
semi-infinite' crystal for the case of an exciton in

dls
a 1s internal state with a finite total mass (spat' 1spa 1a
ispersion) are well known and are shown schemat-

ically in Fig. 1. To describe inelastic scattering
of polaritons by photons, we must satisfy the kine-
matic requirements of conservation of polariton
pseudomomentum inside the crystal

~Ik —k =q

and energy

v —u&' = a v (q) . (1.2)

In these equations k is an initial and k' a scattered
polariton wave vector, both inside the crystal;
e(q) is the phonon frequency, and + denotes Stokes
and anti-Stokes processes.

Figure 1 illustrates the kinematics of backward
Brillouin (Stokes) scattering. For incident frequen-
cy below the exciton frequency co~, a single shift
is observed which increases as the frequency a-
rp oaches ~» (corresponding to the lowest transition

k, -k', in the case of backward scattering). Suffi-
ciently close to or above resonance, we predict
three additional Brillouin (Stokes) lines. They cor-
respond to scattering processes from the initial
state I to the final states I'-IV'. A transition to

one of these final states can occur if momentum
conservation (1.1) and energy conservation (1.2)
are satisfied for one pair of momenta (k~, k~). The
acoustic phonon dispersion "tunes" the permitted
transition. Including the anti-Stokes components
one should observe an octet instead of the Brillouin
doublet in that frequency region.

In this paper we give two calculations of the rela-
tive amplitudes of the members of the multiplet: a
semiclassical one and a quantum mechanical one;
the results agree in essence. When coupling co-
efficients and other parameters appropriate to CdS

the n

are inserted, the resulting calculation sho th t
e new lines may be observable. The calculation

has been carried out for the ABC of the previous
paper, ' as well as for two other sets of ABC.
The predicted Brillouin scattering differs quantita-
tively in these cases; hence observation of the new
members of the multiplet may resolve the long-

FIG. 1. Dispersion curves of pole, ritons inside the
crystal for k and -k directions (schematically). The
igure illustrates the kinematics of backward Brillouin

are e our possi-scattering. I is theinitialstate I'-IV' th f
ble final states. The pair of momenta (k, k') which
sa is y e momentum and energy conservation are joined

W 1C

by an arrow.
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standing disagreement regarding the correct ABC,
i.e., the structure of the eigenmode. Experimen-
tal determination of the shift and the width of the
Brillouin lines would permit the complete deter-
mination of the complex refractive indices of the
polariton branches in the crystal. In particular
one would obtain directly the total exciton mass
in a prescribed k direction.

II. SEMICLASSICAL TREATMENT

Maxwell's equation for the Fourier component
of the scattered electromagnetic wave with fre-
quency M =t."kp is

—[%2+ ko (1+ 4zy„i)]E' = 4zk'o (5yEf, ),e. (2. 1)

The operator on the left-hand side is the inverse
of the polariton propagator at frequency co'. In

Eq. (2. 1) the r arguments are not written explicit-
ly to simplify the notation. The susceptibility X
is given by the integral operator in Eq. (2. 1) of
Ref. 1withgo= 0. The right-hand side of (2. 1)involves
a source term proportional to the electric field Ep0
of the incident polariton. ko denotes the momen-
tum of the incident photon outside the crystal. 5X
is the change in the susceptibility due to density
fluctuations 5n(r, f) produced by acoustical phonons:

with the scattering amplitude

Ty i„= C f drdr'dtEg~ (r)

x g~. (r, r') Pf (r') 5n(r', t) e ' '" (2 5)

(The superscript "in" always refers to the states
satisfying incoming wave conditions. ) From Eq.
(2. 4) we obtain for the electric field Efi scattered

I 0
in the direction ko at a distance B from the crystal

1
oo

E~gs = 4zko o dQ dko ko
0 21r

0

= (k'o'/R)e"o Tp„
0 0

84k~ R cosg

ks2 krtz ~k( k
0 0 0

(2. 8)

The thermally averaged scattered energy flux
d I, /dQd&u' into the solid angle dQ~" p -=dQ and the
frequency interval de' is

mal set of eigensolutions Eg.(r) of the denominator
0

of (2. 3) with incoming scattered waves, one ob-
tains

E =-4zko Z o io. , E~pTfpp (2. 4)V + ko (1+ 4+Xky) 0

gX = —On=-X Xen.&X ~X
Q'P2

(2. 2a)
d2I, C,4 (2. 7)

In the frequency region near one resonance and very
far from all the other resonances, e)i /Sn can be
considered as frequency independent. In the de-
formation-potential approximation it is also con-
sidered to be independent of all r arguments, and
we write

