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A transformation is derived which relates the fourth-rank elastic tensors of the two common
modifications of tetrahedrally coordinated compounds, cubic zinc blende (ZB), and hex-
agonal wurtzite (Wz). The basic assumptions are that the local tetrahedra extending to second
neighbors about each atom are rotated but otherwise identical in the two structures, and that
differences between ZB and Wz for third and more distant neighbors are negligible. The
procedure involves Robinson's rotations which apply to any tensorial property, to which is
added internal strain between the two inequivalently oriented tetrahedra in the Wz structure.
Good agreement is found with empirical constants of ZnS which have been measured in both
structures. The transformation permits a simple derivation of "effective" cubic constants
for Wz compounds, which are sufficient to extract the most important information on average
tetrahedral forces. Effective constants are compared with measured ZB constants for the
entire range of tetrahedrally coordinated compounds.

I. INTRODUCTION

It has long been recognized that crystals having
the wurtzite (Wz) or sphalerite (zinc blende or ZB)
structures are fundamentally similar despite dif-
ferences between the two structures. ZB crystals
are fcc (T„)with two atoms per primitive cell,
whereas Wz crystals are hexagonal (C~) with four
atoms per cell. The fundamental relation between
the two structures is that the local environment of
any atom in either ZB or ideal Wz (c/a= 1.633) is
exactly the same through the second neighbor. The
two lattices differ only in the arrangement of third
and more distant neighbors. Robinson' has ex-
pressed the relation between ZB and ideal Wz
succinctly: Each lattice can be constructed from
tetrahedral building blocks. In ZB all tetrahedra
are equivalent, but in Wz there are two inequiva-
lently oriented tetrahedra each of which can be
related to the standard orientation of ZB tetrahedra
by a simple rotation. Thus we expect that a given
chemical compound is basically the same, inde-
pendent of the structure in which it crystallizes,
and that, to a good approximation, the tensorial
representations of any physical property in the two
systems are related by simple rotations.

The fundamental correctness of this comparison
of Wz and ZB crystals is most clearly seen by
comparing empirical data for compounds (such as
Zns) which can crystallize in either form. For a
large range of materials, both modifications have
essentially the same first- and second-neighbor
separations. ' Furthermore, the lattice constants
for Wz crystals reveal only small deviations from
the ideal c/a ratio so the ideal approximation is
justified for many properties. Close correspon-
dence between Wz and ZB crystals may be seen
in the total energies, s ' Baman frequencies, s elec-
tronic bands, 7' dielectric constants, as well as
other properties.

The close correspondence of Wz and ZB crys-
tals has been documented by Phillips and Van
Vechten in terms of a "universal semiconductor
model. " They have shown that many properties of
the entire range of tetrahedrally coordinated com-
pounds are continuous functions of two variables,
lattice constant and ionicity, independent of the
structure Wz or ZB. Similar conclusions may be
drawn from chemical bond analyses, such as that
of Pauling, who implicitly ignores the difference
between the structures in his molecular approach.
The common feature of the above analyses ' is
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that dominant chemical trends are determined sole-
ly by the chemical constituents and the tetrahedral
coordination.

Robinson's tensorial relations' between proper-
ties of ZB and Wz crystals have previously been
tested for two third-rank tensor properties, the
piezoelectric constant' e,&~ and nonlinear suscep-
tibility d,».' The only compound for which these
constants have been measured in both modifications
is ZnS; in that case agreement is very good. The
close relations among these constants for several
other similar materials further supports the
relations.

In the present paper the relation between ZB and
Wz is extended to a fourth-rank tensor, the elastic
tensor C, ». In this case it is conceptually essen-
tial to go beyond the work of Robinson to allow the
inequivalent tetrahedra in the Wz crystal to be
strained by different amounts. This is incorpor-
ated as a generalized internal strain" which com-
pletely accounts for the inequivalent Wz tetrahedra
within the force-constant approximations used
here. The relation of ZB to Wz phonon dispersion
curves has been described by Birman' who simply
folded the ZB curves into the Wz Brillouin zone.
In the acoustic regime this amounts to the approxi-
mation that ZB and Wz are indistinguishable. The
present results ammend his zeroth-order approach
in the elastic region to include the effects of the
inequivalent tetrahedral orientations.

