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We present a systematic study of the effects of (i) the screening by mobile carriers, (ii)
the correlation of the oxide charges, (iii) the distribution of the surface-oxide charges in the
oxide, and (iv) the distribution of the electrons in the surface channel on the electron mobility
in a nondegenerate-semiconductor-surface inversion layer covered with an insulator or oxide.
It is found that the Debye-Huckel screening parameter for a two-dimensional classical elec-
tron gas is not valid for most ranges of temperature and electron concentration of practical
interest. In these temperature and electron concentration ranges, the formula overesti-
mates the screening effect. The effect of position correlation of the surface-oxide charges
on the surface mobility is discussed in detail in the hard-sphere model. Correlation effect
is important, especially at low temperatures where the mean electron wavelength is greater
than the mean separation among the surface-oxide charges. Both the distribution of the sur-
face-oxide charges in the oxide layer and the distribution of the electrons in the surface
channel have similar effects in reducing scattering. Evaluation of experimental surface-
conductivity mobility of electrons in a nondegenerate Si-Si02 surface channel due to scattering
by surface-oxide charges is made.

I. INTRODUCTION

The influence of the built-in surface-oxide
charges on the electron transport in e-type inver-
sion channels on oxide-covered silicon surfaces
has been demonstrated in the past few years. '
Recently we reported a more quantitative study of
the electron-conductivity mobility in weakly in-
verted and nondegenerate silicon surface channels
as a function of temperature and the surface-oxide
charge density. ' At low temperatures and high
surface-oxide charge densities, where scattering
by lattice vibrations is unimportant, the observed
mobility varied as T/Nz, where T is the tempera-
ture and N~ is the average density of the surface-
oxide charges. Such temperature and oxide charge
concentration dependence was predicted by a simple
two-dimensional model of scattering by surface-
oxide charges randomly distributed at the oxide-
semiconductor interface. ' The mobility, assuming
that both the scattering ions and the electrons are
confined in a sheet, is

e f e 2hksT
Po=

i( 2 ag.

where e= —,(e~, + e,„) and m„ is the mobility effective
mass. The observed mobility, however, is about
20 times larger than the value predicted by this
simple two-dimensional model, if bulk values of
7 and m are used. '

The simple two-dimensional model, which leads
to the electron mobility given by Eci. (1.1), is
very idealized. Several factors have been ne-

glected which may be responsible for the discrep-
ancy between theory and experiment. These are
(i) the screening by mobile electrons in the sur-
face channel„(ii) the finite distribution of the sur-
face-oxide charges into the oxide layer, (iii) the
correlation effect of the surface-oxide charge dis-
tribution, and (iv) the electron distribution into
the semiconductor layer.

In this paper, we present a systematic study of
the effects of these factors on the scattering of
electrons in a nondegenerate surface channel, and
determine the relative importance of these fac-
tors. We shall limit ourselves to nondegenerate
surface channels where classical statistics apply
since, through the temperature dependence of the
mobility, they provide more information on the
scattering mechanism than degenerate surface
channels. The effect of screening on the mobility
is studied first in Sec. II. The validity of screen-
ing for a two-dimensional classical election gas is
also discussed. In Sec. III the effect of correla-
tion of the surface-oxide charges is studied. De-
tailed discussion is given in the hard- sphere model
for a 5-function distribution at the oxide-semicon-
ductor interface. The results are theh extended
in Sec. IV to include the effect of finite distribution
of the surface-oxide charges into the oxide layer.
Finally, in Sec. V we study the effect of the finite
electron distribution in the surface channel on the
surface mobility.

