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2Z= Z, (1 —x)+Z, (1+x),
where

Z,(x) =1, r, (x) = x,
Z'„(x) = 2xT, ,(x) —T„~(x), (D8)

z„(z)= T„(x) .
The k-space transformation U' ' is obtained in a

very similar manner using the summation orthog-
onality of the nine lowest-order cubic harmonics
over any angular mesh having cubic symmetry. We

(DV)

12

~„=ZP.' (Z,), (D8
j-1

Up~ =5~p,(2)

where Po(r)=1 and P„(r) for 1& m&9 are x, y, x,
/gal xg) xgq x —g ) x +$ —Sg, and x +$ +8

(D9)

specialize to M=9 letting M'= la where gp=0 and
the remaining g's are in the 12 various [110Jdi-
rections. U'&' is given by

V.",'=X„-'tP.(i,)-r„j, m 0
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Surface modes play an important role in a solid's response to external disturbances. A

charged particle on approaching or leaving the surface may suffer inelastic scattering owing
to its coupling with these modes. The scattering rate is calculated in the Born approximation .

for two instances: (i) in metals, where the surface modes are plasma oscillations and (ii) in
dielectrics, with optical surface phonons. For electrons in a parabolic band with energy of
the order of a few electron volts, it is found that on traversing the sample, the probability of
scattering is of order 1. Furthermore, this probability is highly anisotropic. These findings
strongly suggest that this scattering effect should be incorporated in the analysis of energy or
spatial distribution of charged-particle probes, at least in the low-energy regime.

I. INTRODUCTION

There has been considerable interest in the
spectra of electrons in photoemission studies. 1

The experiments show that some of the electrons
leave the surface without apparent scattering, and
some appear to be scattered. This paper reports
theoretical calculations of the scattering rate of
electrons as they pass through surfaces. The in-

elastic scattering rate is calculated for the elec-
tron creating surface plasmons in a metal, and
also surface optical phonons in a polar insulator.

There have been a number of recent papers on
the scattering rate of electrons as they pass through
surfaces. ' ' Calculations have been done for ex-
citing both surface plasmons and surface phonons.
Most of these other calculations have assumed that
the electron is sufficiently energetic that it does
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not change its direction or energy appreciably upon
scattering. With this approximation, or assump-
tion, the problem may be solved in Rn elementary
way. The approximation is not valid for low-energy
electrons.

In a typical photoemission experiment the elec-
tron energy is of the order l0 eV or less. After
the emission or absorption of one quRntum of sur-
face excitation (energy & 0. 1 eV for phonons, - 5

eV for plasmons), the electron state is changed
considerably. In view of the recent interest in the
angular distribution of photoelectrons, it is highly
desirable to obtain some quantitative information
about the above-mentioned scattering effect. The
present study is an effort in this direction.

As R charged particle approaches a surface, a
classical description of the electric field is given
in terms of image charges. From the point of view
of elementary excitations, these electric fields
describe the coupling of the electron to surface
phonons Rnd surface plasmons. So image-charge
theory may be used to derive the matrix element
Vp„.," which gives the rate an electron scatters from
state k-k', with the emission of a surface excita-
tion q. Then the scattering rate i.s derivable from
the Fermi Golden rule:

This scattering rate has the dimension of (time) '.
Now if we normalize our wave functions in a box of
thickness L, then dI'/dt turns out to be proportional
to I. ~. This is to be expected, as dI'/dt is the scat-
tering rate of bulk electrons from surface excita-
tions, and this quantity should vanish for an infinite
solid (I.-~). But as an electron approaches the
surface, it is under the influence of the surface
scattering during a time I./v„, where v„ is its ve-
locity normal to the surface, so the scattering
probability

is a dimensionless quantity which is independent of
I. as I.-~. ~ is the probability that, as the elec-
tron goes through the surface, it creates or de-
stroys one surface excitation. It depends upon the
electron energy E~ and the angle 0 between the
velocity vector and the normal to the surface, as
well as on the surface parameters such as work
function, surface well shape, etc.