The primary achievement of the present work is
the derivation of simple formulas for effective
cubic constants in terms of experimental wurtzite
elastic constants. The formulas are accurate to
a few percent for ZnS and are generally within the
experimental uncertainty. Effective cubic constants
lucidly describe the most important information
concerning interatomic forces. ' Without such
simplifications the basic tetrahedral forces are
buried in parametrized models made tedious by
the presence of complicated forces peculiar to the
wurtzite structure. In addition, the present ap-
proach is but one example of a general procedure
which should be applicable to other structures, for
example, the many hexagonal stacking polytypes
of SiC or the chalcopyrites' which are composed
of structurally inequivalent tetrahedra.

It must be emphasized that we are neglecting the
deviations from the ideal Wz structure and the
difference between ZB and Wz of all forces between
third and longer-range neighbors. The success of
the method with these approximations underscores
the importance of the fundamental tetrahedral units
in both structures and supports the arguments that
the basic chemical properties are independent of
whether the compound crystallizes with ZB or Wz

symmetry.
The paper is organized to present in Sec. II the

basic relations between ZB and Wz including the
internal strain and to test these relations using
empirical data for ZnS. In Sec. III transformed
constants for a range of compounds are presented
and the effective cubic constants for Wz crystals
are quantitatively compared with empirical con-
stants for cubic ZB compounds.

II. BASIC TRANSFORMATIONS

Our starting point is the ansatz that the proper-
ties of ZB and Wz crystals are determined by the
properties of the constituent tetrahedra. The only
interaction between the tetrahedra that is consid-
ered here is the essential feature of a connected
network-neighboring tetrahedra are joined so that
their distortions are not independent. With this
ansatz we neglect the difference between Wz and
ZB in all interactions involving third and more
distant neighbors. This procedure is justified by
the comments in the Introduction and the fact that
long-range forces are known to play only a small
role in the elastic properties of ZB crystals. '

In addition, we neglect all deviations from the
ideal Wz structure. That is, we neglect both the
deviations of c/a from the ideal value and the in-
ternal displacement g of the sublattices. Each of
these deviations in real Wz crystals modifies the
precise tetrahedral coordination around each atom.
However, the deviations are small and are not
expected to modify the present results significantly
(except possibly for ZnO). Let us note that the
displacement parameter u is often referred to as
an "internal strain. " It must be emphasized that
the internal strain discussed below is an internal
strain of the ideal Wz structure; here we neglect
both u and changes in u with strain.

The first step is to relate the orientations of the
tetrahedra in the two structures. The standard"
axes for tensorial properties of ZB crystals are
the cubic axes (x, =x, x~=y, xs=a), in terms of
which the four tetrahedral bonding directions are
[111], [111], [ill], and [Il 1]. The two inequiva-
lent tetrahedra in a Wz crystal in the standard con-
figuration' (x& axis along c axis) are found by ro-
tating the standard ZB tetrahedra with transforma-
tion matrices, respectively, '

R (1) 1
v'6

v3 o W3

—1 2 1

—W2 —v2 v2

R (2)

—1 0 0

0 —1 0

0 0 1

Each rotation R"' and R' ' transforms the ZB crys-
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tal to one of two inequivalent trigonal orientations.
Hexagonal symmetry results from the superposi-
tion of the two trigonal orientations.

Let T,.&» be the representation of any tensorial
property of ZB in the standard orientation. In
each of the two trigonal systems the tensor T is
represented by

lykl ~ ~ ~ "fi' "yg' "kk' "l l' k'g'k'l' ''' (3)

where summation over repeated indices in under-
stood. For the third-rank nonlinear susceptibility
g' ', Robinson neglected all interactions between
the tetrahedra so that the corresponding tensor for
the hexagonal Wz crystal is the average of the two
trigonal tensor s:

t~'*»" ~
= ~( (g» "+ &g))) ~ ~ ~ ) ~ (4)

It is easily verified that T"' has the correct Cs„
symmetry.