Although we refer to the metal-Si-SiO~ structure
as our physical system, the results and discussions
presented here should also apply to electronic
transport in the surface channels of other systems.
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II. CLASSICAL SCREENING EFFECTS FOR TWO-
PIMENSIONAL ELECTRON GAS

A. Screening Parameter and Its Validity

The wave-vector-dependent static dielectric
function for a two-dimensional electron gas has
been obtained by Sterne as

c(j) = e, + 2m qy(q), (2. 1)

where c, is the dielectric constant of the surround-
ing medium and )f(q) is the polarizability of the
electron gas:

(2. 2)

y (E„) e(Ep-Ej)

/kyar

where E~ is the Fermi energy. Substituting (2. 3)
into (2. 2) and converting the summation into a sum
over spin states and an integral over k space, we
find

y(g)= (e'm~n„/q'vk ') e ~/'srE(q), (2. 4)

where n„ is the valley-degeneracy factor, and E(q)
is given by

E(q) =-,' J, e '"/(1-x)'"dx, (2. 5a)

Here the sum is taken over aQ one-electron states,
Ef =h k /2m~ is their energy, A is the normaliza-
tion area, and fo is the Fermi-Dirac occupation
function. For a classical electron gas, we have

q=24 sin&8, where 8 is the angle between k and
k~. That is, q,„=2k and q „=0. Using (2. 5a),
we find E(q „)= 1.0 and E(q,„)=0.536. Therefore,
to within a factor of order unity the screening
parameter may be written as

s = 2ve N/vt, k~ T. (2. 9)

st = 28 (wN) /ksT es «1 (2. 10a)

Since E(q) ~ 1, Eq. (2. 9) overestimates the true
value of s by a factor of order unity.

It is well known in plasma' and solid-state"
physics that there are two validity criteria for the
screening of a potential center by mobile carriers:
(i) There must be a considerable cloud of screen-
ing electrons within a screening length of each po-
tential center, and (ii) the mean wavelength of the
electrons must be smaller than the screening
length. It turns out that for bulk semiconductors
the usual Debye-Huckel and Thoma, s-Fermi
screening-length formulas do not satisfy these va-
lidity criteria over most of the ranges of tempera-
tures and carrier concentrations of interest.

We can apply the same criteria to test the range
of validity of the two-dimensional screening pa-
rameter given by Eq. (2. 9). I et vr~~=N ~ be the
mean area per electron and X,„=2pk/(2m"k~T) /

be the wavelength of an electron of thermal energy.
The two validity criteria then read

with sy, „=4m e NK/ksTct, (2m*k~T) / «1 . (2. 10b)

5 =K q /8m*ksT .
The screening parameter s is defined by

e(q) = e„(1+s/q) .
Using (2. 1) and (2. 4), we obtain

s = (2e'rn~n „/~,K')ex~/'srE(q)

where

N= (I/A)ZQO(Ep)

(2. 5b)

(2. 6)

(2. 8)

In Fig. 1, we plot sxo and sg,„as a function of T
and N, using &~=12 and m*=0. 323mo for Si. It
shows that for N= 10 cm the screening parameter
given by Eq. (2. 9) is not valid for T less than
about 50'K, and for N=10 cm it is not va.lid for
T less than about 200 'K. At the temperatures for
which the validity criteria are not satisfied, the
use of Eg. (2. V) or (2. 9) leads to overestimat-
ing the screening effects. The same "overscreen-
ing" effect also shows up at low temperatures in the
the three-dimensional scattering by ionized im-
purities when the usual Brooks-Herring formula
is used, causing the calculated mobility to rise
rapidly at low temperatures. ~~

is the number of electrons per unit area. Equa-
tion (2. Vb) shows that the screening parameter for
a two-dimensional nondegenerate electron gas is
proportional to the electron density, in contrast
with the degenerate electron gas for which the
screening para, meter is independent of the electron
density at 0 K.

As defined by Eg. (2. 6), s is a function of the
wave vector g through the function E(q). If we
consider the elastic scattering of an electron of
energy E~= k k /2m* = k~T from state I k) into
state I k ), then the appropriate value of q is

B. Screening Effects of Electron Mobility

I/'ro+) =v ~ N//Ie &
~

.(2, 11)

where E =E~ =h 3k~/2m*. When screening effect
is included, the relaxation time is given by

In two-dimensions, the momentum relaxation.
time for scattering of an electron from state I k)
into state i k ) by N~ unscreened surface-oxide
charges per unit area randomly distributed at the
oxide-semiconductor interface is given by
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10 III. EFFECTS OF CORRELATION OF SURFACE-OXIDE
CHARGES ON ELECTRON SURFACE MOBILITY

The effective-mass Hamiltonian of an electron
in the surface channel may be written in the form'