=C. (2. 2b)

Since the incoming light wave has frequency e 4'',
E' has only scattered waves. The formal solution
of (2. 1) is

4mkIo'E = ~o kI2. 1 4 ~ X~. C(5np1fo)~. .
V +ko t', &+«Xk)0 o

(2. 3)

Herewe used the relation P), =XEy, where we label
0

the polarization and electric field by the external
wave vector. Introducing the complete, orthonor-

P-„(r)=p,e "~'+p,e' o', (2. 8a)

(2. 8b)

The wave numbers k; and k& are solutions of the
dispersion relation (3. 9) of Ref. 1. In general, k&

and k& are complex owing to the finite exciton life-
time, and we write them as &&+ is& and k&+ iz&.
Inserting Eq. (2. 8) into (2. 5) yields

where ( . ) means a thermal average over the
density fluctuations.

For the sake of simplicity we consider backward
scattering along the z direction for the calculation
of the T matrix element. Let us introduce the
polarization fieldsP~. = XEp. of the scattered wavesin in

0 o
inside the crystal. According to Ref. 1, Pf, (r) and
p'i(r) can be decomposed inside the crystal into

~o
two polariton components:

T;f p = CF Z P&p& f dt f dz exp[i(k&+k~&)z —(z&+x'1&)z —i(& —~')t]5n(z, f),0 0
(2 9)

where I' denotes the transverse area exposed to the
incident radiation. Equation (2. 7) can now be
written in the form

k", FC' Z fp, f'fp', f'—

1

(k k' — )
o (z g')

(2. 10)
Here we have neglected interference terms be-
tween the components of the multiplet, which is
justified for sufficiently small dampingof the polari-
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tons. Moreover, the correlation function for the
density fluctuations is assumed to be translationally
invariant. That is, one assumes the crystal is
infinite for phonons, while taking the boundary into
account for excitons. The function

-'(q &u)= f dedt(5n(e, t)5n(0, 0))e'"'"" (2. 11)
~OO

is the van Hove spectral distribution of the thermal
density fluctuations. 3 Using the explicit form for
the density fluctuations in terms of phonon creation
and destruction operators c, and c,

5n(e) =i dqe " c,+ c.c. , (2. 12)
g')q )

1/2

4mpcs

we obtain

6(q, (u) = f[1+n((u) ]5(ur —c, Iq I)
S)q f

2pcs

+n((d) 5(h)+c, Iq I)] . (2. 13)

Here p denotes the mass density, c, the longitudinal
sound velocity, and n the Bose-Einstein distribu-
tion

n (~) = 1/(e " t ' —1) . (2. 14)
Finally we must relate the polarization amplitudes

P, and P& in (2. 10) to the incident and reflected
field amplitudes E&, and E„. Using Maxwell's
boundary conditions as well as the ABC from Ref.
1 and a background dielectric constant eo, one has

1 1E|,+E„=Eg+E2 =
I

g
—

g 4nPi,
nq —eo n2 —eo

(2. 15a)
n2S„-E„=n, E,+n, E,=

ny —60 n2 —6'0

(2. 15b)
Solving (2. 15a) and (2. 15b) for P„we get

1 )n'- &o )' In'- &oI'

4p )ny n2 ) ) go+ ny+ n2+ n] n2
(2. 16)

The primed (scattered) fields obey the boundary
conditions of incoming waves [see Eq. (2. 4)]. An

immediate consequence is that they also satisfy
Eqs. (2. 15a), (2. 15b), and (2. 16) if each amplitude
and refractive index is primed and E'&„ is set equal
to 1 due to the normalization of the states Eft).(r)
in Eq. (2. 4). The incident energy flux is It = (c/Bv)
IE|,l . We thus obtain for the differential cross
section for backward scattering, taking E&,= 1 in
Eq. (2. 16):

X ([1+n(~ —e')] h) v —. &u' J n(v —a&') h i ar —&u' i

[k, + k&
i—(~ —e')/c, ] + (z, + x&) [k, + k&+ (&u —~')/c, ] + (x, + v&)

(2. 17)

III ~ QUANTUM-MECHANICAL TREATMENT

The Hamiltonian H of our system can be decom-
posed as

H=HO+ 5H . (3 1)

Ho contains the free fields for the photons, exci-
tons, and phonons for a half-infinite crystal and
also the bilinear interaction between the photons
and the excitons. Ho can be diagonalized by a linear
transformation and then has the form

ff, =Z I Ik, IBl'"'B-'"'=ZkcIk, IBp B! .
'0 ' (3. 2)