We have not studied the processes involving
multiple surface excitations. Such a calculation
is very difficult if one includes the fact that the
electron changes direction and energy after each
scattering event. In the approximate theories
mentioned above, where the electron trajectory is
unchanged by the excitation process, successive

The theoretical calculations of the subsequent
sections give the scattering rate for exciting sur-
fRce plasmons Rnd surfRce phonons. The proper-
ties of surface plasmons are well known, and need
not be reviewed here. Surface optical phonons are
not as well known, although their properties are
qualitatively similar to those of surface plasmons.
So we give a discussion of the eigenfrequencies
and polarization fields associated with the surface
optical phonons. The retardation effect is included.

The general eigenvalue equation for a surface
mode has been derived by Fuchs and Kliewer, ~

and Economou. They show that at a plane inter-
face between two semi. -infinite dielec tries with
dielectric constants e& and e&, the electric fields
have the form

E= —E qsta ——t e "~""'" z—&0 (2. 1a)

E qs! 2 + g ekgs+fg~P

q
e& 0 (2. 1b)

excitations all have the same probability. Then
one just gets R Poisson distribution

I'„=e X"/n!

We emphasize that this distribution does not apply
in the low-energy regime, since the electron
changes its direction and energy after each excita-
tion.

In summary, the present work differs from the
previous studies in that (i) we study the inelastic
scattering of electrons owing to surface excitations
when the energy of. the electrons is not much
higher than that of the surface excitation quanta,
and (ii) we are interested in the angular depen-
dence of the scattering probability rather than in
the loss spectrum.

In Sec. II we discuss the surface modes briefly.
The electron-surface mode coupling Hamiltonian
is derived in Sec. III. The scattering rate of elec-
trons is calculated in Sec. IV. We have chosen
the simplest approximation possible. The solid
is assumed to occupy the semi-infinite space z & 0.
The dispersion and damping of the surface modes
are neglected. The magnitude Rnd the anisotropy
of the calculated scattering rate suggest strongly
that this effect must be taken into account ex-
plicitly in the analysis of the spectra of outgoing
charged particles. In Sec. V some natural ques-
tions about our approximations are discussed. We
present arguments that the major features of the
present results are not sensitive to these approxi-
mations. A physical picture, which facilitates our
understanding of the results„ is also given.
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kg/e ) = —k//e/ (2 2)

At the interface between an ionic crystal and a
vacuum, we set &&=1 for the vacuum, and for the

crys tal

+
1 —((u/(u To)

(2. 3)

where ep, e„are the low- and high-frequency di-
electric constants, respectively; and &To is the
transverse-optical-phonon frequency. The polar
dielectric function (2. 3) is inserted into (2. 2), and
the resulting equation is solved to obtain the dis-
persion relation &u(q). After squaring (2. 2), and
collecting terms, one obtains a cubic equation for

&d E (6 1) M [h1 (6 1) + &To(2&0& &0 6 )]

+ (d [2(d (60K —1)+ &To&0(&o —1)]&To

—(u, (u To(e 0
—1)= 0, (2. 4)

where ~, = eq. One root of this equation is

a &p —1 2
To

&~ —1

This is a bogus nonphysical root. It gives e& = 1.
It is not a solution to (2. 2), since solutions to
(2. 2) must have &/&0 if e;=1. This bogus root
occurs because we squared (2. 2), and it is a so-
lution to the squared equation. This root is dis-
carded.