10

H=H +H

where

a'= —(e'/2m+) V'- ey'(x)

(s. ia)

(s. ib)

0
tl)

100

10 1010

N (cm 2)
1011 10

(S. 1c)

(S.2a)

H = —el'(r).
Here Po(z) is the electrostatic potential due to the
charge density averaged over the xy plane (the
oxide-semiconductor interface is assumed to lie
in the x = 0 plane), i. e. ,

p'(x) =
& p(r) &...

and 6$(r) is the electrostatic potential due to the
spatial charge-density variation in the xy plane,

FIG. 1. kayo and sXth as a function of electron concen-
tration. The ccreening parameter formula is expected
to be valid only when both sxo and s&th are less than 1.

1 1 ~' s
~,(Z) 2v7, (Z) q

e (Z7r)
m, (E) (2. is)

where m, is the mobility effective mass and

(A)= J Ae ~& dE (2. 14)

is the average value of A for a two-dimensional
classical gas.

Figure 2 shows the mobility as a function of
temperature and carrier concentration. Here the
mobility has been normalized to the mobility with-
out screening po given by Eq. (1.1). The apparent
large screening effect at low temperatures is ac-
tually due to the breakdown of the screening pa-
rameter formula used. For, as shown in Fig. 1,
the screening parameter formula at N=5x10 cm
is invalid for 7 ~100'K and at N=2g10 cm is
invalid for T ~ 250 K. Such overscreening effect
at low temperatures also occurs in the three-di-
mensional bulk case when the usual Brooks-Herr-
ing formula is used.

In the temperature ranges where the screening
parameter formula is valid, Fig. 2 shows that
inclusion of screening increases the calculated
mobility by about 5-20/~. For a given electron
concentration, the effect of screening increases
slowly as the temperature decreases.

where s is the screening parameter given by (2. 7),
8 is the angle between k and k, and q= k -k . The
electron mobility is given by

&p(r) = p(r) —p'(s) . (s. 2b)

In energy-level calculations ~ ' it is usually as-
sumed that p and P are functions only of x and uni-
form in the xy plane, so that 5p = 5&f& = 0. Spatial
variations of p and Q in the xy plane due to atomic
irregularities at the interface and surface region
were neglected. Such spatial variations of p and Q

are very important in surface transport phenome-
na, for although H determines the average prop-
erties of the electronic states, it is H that scat-
ters the electrons in the surface channel. '

m = 0.323m
E.b=12

———validity cr iter ia
violated

1g& 0
~+ 10—

— X Og~

~o~o

2—

0 i l l i I10 10 20 30 50 100
T (K)

200 300

FIG. 2. Surface mobility due to scattering by surface-
oxide charges as a function of the mobile carrier con-
centration.
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Substituting (3.4) into (3.3), we obtain

&k' le' Ik&= —(2«'/qe)nr*(q) (s. 6)

The transition rate is given by the Golden rule as

r; -„, =(2 /I)&l &k'la' lk& l'&„6(z«-z;.)

= (2»r/h )(2« /qf ) & nr(q)nr &q) &a&6 +'f E»,") ~

(s. 6)
(nr(q)n,*(q))„is the density correlation function of
the surface -oxide charges. The three-dimensional
analog of (nr(q)n,*(q)),„ in a bulk semiconductor has
been calculated for certain model-correlated im-
purity distributions and applied to the scattering of
electrons and to the scattering of light. ' Here
we shall derive an expression for (nr(q)nr (q))„ in
terms of two-dimensional distribution functions
and evaluate it for three interesting distributions:
the completely random, the superlattice, and the
hard-sphere distributions. Detailed discussion of
the effects of correlation of the surface-oxide
charge distribution on the electron surface mobility
will be given in the hard-sphere model.