The operator B~~ creates a polariton which con-
sists of an incictent photon with momentum k, and
a reflected and transmitted photon outside of the
crystal. Inside the crystal this polariton, in gen-
eral, contains two polarization waves with differ-
ent wave numbers. Moreover, the different parts
satisfy Maxwell's boundary conditions and the ABC
at the surface. The labels "out" and "in" denote
retarded and advanced boundary conditions, respec-
tively. The ground state 10) of Ho is defined by
Bf 10) = 0 (or equivalently Bg l0)=0) for all ko.

with

d%r ko

(3.4)

T~; a, ~ = (0IBfi cC 5&Bao (3. 5)

Using the fact that

PP, '(r) = [P(r), BP,""j,

P
f,(r) = [B„-,P(r)] (3.6b)

are no longer operators but just c numbers, (3. 5)

(3.6a)

I

5H denotes the interaction between the polarization
fields and acoustic phonons and has the form

5H= CJ P'(r) 5n(r)P(r)d'y . (3. 3)

Classically (3. 3) leads to the source terms on the
right-hand side of Eq. (2. 1), In this section P(r)
denotes the associated operator, however.

The differential cross section for scattering of
a photon with wave number ko (outside the crystal)
into a scattered photon with wave number ko (out-
side the crystal) exciting an acoustic phonon with
wave number q in the crystal is
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can be written as

7„.; „- = C fdrPg~(r) (Ol6n(r) lq)PP (r) . (3. 7)

It is also convenient to consider the two polariton
wave fields Eg. and E.„which are constructed
similarly to (3.6a) and (3. 6b) with the operator
P(r) replaced by the operator E(r):

EF() (r) = [E(r), &P,"'], (3 8a)

E,() =[E:,E()]. (3. 8b)

The polariton wave fields on the left-hand side of
Eqs. (3. 6) and (3. 8) obey the classical Eqs. (2. 1)
and (3. 1) of Ref, 1. This can be easily derived
from (3. 2) and the fact that the operator E(r) obeys
the clRsslcal Maxwell equation. Thus Rll the re-
sults of the semiclassical treatment can be taken
over. The quantum-mechanical treatment only
fixes the asymptotic values of the wave fields out-
side the crystal, namely,

Ef,, (r) = E&,e '0'+ E„e""0', z &0 (3. 9a)

re I.
width
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The amplitudes E&, and E&, are determined by the
normalization condition thRt ln the Rsymptotlc
limit ihe incident photon wave has the amplitude 1.
A direct evaluation of (3. 8) leads to

IEi. l' = 2«kko, (3. 9c)
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FIG. 2. Refractive indices n;+iv~ of the two polaritons
vs frequency near the ls exciton in CdS. The halfwidth
of the exciton is 1.0 cm ~. The solid line represents the
real part n~, the dashed line the imaginary part v&.

The evaluation of (3. 5) and (3.4) is very similar
to that of (2. 5) and (2. 10) in the semiclassical case.
One obtains the expression (2. 17) again with the
slight difference that the factor k04 in (2. 17) is re-
placed by ko ko. The difference is due to different
definitions of the cross section: Classically it was
defined in terms of the scattered energy flux, and
quantum mechanically in terms of scattered photon
quanta.

FIG. 3. Brillouin shifts gower part of the figure) and
relative widths 4 (upper part of the figure) of backward
scattered photons in CdS vs frequency for the geometry
Eq~lE, ik J.c. Eq(E,) is the electric field vector of the in-
cident (scattered) field and c the c axis. For simplicity
only excitations of LA phonons have been considered.

IV. DISCUSSION: RESULTS FOR CdS

[1+n(cd —cd' )] ll lcd —cd'
l

=n(cd —cd') a lcd —cd' l=kT .
(4. 1)

For the process s j the scattered light produces
a I orentzian line shape with maximum at

cd = cd+c~ jkc+kyl (4. 2a)

and a relative linewidth of

K]+ Kg

k] + k~
(4. 2b)

If one integrates the cross section over ~', the

The different factors in the expression (2. 17) for
the cross section have a simple physical meaning.
The first is slowly varying with frequency and
exhibits the familiar ~' law. The polarization
amplitudes P~ and p~& are determined by Eq. (2. 16).
Both show a strong frequency dependence near the
resonance because of the frequency dependence of
the transmission coefficient for the incident and
outgoing wave, and because of the resonance en-
hancement of the susceptibility, The first term in
large parentheses in Eq. (2. 17) describes Stokes
processes, and the second anti-Stokes processes,
each weighted with thermal factors. In the classi-
cal limit (kT»k i cd —cd' I) we have
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FIG. 4. Total efficiencyij for backward scattering in
Cds vs frequency for EqNEs l(1c. The label ij means
scattering from branch i to branch j in the nomenclature
of Fig. 2. Total efficiency is the scattering cross section
[Eq. (2. 17)] for F =1 cm2.

gap by Brillouin scattering. Moreover, it is
known ' that in this crystal the acoustic phonons
and the excitons are mainly coupled by a deforma-
tion potential which is of the form of our interaction
Hamiltonian (3. 3). For simplicity we consider
only longitudinal acoustic phonons in the following
though the transverse acoustic phonons can equally
well couple to the excitons. The cross sections
are always calculated in the classical limit (4.1).