The remaining factors of (2.4) yield a quadratic
equation for cu . %hen solved, this gives bvo

branches to the dispersion curve. As discussed
by Fuchs and Kliewer, nonradiative surface modes
only exist if ~, & e(q). In our case, the only
bound-surface polarization mode has the disper-
sion relation

&d (q) = 2 (&d& + ~z, p) 2 [((d& + (dLo) 4&d& (0go]

(2. 5)
where

(q2 ~ ~2/c2)1/2 y (q2 ~ ~2/cR)1/2

z is normal to the interface (at z=0), and p is a
two-dimensional position vector in the plane of
the surface. ~ is a function of q to be determined
below. The matching of electric and magnetic
fields across the interface yields the eigenvalue
equation '

The dispersion relation given by Eq. (2. 5) is a
new result. It is best illustrated by an example.
The dispersion curves for RbI are shown in Fig.
1. The parameters are E p

= 5. 5, & „=2. 6, and
8' To = 9 2 meV The line 8'h)& is also shown. The
lower solid line is the surface branch. It ceases
to exist at long wavelength q «@To/c, since the
mode in this region is radiative. This long-wave-
length cutoff was discovered by Fuchs and Kliewer
in their numerical solution for dielectric polariza-
tion slabs.

At large wave vectors q» &uTo/c, the surface-
polariton frequency &u(q) approaches &iso. In this
limit, where k;-q, k&-q, the electric field in
(2. 1) becomes

lim E=F. qi/2 iq — '
~ e qlgl'~q'P

I~I

Here the electric field is the gradient of —P,
-i/I'2 -ql gl+fq p

pq

The surface phonon creates the potential P. This
is the basis fo the electron-phonon interaction
derived in Sec. III. This view is not valid for
q «@To/c, but this region of phase space is small
enough to be ignored.

III. ELECTRON-SURFACE MODE HAMILTONIAN

The electron-surface mode coupling is not an
entirely new problem. Roundy and Mills have
studied the electron-phonon system starting from
crystal potentials. Their main goal is to study
the modification of the loss spectrum owing to
changes in force constants near the surface. Our

20—

lO

[(6 + 1)/6 )(Cq), (dg = (& /6 ) (d

p 6p+1
~so = To+1

and &so is the surface-optical-phonon frequency.
Furthermore, a true surface state only exists if
&u, & &u(q) which also implies that &u(q) & &u». This
is because E & 0 only for ~r.o ~ ~ ~ mTo

IO 20
5auq(in meV)

FIG. 1. Dispersion relations for the surface modes of
RbI (in the geometry given in Sec. II). The vertical and

horizontal axes are S~(q) and S~qf respectively. The two

solid curves are the solutions of Eq. (2.2). The dashed
straight line S&(q) = S~ is drawn for comparison. Non-

radiative surface modes exist, only if &~ &(q).
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objective is quite different, and we prefer to start
from a surface-mode view. As this article is
being written we are also advised of the work of
similar spirits by Lucas, Kartheuser, and Bar-
do. ~ But again they are interested in loss spectra.
Furthermore, they mainly deal with fast electrons.
Here we derive an expression that is more appro-
priate for our purposes.

We consider a semi-infinite medium (z & 0) in a
jellium model. The dispersion of the surface
modes is ignored, though its inclusion is not pro-
hibitively difficult. For mode q, the amplitude of
the dielectric polarization at point R(x, y, z) has
the form

g;(R)=q'/'(j —iz)e""", z& 0 (3. I)

- a/2

&o+ 1 2m'
for dielectrics

and

E = (h~, /4@A)'/z for metals

(3. 2)

where h(u, is the energy of the surface-mode quanta.
The details of the calculation are given in Appen-
dix A.

An electron is coupled with the surface modes
through the term

where q is a vector in the xy plane. In the metal
case, the local polarization of the electron-ion
plasma is also of the fprm given by Eq. (3. I). In
general, if we assume g;(R) is a product of an ex-
ponentially attenuating part and a plane-wave part,
then the condition that there is no polarization
charges,

~. g;(R)=o,
determines all coefficients to within a normaliza-
tion constant. The polarization field operator at
point R is proportional to the sum of amplitudes
due to all modes:

P (R)=E Z [g; (R)a; + H. c. ]
q

where a& (a;) is the creation (annihilation) operator
for mode q. The proportional constant I' can be
determined on physical ground in a way entirely
analogous to Kittel's treatment of electron-op-
tical- (bulk) phonon interaction. For normalization
purposes we use a box of cross section A and
length 2L, with 0&z&L being the free space and
—I-& z& 0 the solid. Then we obtain

W ~ W

H«--Z A eF f dsr d Rc„t-.c„e""~~"I~'"
int

r-R
x u, (z) ug. (z) — —=, ' g;a; + H. c.Ir-Ri

It is straightforward to perform the xy and R in-
tegrals, giving

+tnt ~ Vkk'q c ck 4qk
kk'q

I

where

(3. 5)

V„"„-,; = 2vezq "'[f'-dze" u„,(z)ug;(z)] g.,„„„-.

This is the interaction that we will use in the sub-
sequent calculations. Some questions concerning
the approximations in this section will be discussed
in Sec. V.

IV. SCATTERING OF ELECTRONS OWING TO ELECTRON-
SURFACE MODES COUPLING

An electron approaching or leaving the solid sur-
face suffers scattering due to the interaction given
by Eq.. (3. 5). At this point we have to specialize
to a specific energy band. We will assume that the
electron in question is in a free-electron-like band
with effective mass m*. For the crystal potential
we choose the simplest form, a step function

Vo z~0

=0, z&0.

Vo is measured with respect to the bottom of the
band. In a simple metal Vo is roughly the sum of
Fermi level and the work function. The wave func-
tions u, (z) are easily found to be for unbound states
(E~ =hzk~z/2m~ & Vo), outgoing states:

Hint Vkk'~ cg' cg Q~h'q

where c- and c„are creation and destruction op-
erators for the electronic state k, respectively,
P;=a, +at", is the phonon field operator, and Vp„.~
is a scalar matrix element. We assume the mo-
tion in xy plane is free, and expand ((r) in terms
of eigenfunctions:

g(r) =Zpcge'"~~'A '/'u, (z) (3.4)
3

A

where k, = k —(k ~ z) z is the component of k in the
A ~

xy plane, k3= k ~ z is the z component of k, and

uq~(z) is the normalized wave function for z motion.
On combining Eqs. (3. 1)-(3.4), we obtain

H„, = f d r t/ (r)tf d R V(r —R) g(r)

where

(3.3)
u, ,(z) = (2r, ) "'(e"&'+fte "~-'), z & O

V(r —R) = s (r —R) &(R)/
I
r —R

I

'

We set out to reduce H,„, to the more convenient
form

where
(2L )-1/2 I s tn&s/ 5

P, = k(k', - 2m+ V,/k')" '

z&0

Ik3- p3
+p
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T=].+R;

for unbound incoming states:

u (s)= (2L) ~/s(ak /P )~/2T's-'~s' z&0

(2L)-I/R(@k /P )1/2( - P~ /1t R sc/h ) s ) P

where

(2/L)i/a T~ I -&s z&0

o'. = (2m~ Vo/k —k )' s 5 = tan '(- k,/o)

T"=sin& .
These wave functions are used to evaluate Vp„.~ in
Eq. (3. 5). The scattering rate for an electron in
state k is, in the first Born approximation,

V-, -
~

5 (E„—E; —k,).dP 2m

dt
(4. l)

By writing out V-„&-, explicitly it is easily seen that
dP/dt-1/L, which is a necessary result when one
recalls that for large L the surface modes should
not lead to significant "bulk" damping. For con-
venience we define a dimensionless quantity

dP L
tN Vq

where v„=hks/m*. X is a measure of the prob-
ability that an electron will suffer an inelastic
scattering after traveling a distance L. We have
conf ined ourselves to the low-temperature region
so only phonon or plasmon emission processes
contr ibute.