I,et N= NIA be the total number of surface-oxide
charge particles, and P(x» . . . , x„)d xq d x„
be the probability that particle 1 is located in
d x1, particle 2 in d xz, and so on. The nor-
malization condition is

In this section, we assume that the only impor-
tant contribution to 5Q is from the surface-oxide
charges, and that these charges are located in the
oxide at the oxide-semiconductor interface.
Furthermore, in order to study the effects of the
correlation of the surface-oxide charges alone on
the electron surface mobility, we shall not include
the effects of screening by mobile carriers here.
The matrax element between two-dimensional states
Ik& and I k'& is then'

k) = —&27»e /Aqe) f [nr(x) Nr je-"'«d~x,
(3. 3)

where & is the average dielectric constant, A is the
normalization area, q=k'-k, and enr(x) and eN,
are the areal local and average surface-oxide
charge densities, respectively. We define the
surface-oxide charge-density fluctuation nr(x) by '

nr(x) = nr(x) -Nr (S.4a)

and its Fourier transform nr(q) by

n, (q) = (1/A) J n, (x) e»«'«d'x . (3.4b)

xW(x», xr)d x,d x» (3. 9)

where the primed sum means that the i=j term is
to be excluded. D(x) d'x is the probability that
there is a particle in d x at x, when there is one
at x= 0. Writing the particle density as

N

n, (x) = Q 6 (x —x,),
C~1

(S. 10a)

we obtain, from (3.4b),

nr(q) = (I/A) Zr e~' «r
Nr6»», o ~

By definition,

(nr(q)nr (q))„=f P(x», . . . , x„)nr(q)

(3. 10b)

&&nr (q)d xq ~ ~ d xN . (S. 11)

It can be shown by using (S. 9) that

(nr(q)nr(q)&„= (I/A)D(q) -Nr6, ,o

1
A

+ Ao Q W(x», xr)
Co)

X8 i g I CD O

(S. 12)
where D(q) is the Fourier transform of D(x) de-
fined by

D(q) = (1/A) f D(x) e '«' "d x . (3. 13)

Thus, for a given two-particle correlation function,
the density correlation function could be evaluated
by using (3. 12).

For a completely random distribution with no
correlation, we have

W(x„xr) = (1/A)' (3. 14)

and

(nr(q)nr(q)), =Nr(1 —5ao)/A (random) . (s. is)

where the integration is over all particle coordi-
nates except those of the ith and jth particles.
W(x», xr)d x,d xr is just the joint probability of
finding particle i in d x, and particle j in d x&,
regardless of the positions of the other N —2 par-
ticles. We also define the pair-distribution func-
tion D(x) (sometimes also called the pair-correla-
tion function) by

D(x) = Z f 5(x —x»+xr)P(x» ) . . . ~ xrr)d x& d x„
Co)

= NrA6(x) +Z' f 6(x-x»+xr)

J P(x», . . . , X~)d x»''' d x»»=l (S.V)
The corresponding mobility for a nondegenerate
surface channel has been evaluated to be'

We define a two-particle correlation function
8'(x», xr ) by »»r =

o
e (random),8 & 25k T

g Ng
(S. 16)

W(x», xr )= f P(x», . . . , xrr)d x» ' ' d xrr/d x,d xr,
(3.8)

which is just Eq. (1.1).
If the surface-oxide charges form a two-dimen-
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sional superlattice, then

(3. 18)

W(x), x~) =0,
I x) -xgI & Rp

= I/A(X —vRp'),
~
x, —x, I

(S.20)

Using (8. 12), we obtain

(n, (q)s~ (q) )„=
A

2CZg(qRp)
I

qRp j
(hard sphere), (S.21)

where Jz is the Bessel function of first order, and

W(x„x,) =6(x, -K, )6(x, -5,}, (3. 17)

where 5, and fz are the lattice position vectors
of particles i and j, respectively. For a super-
lattice, we have

(1/N) Q 8 "'"~=6~-„„,
y 1

where K& is a reciprocal-lattice vector of the
superlattice, so that

('+s(q)+r (q) )a~= N r(5t, ,R,„—5~, p ) (superlattice).
(3. 19)

Thus, scattering occurs for q=K„only. This is
just the well-known result that a perfectly periodic
potential does not cause momentum randomization.

The experimental evidence of scattering by sur-
face-oxide charges' ' appears to demonstrate cer-
tain degree of randomness in the surface-oxide
charge distribution. For surfaces with low charge
densities, the distribution is probably completely
random. For surfaces with high charge densities,
the distribution is probably correlated because
of the interaction among the charges.