Figure 2 shows the two solutions for the complex
refractive index n + iv = k/k, near the resonance for
E lkLc. Near the 1s resonance both polaritons
are strongly damped. For higher frequencies the
photonlike polariton is much less damped than the
excitonlike polariton.

The frequency shifts and widths of the scattered
lines are shown in Fig. 3 for backward scattering.
The usual Brillouin line corresponds to scattering
on the photonlike parts of the polariton branches.
This means scattering on the branch 22 (that is
i =2, j = 2) below the resonance, and 11 above the
resonance. Typical values for the acoustic phonons
are 1-2 cm '. When & approaches ~„very closely
from below, the predicted Brillouin frequency
shift w& from branch 22 is seen to increase sharp-
ly. When &u approaches to~ from above, ~s (from
branch 11) decreases sharply. The other branches
correspond to the other scattering possibilities
with typical values for the acoustic phonons of

factors following the polarization amplitudes sim-
plify to give the effective scattering volume F/
(a'~+ tc&) (except for a thermal factor). The relations
(4. 2a) and (4. 2b) were recently used by Sandercock4
to determine the complex refractive index of Si
and Ge, for incident frequencies in the continuum.

We made numerical estimates for CdS for the
different quantities in Eq. (2. 17). The following
crystal parameters were used: co~= 20700 cm ',
4m&v&= 4. 16 && 10s cm (corresponding to A = 0. 0047
in the notation of Ref. 5, p. 236), I'= 10 cm ', eo
= 8, M~=0. 9m, ,

s c,=4. 48&&10' cm/sec, ' and c
= —1.925' 10 . ' Here M~ is the exciton mass and &,
the longitudinal sound velocity for a direction per-
pendicular to the e axis. The most uncertain values
are the oscillator strength 4ne~ and the phenomeno-
logical damping constant I' = 2' [see Eq. (2. 8) of

Ref. 1]. In Ref. 5 the values A= 0.0625 and
I'& 1 cm ' were used in explaining reflection data.
Our values for A and 1" correspond to a lower bound
for the effects of spatial dispersion and cross sec-
tions. Our I' value is a compromise between Refs.
5 and 8. CdS was chosen because it has already
been investigated in the opaque region below the
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FIG. 5. Comparison of total efficiency 22 for three
different ABC: 1, 2, 3; see text for discussion.
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( 1 QOE1)+ (P2 —$0 2) = 0, ABC 1

n, (P, —yoE, )+n2(P, —yoE2) = 0, ABC 2

5—20 cm ' and are strongly frequency dependent
near resonance. Note that all branches satisfy
4 «1 almost everywhere above the 1s exciton.

Figure 4 shows the frequency dependence of the
four total efficiencies. The total efficiency is the
scattering cross section calculated with the ex-
posed area, E= 1 cm, in Eq. (2. 17). Below the
resonance only the 22 cross section is essentially
nonzero, and strongly increases with frequency in
spite of the decreasing penetration depth 1/(n, +n', ).
The two maxima in the total efficiencies 12=21 and

22 correspond to "in" and "out" resonances. For
&»~j the 11 scattering on the lightlike polariton
branch dominates. Near ez all four processes are
comparable.

In Fig. 5 we show the effect of differen. t ABC
on the cross section 22. Three curves are shown

1, 2, and 3, for each of which one ABC was used:

I',
+ p =Os ABC 3.Iq

(n f
—n, )(nq —1) (n2 —n, )(n~- 1)

From the derivation in Ref. 1 we believe that ABC
1 properly allows for exciton reflection in contrast
to ABC 3 derived in Refs. 11 and 12. The ABC 2

is a limiting case of the type proposed in Ref. 5.
All three curves show "in" and "out" resonances
with the 1s exciton. To distinguish between the
three curves note on 1 the slow fall off above o)„,
on 2 the sharp fall off above ~~, , and on 3 the ad-
ditonal resonance at about 15 cm ' above ~„, due

to the extra factor in the denominator in ABC 3.
Hence measurement of the cross section could de-
cide the correct ABC experimentally.
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