If 8 is the angle between the electron vector k
and the normal to the surface, then for every
electron energy E„& Vo, there is an angle

8,= cos-' (V,/E, ).

where R '= —R and T' =1+R'; and for bound states
(E/, =tt k~/2m~ & Vo):

u, (z) = (2/L)'/ sin(k, s+ 5), z & p

in the metal case

en* = 1m„S&,= 4 eV, Vo = 5. 6 eV,
E~=9.75 and 11.75 eV.

One may wonder why in the metal case we do not
specify the Fermi level. E~. The reason is that
the result does not depend on E~ at all as long as

E, —h~, &E~,

because all k3 states are available. This is the
case for photoemission experiments in simple
metals if the incident photon is of energy & 6-7 eV.
We have confined ourselves to this case.

The result of our calculation is shown in Fig.
2. We have found that Lucas and Sunjic's result
is an estimate of the right order, when the final.
states A~ are limited to the unbound states. How-
ever, the contribution from the bound states in
many cases far outweighs that from the unbound
states. Another interesting observation is that ~

shows a peak near 8„, In other words, electrons
that can barely climb out the potential barrier or
barely fail to do so are scattered most strongly.
That X becomes large as 8- —,'z is not really sig-
nificant. We have chosen to plot the scattering
probability in a time elapse t= L/v„, which is a
measure of the time the electron traverses the
sample in the normal direction. This time scale
becomes large when 8- —,

'
m since v„-0. This ap-

parent anomaly would not appear if we choose a
different time scale, L/v~ [v~= (2E„ /m)' /]s, for
example, while there would be little change in
other character istics.

There is yet little data on the angular dependence
of photoel. ectrons. Of the experimental work that

(b)

e„=5, E~ = 1.75 and 3.75 eV;

When 8& 8~, the electron is in a bound state. For
8 & 8„ the electron can be in either of the two un-
bound states. We have calculated ~ for the out-
going states and the bound states. In most cases
the q sum can be expressed in terms of the el-
liptic integral of the third kind or the derivatives
thereof. Details are given in Appendix B. The
8=0 case is particularly easy to evaluate. It
serves as a quick estimate and also provides a
check for our calcul. ation. For the various pa-
rameters we have chosen (m, is the electron
mass) in the dielectric case

nz* = 0. 2m„h&, = 0. 1 eV, Vo = 1.6 eV,

(c)

.5 I.O
= 8 ( in radians)

FIG. 2. Plots of g vs 0. The solid curves refer to
insulators and the left-hand vertical scale. The dashed
curves correspond to metals and the right-hand scale.
The electron energy in eV is for curve (a) 1.75, (b) 2.75,
(c) 9.75, and (d) 11.75. Other parameters are given in
Sec. IV.
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has been reported, ~ our calculation may be too
crude to compare with the actual data. However,
the magnitude and 6 dependence of ~ bear out our
contention that this heretofore often neglected ef-
fect deserves a much more detailed study in the
spectroscopy of charged particles emerging from
a solid.

V. DISCUSSION

In view of the approximations made in the cal-
culations, it is natural to ask what features of our
results will remain intact in a more sophisticated
study. In this section we reason that major as-
pects of our results are insensitive to the approxi-
mations. In particular, the peak of & near 8„can
be described by a physical picture without ever
referring to detailed band parameters.

The important questions that we should address
ourselves to are the following:

(i) Effect of scattering from bulk excitations.
We have not studied the scattering from bulk ex-
citations. One may wonder whether that effect
would overshadow the present result. We feel
that it is unlikely. The reason is that there have
not been great difficulties in distingu shing surface
and bulk effects in loss spectra. ~ ' Neither effect
seems to be completely dominating in magnitude.
We expect this would also be the case with the
angular distribution. A definite answer, however,
should come from a direct calculation.

(ii) Use of free electron wa-ve functions. It is
well known that in general the lattice potentials
are essential to determine the low-energy electron
states. Some recent work on low-energy electron
diffraction and surface-plasmon dispersion in Al
has indeed taken this fact into account to obtain
better agreement with experiments. '~ We men-
tioned earlier, however, that the present study is
concerned with simple metals (as also evidenced
by our choice of parameters), where the free-
electron wave functions are quite acceptable. For
other metals we should still expect a peak in &.