Here we consider the simple model of hard-
sphere distribution, which has often been used in
the theory of liquid state to represent the short-
range repulsion among the fluid particles. That
is, we assume that the distribution of the surface-
oxide charges is random to the extent that no two
particles can be found within a radius of Bo from
each other. In this case, we have

face mobility for a nondegenerate surface channel
can be obtained from Eq. (2. 13).

We have evaluated the surface mobility as a
function of the temperature, with C as a parameter.
The results for N, =9.0x10' cm and m*=0.323mo
are shown in Fig. 3, where the mobility has been
normalized to pp given by (S.16). It shows that,
in general, correlation of the surface-oxide
charges has the effect of reducing scattering, and
hence increasing the mobility. At high tempera, -
tures, the mobility is relatively insensitive to the
degree of correlation. This is to be expected since
at high temperatures the mean wavelength of the
electrons, y„=2'/(2m*ksT)'~', is comparable to
the mean separation of the oxide charges, and
the electron "sees" only one or two oxide charges
at a time. Thus, the distribution appears fairly
random to the electron being scattered, regardless
of the value of C. However, at low temperatures
where the mean wavelength of the electrons is
many times the mean separation of the surface-
oxide charges, the electron sees many surface-
oxide charges at a time, and the mobility becomes
very sensitive to the degree of correlation.

Figure 4 shows the mobility as a function of N,
for C = 1 (uniform distribution). The vertical dotted
bars in the figure indicate the temperatures above
which the mean wavelength y,„is less than 2/Nlj,
where I/Nz~~P is the mean separation of the surface-
oxide charges. When X,„&2/Np, an electron sees
only one surface-oxide charge at a time on the
average, and Fig. 4 shows that the effect of corre-
lation is small and increases slowly with decreas-
ing temperature. When X,h& 2/NI~, on the other
hand, an electron sees more than one surface-oxide
charge at a time on the average, and correlation
effect becomes very important and a strong func-
tion of the temperature.

Most of the metal-Si-SiO& structures used to
study transport phenomena in the surface inversion
channel contain a total surface-oxide charge densi-

C = n'Rp/Ni (3.22) 10 I
I

I I I I

is the ratio of the minimum area pRO to the average
area Nr occupied by a charge particle. C is a
measure of the degree of correlation. C =0 cor-
responds to a completely random distribution;
C = 1 corresponds to a uniform distribution.

From (8. 6) and (8. 21), the momentum relaxa-
tion time ~&-is given by

I/~l= Z I'- „.(I -cos8)™k

~
de, (S. 28)5& E qRO j

where 8 is the angle between k and k, F =0 0'/2m~
is the electron energy, and q=2k sin-,'8. The sur-

10
i ill

20 30 50 100
T ('K)

I I

200 300

FIG. 3. Effect of correlation of the surface-oxide
charges on the surface mobility in the hard-sphere
model.



4610 T. H. NING AND C. T. SAH

10 I
[ /

I
f

I I I I layer into two-dimensional sublayers parallel to
the oxide-semiconductor interface. Let Az; be
the thickness of the ith sublayer, and let n, (x) and

N, be its areal local and average oxide charge den-
sities, respectively. The three-dimensional oxide
charge density is then

10
I I I I I I I I I I I I I

20 30 50 100 200 300
T ( K)

FIG. 4. Surface mobility with C =1 in the hard-sphere
model. The dotted bars indicate the temperatures be-
low which Xtq & 2/N~

n~(x, z)=Z»n»(x)5(z -z, ) .
Instead of (3.3), we now have'

&k' Iff' Ik) = (»—"/Aq~)Z; f (n;(x) N-»]

-qlg I+f$ 'kd~

= —(»e'/qe) Z, n*, (j)e ' "»'

where, by analogy with (3.4a) and (3.4b),

n, (x) =n, (x) -N»

(4. 1)

(4 2)

(4. 3a)

ty of between 5 x 10 and 1x 10 cm . Therefore,
the correlation effect of the surface-oxide charges
plays an important role in the interpretation of
experimental data except for specially prepared
samples with very low surface-oxide charge states
at around room temperature. For such samples,
the distribution of the surface-oxide charges is
probably completely random anyway.

