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The normal-incidence propagation of transverse modes in a medium with spatial dispersion
is analyzed. A careful examination of discrepancies existing in the literature concerning the
boundary conditions shows that they are due to the use of different susceptibilities. Thus they

originate from a discrepancy in the solution of Schrodinger's equation and not of Maxwell's
equations.

I. INTRODUCTION

In the present paper we shall propose a resolu-
tion of a long-standing controversy concerning the
additional boundary conditions (ABC) appropriate
for the description of the electrodynamics of a
bounded spatially dispersive medium. From the
analysis we give here it is apparent that the dif-
ferent ABC's are intimately related to different as-
sumptions made concerning the proper nonlocal
susceptibility r(r, r ) governing the spatially dis-
persive medium. In turn, the susceptibility di-
rectly reflects assumptions made concerning the
boundary conditions for excitons (the most relevant
elementary excitation here) in the bounded medi-
um. Hence, different boundary conditions for the

Schrodinger equation produce different ABC' s.
To illustrate the essential point, we may focus

on the case of spatial dispersion resulting from
the coupling of bare photons with wave vector ko
= e/c to a dispersive discrete bare exciton (with
center-of-mass motion). Inthe absence of coupling,
the Fourier-transformed susceptibility y(k, &u) due

to this single-exciton level has a simple pole [see
(3. V) j at the wave number k,(~), for each frequen-
cy co. Owing to the coupling, polariton modes are
formed which in an infinite medium satisfy the
well- known dispersion equation

(k& /ko) = 1+ 4o X(k&, ko) ~

In this case two linearly independent degenerate
polaritons can propagate with wave vectors k, (~)
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Eon+Ere=E&+Ex )

E&n- Ere=&)E)+&2E2 ~

(1.2)

where n, = k, /k oand nz= k2/ko are-the refractive
indices of the two polariton waves. To determine
the reflection coefficient E„/E„(and the other
amplitude ratios) requires an ABC.

One ABC, originally given by Pekar, ~ requires
that the total polarization due to the polaritons
must vanish at the surface;

or
P)+ P2 ——0

('~y —1)Eg+ (+g —1)E2= 0 .

(1.3)

Another type of ABC arises when the susceptibility
in the semi-infinite medium is taken as

(1.5)x(r, r') =-x(r —r') 8(z) 8(z'),

where x(r —r') is the nonlocal susceptibility of the
infinite medium. The ansatz (1. 5) can be shown '

to lead rigorously to an ABC:

E,/(n, —n, )+E,/(n, —n, ) = 0,
where

n„= k, /ko .

Other forms of ABC have also been given in the
literature. A more general formula [Eq. (3. 10)]
contains the reflection coefficient of the Schro-
dinger wave function of the exciton. Equations
(1.3) and (l. 6) are then obtained as special cases.

and k2(e) for (d & (d ~~ .
When an incident plane wave with e & co„ im-

pinges normally on such a semi-infinite spatially
dispersive medium, it will excite two polariton
modes in the medium. Let the vacuum be located
at z & 0, the medium at ~ &0. Then in the left half-
space there will be incident and reflected waves
with amplitudes E&, and E„, respectively. In the
medium there are the two right-running waves with
amplitudes E& and E~. The Maxwell boundary con-
ditions on E and B give two relations among the
four quantities E,» E„, E» and Ea.'

4'' ~ (Ol j(r) lv) (v 1 j(r')10)
(d „(d„o+ ((0 + Zfi )

+ . (2 2)
(01j(r') Iv) (v( j(r) [0)

~„0—(~+ iq)

Here Xo is a spatially nondispersive "background"
dielectric function and the remaining sum in (2. 2)
is restricted to the resonant spatially dispersive
parts. In the following we shall restrict the sum
to one exciton branch. The generalization to more
than one branch is straightforward. e~ is supposed
to contain that part of the electron density which
is associated with the oscillator strengths of this
one branch, i. e. ,

4me' ~ », 2(OI j(r)lv)(vl j(r')I )

(2. 3)
V is the volume of the medium, first kept finite,
to keep all quantities occurring in (2. 2) and (2. 3)
finite. Finally one may let V

We now introduce exciton wave numbers q and
"wave functions" Q~ in writing

(8ve'/&u, )'~'(0 ~j(r) ~q) = e~ P;(r) . (2. 4)

Neglecting any explicit wave-number dependence of
the dipole strength in the infinite medium, one
would have

(2. 5)