This point will become clearer later on, after we
see the physical nature of the peak.

(iii) Adequacy of our treatment of the electron
Plasmon couP/in@. The electron-plasmon coupling
is a complicated subject and has been studied ex-
tensively. One recent review is by Feibelman,
Duke, and Bagchi. " We believe, however, the
result of our simple calculation is essentially cor-
rect.

The strength of the coupling has not been unduly
exaggerated, as there is the definite physical
guideline that this coupling leads to the image
potential. The detailed functional form for I' will
certainly be modified when damping and dispersion
of the modes are included. In general damping
tends to smooth out any abrupt contours. But in

Fig. 2 there is no exceptionally sharp features.
Besides, owing to the energy and momentum con-
servation, the q sum in Eq. (4. 1) comes from a
limited region in q space. The usually mild dis-
persion should not change the result significantly.

The electron operators (c„-, cg) actually do not
commute with P;, the plasmon field operator. The
latter must be a linear combination of terms of
the form c„-.cg, where k„=k, + q, owing to the
translational invariance. Because of the large
number of terms, the relative error arising from
the neglect of this noncommutivity is only of the
order 1/N, ttt being the number of k states in the
band.

(iv) Pkysical nature of tke peak of X. The elec-
tron field associated with surface modes attenuates
exp'onentially when one moves away from the sur-
face in either direction. For an electron with 0
= 0, —5, the trajectory is similar to that of a light
ray with incident angle just below 8„ the critical
angle. The trajectory outside the solid is almost
parallel to the surface. The electron spends so
much time near the surface, where the field is the
highest, that it is scattered strongly. On the other
hand, an e1.ectron with 8= 8~+ 5 corresponds to a
totally reflected ray. The trajectory does not lie
near the surface, and there is less scattering.
These simple considerations explain qualitatively
the peak of I at 8-8~ in insulators. For metals
there is further complication in that E~ and 5(d, are
of the same order. An electron can emit @co and
the final state has a 4, much smaller than that of
the initial state. Thus even if 0 is not in the im-
mediate neighborhood of 8» the trajectory corre-
sponding to the final state can have significant por-
tions near the surface. Since the matrix elements
depend as much on the initial states as on the final
states, this explains why X has a rather broad peak
for metals.

The above picture helps us to understand the
nature of the behavior of A. It is always to be re-
membered, however, that the concept of trajectory
is not a precise one for low-energy electrons and
should be used with caution.

We can now say something about the case of met-
als where the nearly-free-electron model does not

apply. X as a function of angl. e will still have a
peak when the electron is moving in such a direc-
tion that it can barely climb out the potential bar-
rier. The peak will be broad as long as E, and
k~, are of the same order.

In passing we may add that based on our physical
picture, one would expect that in the reflection case
the electrons incident in the grazing direction will
be scattered most effectively. This has indeed
been found by Lucas and Sunjic. ' In fact, the scat-
tering is so strong that multiplasmon processes
contribute significantly. Their calculation is for
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fast electrons, for which the concept of classical
trajectory is on a much more solid ground.

We conclude that the major features of our re-
sults, the large magnitude and the angular depen-
dence of X, are well founded and are unlikely to be
modified appreciably by more sophisticated calcu-
lations.

APPENDIX A: DETERMINATION OF F

We shall calculate the extra interaction between
the solid and a charge Q outside owing to one-phonon
or -plasmon exchange. It has been shown that sur-
face modes are solely responsible for the image
charges. '4 We put an external charge Q at position
(0, 0, 2,}, 2, &0. We obtain E in terms of known

physical quantities by comparing our expression for
the extra interaction energy to that owing to image
charges,

/2F = —Q
1 1 1 for dielectrics
+ 1 go+ 1 2zg

= (h~, /4')'/2 for metals.