The averaging procedure (4) is reasonable for
the nonlinear susceptibility, since it is exact in the
usual approximation that local-field effects are ac-
counted for simply by a phenomenological prefac-
tor. However, for an elastic strain the tetrahedra
cannot be thought of as independent —the corners
of the neighboring tetrahedra are ."irmly attached
so that the response of each to external forces is
not independent. This constraint is correctly taken
into account by allowing for strain tensor &,",') for
tetrahedra of orientation 1 to differ from that of
orientation 2, q,',. ', subject to the constraint that
the average

I( (1) (2)i
E]y =

p y6ly + 6)y )

the Wz structure:
WsU= &&&& Clgkl &kl

with

C&gkr

Thus the correct transformation from ZB to the
ideal Wz structure is given by (11), where C"* is
the average elastic tensor and the correction term
has the prototype form" for an internal strain
contribution. The matrix inverse (C"*) ' is just
the "average" elastic compliance tensor ~S'. For
any simple crystal system such as Cs„ the matrix
inversion reduces to a simple set of algebraic re-
lations" between components of the C and 8 ma-
trices.

At this point it is pertinent to write out explic-
itly the transformation for the elastic tensor. De-
fine a three-component vector C B, with compo-

CzB CzB CzB CzB and CzB CzB

three independent constants for the cubic structure.
For both C"' and C W' we define the six-component
vectors Cwm Cws Cwz Cwm Cwm Cwz Cwz Cwm

1 11 s 2 33 & 3 12 & 4 13 &

C5'=C44', and Cs'=C«a d s'm' arly for C"'.
There is only one independent component of b,,», ,
6 = 614 which determine s all coefficients which
are nonzero in the trigonal system but zero in the
hexagonal system [see Ref. 15, p. 229 (class 3M)
and p. 300 (class 6MM)]. It is then straightfor-
ward to carry out the multiplications in (3) using
the matrices (1) and (2) to find

3

(i2)

is the macroscopic strain. The difference between
the strains

& (e&)) s~(~R) )

is not fixed by the macroscopic strain, but is an
internal strain which adjusts to minimize the total
energy of the strained crystal.

Let us define the elastic tensors for the two
trigonal orientations to be C,.(&k', and C,'Jk, . Then
the strain energy per tetrahedron is

I r (1) (1) (1) (2) (2) (2) lU=4«;g C&yk, &k, +&;g C;
Wz Wz—

P &Egg C)fkl /k) 5ijC$fkl ~kl

+&&) &iy»&»+~gy&gy»&») ~ (&)

where C"' is the average elastic tensor

3
~=K q, c,-,

f=1

where P is the 6&&3 matrix

2 4 8

1 5 —2
1

2 4 —4

2 —2 2

1 —1 4

and Q is the Ix3 matrix

q=(I/3&2)[I -2 -2].

(i3)

(14)

(15)

WE x (1) (2)C;)» ——,(C;y» + C,)»),
and 6 is the difference

(1) (2)6;;» —,(C,g» —CU») . (9)

The internal strain 5,&
.s fixed by mini~izing the

energy Pin Eq (7), i.e. , .requiring sU/N, &=0.
Equation (I) then yields the predicted constants for

Cwz Cwm Df', ~ i=1, 6.
One finds the simple results

The internal strain contribution can be worked
out readily for the present case using the form of
the C"' and 6 matrices from Ref. 15. Let us de-
fine the vector corresponding to the internal strain
contribution in Eq. (11)by D,
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D1 = —D4 = D4 = b /C 4
',

Dp=D4=0, D4=b /C4' .Wz
(i7)

The set of Eqs. (16), into which are inserted the
formulas (12)—(15) and (17), completely specifies
the transformation from three elastic constants of
the cubic structure to the predicted six constants
of the ideal wurtzite structure. The test of the
validity of the transformation is to compare ex-
perimental constants for a compound in the Wz
structure with those found by transforming the con-
stants measured experimentally for the same com-
pound in the ZB structure.