In (2. 5) as well as in (2. 6) below, we have disre-
garded any additional variations on an atomic scale
from, for example, the periodic part of the wave
function. This is allowed as long as the wave-
length of the polarization waves is sufficiently
large compared to the lattice spacing. The suscep-
tibility then only depends on the difference r —r' as
it should. The simplest way of taking a boundary
into account would be to "chop off" the wave func-
tions (2. 5) at the boundary as Q;(r) = e(z) e ". This
ansatz would lead directly to (1.6), but would
amount to complete neglect of exciton reflection
at the boundary. An ansatz taking reflection into
account would be

II. SUSCEPTIBILITY OF A BOUNDED MEDIUM Q;(r) = [e"&'+A(q, ) e '~']e"'~""2& g(z), (2. 6)

For sufficiently small values of the electric field
E(r), the polarization field P(r) of a medium de-
pends linearly on E:

P(r)= f X(r, r')E(r')d~r' . (2 1)

To avoid tensorial complications, we restrict
ourselves to an isotropic medium and to one of the
two transverse components of the fields. We shall
base our investigations on the general expression
for x (adapted to our special problem) following
from linear-response theory:

4~X(r, r') = (4zXo- (o,'/(u') 5(r —r') e(z ) e(z')

with
kgb(r r~)

+

(2w)' J ~,' —(~+it))'

(2. 7)

(2. 8a)

for values of z not too close to the boundary. Since
the exciton cannot leave the crystal, one must have
tB I = 1, if loss processes are neglected. For
smallq„R(q, )-—1 which corresponds to a node
of the exciton wave function at the boundary (see
Appendix A). Inserting (2. 6) into (2. 2) one finds
for the susceptibility

X(r, r') = [X05(r- r')+X (r, r')+ X (r, r')] e(z) 8(z')
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a,nd

40 d'q R(q,)

exp(i [q „(x—x') + q„(y —y') + q, (z +z')]}
(d~ —((d +»rl)

(2. 8b)
In writing (2. 8) we have continued R(q, ) to negative
values of the argument using R(- q, ) =R*(q,) and

the fact that +;= (d„~. We neglect Brillouin-zone
effects and extend the q integration over the whole

q space. Notice that the first term X' depends only
on z -z' as in the infinite system. On the other
hand, the second term y depends only on z+z'. In

Sec. III we show that it is this term which makes
the difference in the two results for ABC men-
tioned in the Introduction.

1 1
X(q ko)=Xo+&.

q —ke q+ke (3 7)

(k»'- ko') E» = 4&ko X» E» (3. 8)

Hence either k~ satisfies the dispersion equation

of the susceptibility near its poles. We have also
used the fact that R(q, ) is holomorphic in the upper
half-plane assuming that there are no bound-sur-
face-exciton solutions of Schrodinger's equation.
Both I'& and I', diverge if one of the k& approaches
k„and we therefore assume that k&4k, . The case
k» = k, is included in (3. 4) as a limiting case, since
one only has to combine the P& and P, terms to
yield a finite result in the limit k&- k, .

If (3. 2) is inserted into the left-hand side of

(3. 1), and (3.4) in the right-hand side, and the k»

terms are equated, one obtains

III. SOLUTION OF MAXWELL'S EQUATIONS
k» /ko = 1+4zX(k», ko) (3. g)

In our case the wave equation for the electric
field takes the form

—(V'+ ko) E(r) = 4»» kooP(r) . (3. 1)

E(r) =QE» e'"»' for z &0 . (3.

If this ansatz together with (2. 7) is inserted into
(2. 1), one first has to calculate the integrals

f i iB*t,'q,

k& —q, +ig k&+ q, + ig '

(3. 3)
After inserting this into (2. 1) one can do the q,
integral in the complex q, plane. There are two
kinds of poles in the integrand contributing to the
final result: (i) the poles occurring in (3. 3) and

(ii) the poles of x itself. The final result can
therefore be written in the form

P(&) QP e»h»e+P &»Azg (3 4)

with

I'' = X~E~, (3. 5)

where X»= X(k», ko) is the dielectric polarizability
of the infinite medium and

1 R*(k,) (3. 6)

In deriving (3. 6) we have used a partial fraction
decomposition

If this is combined with (2. 1) one has an homoge-
neous integrodifferential equationforE(r). In order
to have a unique solution one has to impose some
asymptotic condition: We take only "outgoing"
(right-running) waves in the half-space z &0, i.e. ,
within the medium. In the left half-space there
are ingoing as well as outgoing (reflected) waves.
At normal incidence we expand the field in the crys-
tal in a Fourier series

1 R*(k,)~"~ k-k 'k ke C+ e
(3. 10)

This is our version of the ABC. It shows directly
the intimate connection between the ABC for Max-
well's equation and the boundary conditions in the
solution of Schrodinger's equation.