In the above discussion of the hard-sphere cor-
relation model, we have implicitly assumed an
ideal oxide layer for which there is but one hard-
sphere radius Ro. In reality we expect the oxide
layer to form patches, with a different average
areal charge density and hard-sphere radius for
each patch. Thus, in principle, we should also per-
form an average of the density correlation function
over the distribution in Ro. The problem of de-
scribing such a patchy oxide charge distribution
statistically is similar to that of describing statis-
tically a crystal surface with smooth areas sepa-
rated by growth steps and scratches and other ir-
regularities. ~ There could be a probability distri-
bution P(RO) for Ro, and we could define an average
value of I'-„„".(Ro):

r-„;,= f P(R, ) r -„„-.(R,)dR, . (3. 24)

The distribution P(RO) is probably Gaussian, with
a standard deviation g~ . Lacking information on

cr~, we shall not pursue this problem any further
here.

IV. EFFECTS OF DISTRIBUTION OF SURFACE-OXIDE
CHARGES INTO OXIDE LAYER ON SURFACE MOBILITY

Thus far, we have assumed that the surface-
oxide charges are located at the oxide-semicon-
ductor interface. However, there is experimental
evidence that oxide charges in Si-SiO, systems
generated by oxygen heat treatment are spread out

0
to as much as 20 A or m.ore from the Si-SiQz in-
terface. To incorporate this finite distribution
into our model, we conceptually divide the oxide

n»(j) = (1/A) f n, (x)e '~ d'&»'. (4. 3b)

If we assume that there is no correlation among
oxide charges of different sublayers, then

& I
~»n-;(~)e "'»' I'&.,=~» &.-.(~)n-*, (~)&..e-"'»

so that (3.6) is replaced by
(4.4)

( ) il(E —E;)

&&2 &n»(q)n»(»l))„e "'»' . (4. 5)

Z &n, (j)n,*(»l)),„e~"'»&

=Z(¹/A)e

= (1/A)ZN»(z»)nz»e
$

= (1/A) fNz(z)e "'dz (random), (4.6)

where Nz (z,.) is defined by

Nr(z»)nz» =N» . (4. 7)

In our previous paper, ' we evaluated the mobility
for three interesting distributions: (i) Nz(z) =A&5(z),
(ii) N»(z) = (N»/n)e' ' &, and (iii) Nz(z) = (Nzz/P )
xe' ' '. For convenience we have replotted the re-
sults in Fig. 5. The mobility for case (i) is simply
»»0 given by Eq. (1.1). It corresponds to the case
where all of the surface-oxide charges are located
in the oxide at the oxide-semiconductor interface.
Figure 5 shows that the finite distribution of the
charges into the oxide layer increases both the

In order to study the effect of the finite distribu-
tion of the surface-oxide charges into the oxide
layer alone on the surface mobility, we shall assume
the simple case where the distribution in each sub-
layer is random. For this simple case, we have
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Flo. 5. Surface mobility for three different distribu-
tions of the surface-oxide charges: (1) Ng(z) =N'OG(z);
(2) &q(z) = Kq/&) e; (3)Ng(z) = gV'gz/P )

magnitude and the temperature dependence of the
mobility.

V. EFFECT OF ELECTRON DISTRIBUTION ON SURFACE
MOBILITY

Thus far, in our discussion of the surface mobil-
ity, we have assumed that the electrons in the
channel have a 5-function distribution at the inter-
face. This assumption is actually not valid, be-
cause for a nondegenerate-silicon-surface inver-
sion channel with 10"-cm electrons the average
distance of the electrons from the interface is
about 100 A. ' To take into account the electron
distribution exactly in the surface-mobility calcula-
tions would require analytic forms of the electron
wave functions in the surface channel. Therefore,
here we shall only give a semiquantitative discus-
sion of the effect of the electron distribution on the
surface mobility due to scattering by surface-oxide
charges, assuming certain physically plausible
distribution functions.