Tables I and II show the results for ZnS, the only
compound for which complete elastic data are
available in both structures. In Table I we see
that the transformed cubic values agree very well
with the experimental' constants for hexagonal
ZnS. There is a range of experimental values'
of the cubic constants as shown in Table II. All
values were measured by dynamic techniques. The
"average" constants listed in Table II are the
averages of the two independent experiments' '
which agree closely, disregarding the third set of
data' for which the bulk modulus differs signifi-
cantly. With experimental uncertainties of several
percent, the present agreement of predicted and
experimental values is entirely satisfactory. The
final column of Table I lists the average constants
C"' neglecting the internal strain. The internal
strain contribution is a small correction, but the
fractional improvement in agreement is significant.
It is noteworthy that the internal strain brings all
constants into the same general agreement as are
C33 and C&3, which have no internal strain contri-
bution.

The reverse transformation from Wz to ZB (i. e. ,
defining effective cubic parameters for wurtzite
crystals) is probably more important because it

TABLE I. Experimental elastic constants for hex-
agonal ZnS compared with transformed values from
cubic ZnS. Constants for cubic ZnS are the average
experimental values shown in Table II. Columns 2 and 3
show, respectively, the transformed values with (C )
and without (C ) the internal strain (IS) contribution.
All data are taken at room temperature. Units are 10~~

dyn/cm2.

Expt
Transformed cubic

With IS Without IS

C«
C33

C(2
C~3

C44

C66

12.42
14.00
6, 02
4, 55
2. 86
3.20

References 16.

12, 78
13.96
5. 90
4. 72
2. 78

44

13, 07
13.96
5.61
4, 72
2. 84
3.73

6
—=ZS,zC4 (is)

The matrix S is found numerically to be

allows one to derive clearly and simply the average
tetrahedral forces in wurtzite crystals. This is
an important step in simplifying otherwise compli-
cated parametrization of forces peculiar to the
wurtzite structure. Of course, the transformation
from Wz to ZB is not unique. We choose to define
effective cubic parameters by a least-squares fit
to the six WZ constants weighted equally.

The most concise procedure for carrying out the
least-squares fit utilizes the average constants
C"' in an intermediate step. Given the transfor-
mation (12), it is straightforward to show that in
terms of the C"' the least-squares fit can be ex-
pressed by a matrix transformation ':

3 6

C eff =Z Z [PTP] 1PT CWz

y=i a=1

0. 603 —0. 515 —0. 103 1.015 1.470 0. 353

S= 0. 015

0. 118

0.426 0.485 0. 074 —0. 64V —0. 235

0.412 -0.118 —0. 412 —0. 176 0. 11&

Determination of the effective cubic constants is
accomplished by calculating C"' which are related
to the empirical elastic constants C ' by a nonlin-
ear relation (16). Coupling Eqs. (11), (13), and
(18), the relation can be written in matrix form as

CWz CWz + (qsCWz)T (CWz)- 1 (q g CWz) (20)

Equation (20) can be straightforwardly evaluated for
C"' by iteration using the known C ' as starting
values for C"'. The reduced form of the final

term, which is given in Eq. (17), greatly simplifies
the matrix manipulations. Finally the effective
cubic constants may be evaluated using Eq. (16).

In Table II is shown the comparison for ZnS of
the effective cubic constants determined from the
Wz data'6 with the experimental constants'~ for
the cubic structure. In Table II are listed the
most meaningful constants, the bulk modulus B
= —', (C»+2C, ~), and the two shear constants C,
= —,'(C» —C,~), and C44. There is very good agree-
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TABLE II. Experimental elastic constants of cubic
ZnS compared with effective cubic derived (see text
of Sec. II) from experimental data for hexagonal ZnS

(per Table I). All data are taken at room temperature.
Units are 10 ~ dyn/cm .

Material C33 C„C3 C4 C„

TABLE III. Predicted elastic constants for wurtzite
structure calculated from experimental data (see Ref.
13, except as noted) taken on compounds in the cubic
modification. Units are in 10tt dyn/cm2.