If in Eq. (3. 10), R(k,) is taken to be zero, one
obtains exactly the ABC (1.6). If on the other hand

R(k, ) = —1, one finds using (3. 7)

(»- XoEi)+ (Po- XoEo) = 0, (3. 11)

which only goes over into Pekar's ABC for go= 0.
The fact that a nonvanishing background suscep-
tibility yo leads to a finite value of P,+'I', is par-
ticularly obvious in the limit v~- 0 because in that
case the usual results of spatially nondispersive
media must hold.

The derivation of (3. 10) shows that one cannot
derive ABC by just looking at (2. 1) and noticing
that X(r, r') vanishes at the boundary, since all
wave functions contributing to X have nodes Bt z
= 0. In fact all the wave functions contributing to

Xo may well have this property and the functions
occurring in (2. 2) may only be discontinuous ap-
proximations for an actual continuous drop to zero
on an atomic scale. The polarization fields occur-
ring in (3. 11), however, are associated with the

or else E~ must vanish. We consider this as a
mild version of a "proof" of the Ewald-Oseen ex-
tinction theorem: the only waves which can prop-
agate in the semi-infinite medium are those which
fulfill the dispersion equation of the infinite medi-
um. In particular, none of the kq can be equal to
k, in agreement with our assumptions in the deri-
vation of (3. 4)- (3.6). Furthermore, after equating
the k, terms in (3. 4) one obtains the additional
boundary condition
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fields well inside the medium, and those are the
only ones of interest in the solution of Maxwell's
equation in determining the ref lectivity. This is
discussed in more detail in Appendix B.

We conclude by noting that the right-hand side
of (3. 1) is finite. Thus the value and the first
derivative of E(z) with respect to z must be continu-
ous at z = 0. These two conditions are nothing but
the two Maxwell boundary conditions (1, 2) which
have to be taken into account in solving (3. 1).

APPENDIX A

The wave function for the center-of-mass motion
in this region can be written

$«(z) =A sin(kz —q«), 0&q«& p . (Al)

For z & 0, Q«(z) is exponentially decaying due to
the surface potential V(z), and we have in particula
lim, . „Q~«(z) = 0. The continuity of the logarithmic
derivation of Q«at & = 0 gives

&f&',(0)/Q, (0) = k cot(kz —q, ) . (A2)

Integration of the Schrodinger equation in the region
—~&z &0 yields

2M
»m &'«(0) = —

p V(z) ep(z) «
k~0

(A3)

If limy pf«(0)=0, then limy p'g«=0. In the other
case we have from (A3)

As discussed in Ref. 5, the center of mass of
the exciton moves in a half-infinite crystal as in
an infinite crystal except for a small region near
the surface where the exciton experiences a strong
repulsive potential V(z). This region has a thick-
ness of the order of the exciton radius. We there-
fore assume for the bulk region of the half-infinite
crystal

V(z) = 0 for z ~ 0.

0'(o)
~ 0

«-p 4«(0)

and in general with (A2)

lim
~
cot(g«) ~- or lime«= 0 .

k~o k" 0

We find therefore, in any case, that the stationary
solution for the center-of-mass motion of the
exciton has a node at the crystal surface in the
long-wavelength limit.

APPENDIX B

To establish the connection with the theory of
spatially nondispersive media, we consider the
frequency regions below and above the exciton
frequency ~» separately. For ~ smaller than ~»,
0, and 02 are complex even in the absence of damp-
ing. Well inside the crystal (z»0) the wave as-
sociated with k, does not need to be extinguished,
and there is no second polariton wave. In this
ease the usual results of the nondispersive theory
hold and the macroscopic polarization is nonzero
at the surface. Microscopically, the polarization
amplitude due to the exciton is still zero at the
surface, but it approaches the macroscopic value
very rapidly on an atomic distance. For (d larger
than cu», 0, and k~ are real. The plane wave with
k', must then be extinguished on a macroscopic
scale. This means that the macroscopic polariza-
tion due to the exciton must be zero at the surface
and it leads to the ABC (3. 10).

The above argument shows that the introduction
of a nondispersive "background" susceptibility yo
in (2. 2) is justified if we restrict ourselves to fre-
quencies which are smaller than all the "back-
ground" oscillators. Particularly the fact that Xo
leads to a finite value of the polarization at the
surface [see Eq. (3. 11)]is not in contradiction
with the fact that all wave functions contributing
to Xo have nodes at z=0.
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