APPENDIX B:REDUCTION OF THE MULTIPLE SUM

We want to evaluate

We choose k„ to be in the x direction. q= (q, Q) in

polar coordinates. The factor &-„, „-„,» eliminates
k„sum and we have

~g
g(I'(O'„+I'F31

ka(ka+ 2k, q cosP+ qa+ kaa)

2m* S

2LA dkI d ~ & ~p @ qk5 sin4'2

(2 )2
dka q dq

i
~H'4 I k', =k',

2~J

where

= —Qa/42, for metals, (Al}
@2 p ]. @2p2 @2 2+ @2y2

I ~

~

II 2 2
3 ~

2 2 2 ~I 2

m 2m m
where eo, e„are the dielectric constants at low and
high frequencies, respectively.

The polarization field associated with the mode q
ls

P = E g~ = F q '( q i z) e" "—'", 2 & 0 .
There is no volume charge. At the dielectric sur-
face the charge density is

o= (0 2) = ie'~'"Eq"—= ie'~'Eq'—".
The g component of electric field at (0, 0, 2, ) is

dap 1 (- iFq1/2 eig $)a + a}2/a

= —2~zsq"' 8-"& .
The potential energy p is then

y(0, 0, 2,)= 2miFq '/ e "-'

The extra interaction energy between the charge Q

and the solid is

+ (01 QP(0, 0, 2,)il)(liQP(0, 0, 2,) l0)
—S8

2

kcu, I

Aqdqdg (22) (22Fq '/ e "~)

q'
(Am) ~s

This should be identical to (Al). Therefore we ob-
tain

1 1 S~
1

—
1 2 & ~

for dielectrics~„+» ~, +1

~1
k„0=k i, +qo,

with41& —(q, $2) in polar coordinates. The restric-
tion —1 ~ costa ~1 determines the limits of q in-
tegration. For convenience we def ine a quantity

Then the lower and upper l.imits are

Ir- k5
I

and qa= r+ k„,

respectively. With a little algebraic manipulation
the sum S can be rewritten as

s=
2 2

i

dk,'dq
I
&;;;I'q[(q'-q&)(qa-q')l '".

By separating l Vpp. ;l into partial fractions, it is
found that

S = fdkz dqZg&g&(q),

where a, is independent of q, and K; is of one of
the following forms:

1
K~ ——

q+
1

K2 =
q +b2

2 2 b2 1 4
(

2 b2)2 y 5
(

2 b2)2

where tc= [(q —qq) (qa —q )] and b, is independent
of q. Depending on whether k3 corresponds to an

outgoing, incoming, or bound state, a, and b, as-
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sume different functional forms. We omit their
explicit expressions here. Next we define

I, = f K;(q)dq .

We will now discuss I3 and I5, as they are elemen-
tary integrals. I1 can be reduced in the following
way:

2 q —51
I1 —— dq --2 2 E = I11 —b1I12

q -b1
&1

~where

2

dq —51
1

r~2 1
I12 dq 2 t 2

q —t)a
Q1

The principal part of the integral is to be taken if
b1 lies between q1 and q2. I» is again elementary.
I» is of the same form as I, . They can be ex-
pressed in terms of known functions by using the
identity

2
~ ~ Ia 1

t (u~ g2) (g~ y~)]-~ «
p

0 0 —p 2 Cl

where ll is the elliptic integral of the third kind.
Finally, we have

1 1 1
4 0

(
2 ~2)2 ~

(
8 ~R)2 ~2

c1

where

du

(1 —n~ snu)2

with
2 2 2 2

2 q2 q1 x 2 q2 q1
q2+ q1 q2

SnQ1= 1

has also been evaluated. Thus we have reduced
all I, to known functions. The k3 integral has to be
performed numerically. When the electron vector
k is normal to the surface, the q integral can be
done trivially, thanks to the 5 functions. This
serves as a check to our calculations.
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