Expt
Ref. 19 Ref. 17 Ref. 18

B 7. 19 7. 75 7. 84

Cs 1.93 1.93 l. 96
C44 4. 51 4. 62 4. 61

Average
Refs. 17
and 18

7. 80
1.94
4. 62

Effective
cubic

values for Wz

7. 70
1.81
4. 62

C
SiC
ZnSe"
zn Te
Cd Te
CuCl'

117.65
47. 90
10.72

8. 56
6. 22
5 25

121.00
52. 14
11.65
9.26
6. 89
6. 16

9. 17 5. 81 50. 90
9. 78 5. 53 14, 84
4. 46 3.53 2. 50
3. 70 3.00 2. 02
3. 59 2. 91 1.16
4. 13 3.22 0. 70

54. 24
19, 06
3.13
2. 43
1.31
0. 56

ment between the effective and the experimental
cubic values, the worst discrepancy being 7% for
C, . Thus it is quite sufficient to use the effective
cubic parameters for quantitative characterization
of average tetrahedral forces in Wz structure
crystals.

The internal strain between the tetrahedra in the
Wz crystal always tends to soften the Wz structure
relativ~ to the average of the two trigonal orienta-
tions of the ZB crystal. The magnitude of its con-
tribution decreases for materials with large shear
constants C44' and C66; internal strain is entirely
negligible in diamond or SiC, but is important in
soft materials such as CuCl. Within the present
approximations we find that crystals with the
wurtzite structure are always softer against shear
than a ZB counterpart constructed from identical
tetrahedra.

The present approach could be straightforward-
ly extended to the various polytypes, which have
more inequivalent tetrahedra although the inclusion
of internal strain would be more tedious. Note,
however, it was found that the internal strain
contribution is negligible in compounds such as
SiC. Therefore, the present theory predicts that
all polytypes of SiC have essentially identical elas-
tic behavior. Somewhat more variation within the
range between columns two and three of Table I
is predicted for ZnS polytypes.

III. APPLICATION
I
'I

In this section is presented the application to
several interesting crystals of the formulas derived
in Sec. II. First, elastic constants are predicted
for several compounds occurring in the Wz struc-
ture but whose elastic properties have been mea-
sured only in the cubic structure. Next effective
cubic constants are derived for Wz crystals and

, compared with experimental constants of similar
cubic crystals.

In Table III are listed predicted hexagonal elas-
tic constants for several crystals which can occur
in the Wz structure. Experimental cubic constants
are taken from references listed in Ref. 13 (hence-
forth referred to as I), except as noted. Predicted

Theoretical values for cubic constants from Ref. 22.
Cubic constants from Ref. 25.

'Cubic constants from Ref. 26.

TABLE IV. Effective cubic constants for wurtzite
crystals derived by the procedure of Sec. II. Experi-
mental data for the wurtzite structure are from source
noted. Units are 10' dyn/cm .

Material

SiO
BeO"
ZnO'
CdS'
CdSe

jeff

22. 06
22. 52
14.33
6.11
5.31

C eff
S

11.90
il, 69
4, 55
1.26
1.02

eft
44

25. 15
19,96
5.49
2. 41
2. 23

Reference 23, except C&3 is the theoretical value
predicted by Ref. 22.

"Reference 16.
I ondolt-&o~stein Numerical grata and &unctional

Relationships in Science and &echnology, Nese Se~es,
edited by K. H. Hellewege (Springer, Berlin, 1966),
group 3, band 5.

constants were derived from Eqs. (12)-(17). Dia-
mond has been included to illustrate the transfor-
mation for a very hard crystal. Also included is
SiC using theoretically calculated cubic constant. 2~

The internal strain contribution varies greatly.
It is important for soft crystals, but entirely
negligible for hard crystals. For example, in
CuCl the shear constant C~ is reduced by 50%
from the average constant C68. On the other hand,
in SiC and C all internal strain contributions are
less than 0. 1% in the present calculations. For
this reason, the present results are the same as
found by Arlt and Schodder for SiC, who a,iso
transformed the cubic constants of Ref. 22 to the
rotated frame. They found good agreement of the
rotated values with experimental measurements
on the 6H polytype of SiC. The present theory sup-
ports the arguments of Arlt and Schodder and,
as noted in Sec. II, predicts that all polytypes of
SiC will have essentially the same elastic behavior.