If the metal-oxide-semiconductor system is
biased near flat-band condition, then the surface
channel width would be semi-infinite. In this case,
we have essentially a semi-infinite system, and
the motion of the electrons perpendicular to the
surface is no longer negligible. The method
developed by Greene and O'Donnell '" for the scat-
tering by localized surface charges would be ap-
plicable.

If the system is biased so that a degenerate sur-
face channel is formed, the behavior of the elec-
trons in the channel is expected to be similar to
those in thin metallic films. For a degenerate-
semiconductor -surface inversion channel the sur-
face mobility due to scattering by surface-oxide
charges and by bulk ionized impurities has been
formulated by Siggia and Kwok, who take into ac-
count all of the electric subband energy levels.
However, as far as we know, explicit evaluation of
the mobility has not been performed, because it

requires analytic forms of the electron wave func-
tions which are not available. For thin metallic
films, on the other hand, formulas for the relaxa-
tion time due to scattering by localized surface
charges and by surface irregularities have been
obtained. This is possible because of the sym-
metry of the boundary conditions which gives sim-
ple analytic wave functions of the electrons.

Here we are interested in nondegenerate surface
inversion channels. The surface electric subbands
of such a surface are broadened into a continuum,
especially for samples with high surface-oxide
charge states due to random surface band bending
from randomly distributed ions, ' so that we are
dealing with essentially a classical surface chan-
nel instead of a quantum one. If the surface elec-
tric field is not too low (E~ ~ 1.5x 104 V/cm for
silicon), the channel width would be smaller than
the mean wavelength of the electrons, so that the
motion of the electrons perpendicular to the sur-
face may be neglected. In this case, the electron
wave function may be written in the form

y;(r) = (1/a&)e*"'~(z), (5. 1)

where k is a, wave vector in the xy plane, p = (x, y),
I r(z) I gives the electron distribution in the sur-
face channel, and A is the normalization area.
The matrix element of H between two-dimensional
states Ik) and Ik ) is

(k'Ia' Ik)=(1/a) J'd'pdz
I

g(z)~I'a'e""""'.
(5.2)

Suppose that H is given by N~ surface-oxide
charges randomly distributed in the oxide at the
oxide-semiconductor interface; then we find

2 2 2

f

&k'
I
a'Ik) '= " "'

dz Iq(z)f'e
qE

(5. 3)
where E is the average dielectric constant and
q=k' -k. The surface mobility may be evaluated
as in the preceding sections.

We have calculated the surface mobility for three
interesting electron distributions. They are (i)

I g(z)l =5(z), (ii) I ((z)l = (1/n)e' '~'&, and (iii)
I f(z) I

'= ,'b'z'e' "'. Case-(i) corresponds to the
simple two-dimensional model where the electrons
are located in the semiconductor at the oxide-semi-
conductor interface. The surface mobility in this
case is just po given by Eci. (1.1). Case (ii) is
typical of the classical electron distribution of a
semiconductor surface inversion channel, with no
quantum boundary conditions imposed. ' The
distribution of case (iii) is typical for a semicon-
ductor surface inversion channel with the quantum
boundary condition g(z = 0) = 0 imposed on the elec-
tron wave function. ' ' The results are shown
in Fig. 6, where, again, the surface mobility has
been normalized to JL(.0. As expected, the effect of
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We have investigated individually the effects of
screening, correlation and distribution of the sur-
face-oxide charges, and distribution of the elec-
trons on the mobility of electrons in a nondegener-
ate-semiconductor-surface channel. The results
shown in Figs, 2-6 indicate that although some of
the effects are more important than the others,
none is completely negligible. Therefore, in
principle, an exact calculation of the surface mo-
bility should take into account all of these effects
simultaneously. Such a calculation, however,
would not be informative at the present because
it involves too many yet unknown parameters.
However, from the results of the preceding sec-
tions, we could draw the following conclusions:
(i) Screening by mobile carriers is relatively un-
important for a nondegenerate-semiconductor-
surface channel, provided that the screening pa-
rameter formula is not extended beyond its range

the distribution of the electrons in the surface
channel on the surface mobility is very similar to
that of the distribution of the surface-oxide charges
into the oxide layer (see Fig. 5). As the mean
separation between the electrons and the surface-
oxide charges increases, the scattering decreases,
and hence the mobility increases. The distribution
of the surface-oxide charges is independent of
temperature and the metal gate bias, but the dis-
tribution of the electrons in the surface channel is
a function of temperature and the gate bias.