Let us now turn to the effective cubic constants
for Wz crystals. The constants are evaluated
from Eqs. (18)-(20) using the iterative procedure
described in Sec. II. The results for several
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wurtzite crystals are listed in Table IV. As was
done in Table II, the most significant moduli
8 3 (Cfg + 2C,2), C, = —,

' (C„—C,2), and C44 are listed.
The most immediate result is that, except for
SiC and ZnO, the effective constants are very close
to those of similar ZB crystals. '3

Quantitative comparison ot the elastic proper-
ties of the various ZB and Wz crystals can be ac-
complished by the procedure of I. The dimension-
less reduced constants, first introduced by Keyes, ~4

C*=C/C, , C, =e'/r',

where r is the average nearest-neighbor distance,
have been shown' ' to be the fundamental mea-
sures of elasticity. Size factors have been well
accounted for by Keyes's reduction, so that varia-
tions in the reduced moduli are related to changes
in the nature of the bonding. The second require-
ment is a scale describing the bonding upon which
all the compounds are placed. Such a scale is the
ionicity scale of Phillips and Van Vechten (PVV)
or that of Pauling. The PVV scale is used here
following Ref. 13; however, very similar results
hold for Pauling's scale. In Table V are listed the
values of the ionicity f, and reduced effective con-
stants.

Comparison of reduced effective constants for
Wz crystals with the reduced constants for ZB
crystals is presented in Figs. 1-3. For ZB crys-
tals, the ionicities f, and reduced constants are
the same as in Ref. 13, except for new elastic data
for ZnSe, ' CuCl, CuBr, and CuI, and correc-
tions ' to the PVV scale of ionicity. The points
for ZnS derived from independent measurements in
the two structures are included to show the accur-
acy of the comparison of ZB and Wz crystals. The
differences between the respective ZnS points is
always less than the scatter of experimental points
about the indicated trends.

The solid lines in Figs. 1-3 are the results of a
simple model presented in I. For our purposes
here, we can regard the solid lines as merely in-
dicators of general trends with ionicity. Just as

()s. Ga sb

1.2

InP
0

I.o-
II Znse

Zno

0.8—
O0
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V

Pg 0.6—
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0.4 0.6
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pIG. 1. Reduced dimensionless bulk modulus & vs
ionicity f~ (Ref. 4). Effective constants for wurtzite
crystals are derived following the procedure described
in the text and are indicated by triangles. The solid
line is the result of a simple model derived in Ref. 13.

0-"()s
00
~ o.6'

II
lO

o.s
VJ

O
O

o.~

I I

~C (Cg & I, I7)

was found for ZB crystals, effective constants for
Wz crystals involving no atoms from the first row

of the Periodic Table follow the same simple trends

TABLE V. Ionicity and reduced dimensionless ef-
fective constants for wurtzite crystals derived from
Tables II and IV with definition of C given in Eq. (21).

4J

O

O

0.2

Material

SiC
BeO
ZnO
ZnS
CdS
CdSe

Reference 4.

0.18
0.60
0. 66
0. 62
0. 68
0. 70

1.20
0. 72
0.95
1.01
1.09
1.12

0.65
0.37
0.30
0.24
0.22
0. 20

"Reference 3.

C+ efi
44

1.37
0, 64
0.36
0. 60
0.43
0.47

O.I

OCuCI

oo
I

0.2
I I

0.~ o.6
IONICIT& &I

I

0.8 I.o

FIG. 2. Reduced dimensionless shear constant C~ vs
ionicity. The solid line is the result of a simple model
derived in Ref. 13.
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l,4

I.2—

&SiC

such as oxygen-oxygen overlap would be expected
to increase Cf4. It may be that deviations from
the ideal Wz structure are responsible for the
anomalies in ZnO.

IV. SUMMARY

0.
0
O

o.x

o 0.
UJ
X

0.2—
0 ZINC 8LENDE

EFFECTI YE WURTZ ITE
&CuCI

0 I

0.2
I I

0.4 0.6
ION I C I T Y f I

I

0.8 I.O

FIG. 3. Reduced dimensionless shear constant C44
vs ionicity. The solid line is the result of a simple
model derived in Bef. 13.

with ionicity. Therefore, we have shown that for
these crystals, dominant interatomic forces are
basically determined by the tetrahedral unit and are
independent of crystal symmetry. This further
supports the conclusion that differences between
ZB and Wz crystals can be ignored to a good ap-
proximation in the analysis of chemical trends.