VI. DISCUSSION AND CONCLUSIONS

of validity. A better theory is needed to describe
the effects of the mobile carriers when the simple
formulas for the screening parameter break down.
(ii) The effect of correlation of the surface oxide
charges on the surface mobility is important,
especially at low temperatures where the mean
electron wavelength is larger than the mean sepa-
ration of the oxide charges. (iii) The surface mo-
bility depends on the separation between the sur-
face-oxide charges and the electrons in the surface
channel. (iv) Both screening by mobile carriers
and the correlation of the surface-oxide charges
have the effect of increasing the magnitude but de-
creasing the temperature dependence of the surface
mobility (recall that po is proportional to T), while
both the distribution of the surface-oxide charges
and the distribution of the electrons have the same
effect of increasing the magnitude and the tempera-
ture dependence of the surface mobility.

As mentioned earlier in Sec. I, the observed
electron conductivity mobility in a nondegenerate
silicon surface due to scattering by surface-oxide
charges shows a T/N, dependence, as given by po.

'
However, p, o is about 20 times too small. This
discrepancy could well be explained by a combina-
tion or combinations of the effects studied in this
paper. For example, let us consider the mobility
at T= 77'K. If we assume a classical electron dis-
tribution proportional to e' ' ~' ~& ', as in case

- (ii) of Fig. 6, where E~ is the surface electric
field and eE~z is the electron potential energy, then
for the experimental conditions, where Es = 2.5x 10
V/cm, most of the electrons are localized within
a distance of n = ks T/eE~ = 26 A from the interface.
That is, the finite distribution of the electrons in
the surface channel could account for a factor of
about 4 (see Fig. 6). If we further assume an
exponential distribution of the surface-oxide
charges, as in case (ii) of Fig. 5, with a rea, son-
able mean distance of 25 A, then we could account
for another factor of about 3 (see Fig. 5). The
remaining discrepancy by a factor of 1.7 could
very well be accounted for by the screening effect
(see Fig. 2) and the effect of position correlation
of the surface-oxide charges (see Fig. 3).

It is interesting to note that none of the effects
studied here could alone account for the dis-
crepancy between experiment and the theoretical
value of po. This would indicate that a combina-
tion of these effects should be taken into considera-
tion simultaneously in a more refined theory of
electron transport in semiconductor surface chan-
nels.
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The normal-incidence propagation of transverse modes in a medium with spatial dispersion
is analyzed. A careful examination of discrepancies existing in the literature concerning the
boundary conditions shows that they are due to the use of different susceptibilities. Thus they

originate from a discrepancy in the solution of Schrodinger's equation and not of Maxwell's
equations.

I. INTRODUCTION

In the present paper we shall propose a resolu-
tion of a long-standing controversy concerning the
additional boundary conditions (ABC) appropriate
for the description of the electrodynamics of a
bounded spatially dispersive medium. From the
analysis we give here it is apparent that the dif-
ferent ABC's are intimately related to different as-
sumptions made concerning the proper nonlocal
susceptibility r(r, r ) governing the spatially dis-
persive medium. In turn, the susceptibility di-
rectly reflects assumptions made concerning the
boundary conditions for excitons (the most relevant
elementary excitation here) in the bounded medi-
um. Hence, different boundary conditions for the

Schrodinger equation produce different ABC' s.
To illustrate the essential point, we may focus

on the case of spatial dispersion resulting from
the coupling of bare photons with wave vector ko
= e/c to a dispersive discrete bare exciton (with
center-of-mass motion). Inthe absence of coupling,
the Fourier-transformed susceptibility y(k, &u) due

to this single-exciton level has a simple pole [see
(3. V) j at the wave number k,(~), for each frequen-
cy co. Owing to the coupling, polariton modes are
formed which in an infinite medium satisfy the
well- known dispersion equation

(k& /ko) = 1+ 4o X(k&, ko) ~

In this case two linearly independent degenerate
polaritons can propagate with wave vectors k, (~)