The most striking deviations from the trends are
for crystals with one or both atoms from the first
row of the Periodic Table. The cases where both
atoms are from the first row, however, appear to
be systematic. The proposal that C, BN, and
BeO should form a separate family was made in I;
here, we find that the effective constants for BeO
support that conclusion. No experimental data for
BN have been reported. The present results sug-
gest that reduced constants for cubic BN can be
estimated by interpolating between diamond and
BeO in Figs. 1-3.

On the other hand, there seem to be no simple
categories for mixed compounds with one row-one
atom. For example, SiC appears to be very simi-
lar to Si in its shear constant C,*, but similar to
diamond in the other shear constant Cf4. The low
value of Cf4 in ZnO is particularly puzzling and is
unresolved. Possible anomalous forces in ZnO

A transformation relating the respective elastic
tensors of ZB and Wz modifications of a compound
has been derived. With it one can calculate either
the six predicted Wz constants from three ZB con-
stants or vice versa. The transformation from
Wz to ZB results in cubic constants which are
termed "effective, " since their values depend upon
the manner in which one fits the six Wz constants.
In this paper are given specific formulas which
achieve a least-squares fit to the six Wz constants,
weighted equally.

The transformations are checked in Sec. II by
application to ZnS, the only compound for which
elastic data have been measured in both structures.
The accuracy of a few percent in the transformed
values is probably sufficient both for any theoreti-
cal calculation based on the elastic data and for
many practical applications.

In Sec. III are presented the results of the trans-
formations for all Wz crystals and several ZB
crystals for which experimental elastic data are
available. The effective cubic constants for Wz
crystals are especially interesting because they
can provide a simple picture of the average tetra-
hedral forces in a Wz compound. One result is
that for Wz compounds with no atoms from the first
row of the Periodic Table, the tetrahedral building
blocks are virtually indistinguishable from those
of ZB counterparts. The simple trends with ion-
icity presented in I are further supported by these
Wz crystals.

In the present approach the deviations of real Wz
crystals from the ideal Wz structure and the differ-
ences between ZB and Wz of third- and more-distant-
neighbor interactions are entirely neglected. The
success of the theory is further evidence of the
basic correctness of the assertion that all impor-
tant chemical properties are determined by the
tetrahedral coordination and are very insensitive
to the differences between ZB and Wz.
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The Raman-scattering cross section from anisotropic semiconductors, such as PbTe, Ge,
etc. , has been calculated. Detailed computation of the scattered spectra from spin-density
fluctuations (SDF) and charge-density fluctuations (CDF) is presented. It is shown that, for
linearly polarized light, the contributions from SDF and CDF to the scattered spectrum can
be separately obtained by an appropriate choice of the polarization directions. Finally, the
possible detection of the ion acoustic wave, which to date has not been observed experimental-
ly, has been considered.

I. INTRODUCTION

The inelastic or Raman scattering of electro-
magnetic radiation from a plasma provides useful
information about the spectrum and the nature of its
elementary excitations. The Haman- scattering
cross section is completely characterized by the
wave-number transfer q= k,„—k«t and ~= ~fn +out9
where %&, (k,„,) and &u„(&u,„,) are, respectively,
the incoming (outgoing) wave number and frequency.
It is useful to classify the scattering according to
the magnitude of q (fixed-angle scattering) and then
for this fixed angle to analyze the intensity and po-
larization of the scattered radiation as a function
of u& (spectrum analysis). For most light- scattering
experiments from semiconducting plasmas the

wave-number transfer is smaller than the inverse
screening length, i. e. , q&, &1. For a one-com-
ponent isotropic plasma, the cross section is pro-
portional to the charge-density fluctuations (CDF)
of the electron gas. For the case q~, &1 the
scattered intensity resides almost entirely in the
so-called plasma line.

However, in solids there are three known mecha-
nisms which produce single-particle scattering and
lead to direct measurements of the momentum
distribution of electrons (holes) in the conduction
(valence) band. Firstly, a finite spin-orbit coupling
in the valence bands allows scattering from spin-
density fluctuations (SDF) of the electrons. Here
the scattered spectrum is that of a single particle. '

Secondly, the plasma in many semiconductors,


