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1'he nature of wave functions in a one-dimensional disordered system is examined in terms
of a model system in which the central portion of a cell is represented by the same potential
in all cells a nd only the lengths of the flat arms vary randomly from cell to cell. It has been shown
previously that although most wave functions are localized, states corresponding to the reso-
nances states of the central potential have extended wave functions. Here we show that states
close to these resonances also have fairly extended wave functions throughout the physical
sample. Numerical calculations on a model system formed from symmetric square wells in-
dicate that even in a highly disordered system there are wide energy ranges close to the res-
onances which have fairly extended wave functions. Wave functions having energies in the
allowed bands of the corresponding periodic lattice are also weakly localized, but their degree
of localization is raised as a, whole with an increase in disorder, whereas an increase in dis-
order only narrows the energy range of these fairly extended states.

I. INTRODUCTION

Extensive reviews on the electronic properties
of one-dimensional disordered systems are avail-
able. ' Owing to the complexity of the solutions
and their interpretation, and because of the recent
indications of the experimentally measurable phys-
ical systems, ' '" the one-dimensional disordered
systems are still being actively studied. ' The
two key questions studied in the electronic proper-
ties of such systems are (a) the existence of energy
gape and the density of states, 'k a'4' 44 and (b) the

~(x) &ikt: g(x) &
$kx-

g,«, A'(x) e'~+ B'(--x) e '~,

(".)™(":)
where

(1)

(2)

localization of electronic wave functions. 6

We studied the problems using the phase-trans-
fer method. ' ' ~' A wave function connecting
through a cell of a potential shown in Fig. 1 is
represented by a phase-transfer matrix M:
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and det I M I = 1. The matrix M is like a black box
which contains all the characteristics of the poten-
tial in the cell, and in many occasions we do not
need to know the details of this black box in order
to get some definite answers. Unlike most other
methods which involve a perturbation-series ex-
pansion, or averaging over certain statistical dis-
tributions, in our approach we seek exact answers
from algebraic relations. This matrix M is also
related to the scattering matrix and the phase-shift
analysis, which are standard approaches in the
three-dimensional problems. Still another way of
expressing M, when the wave function is chosen to
be of the form in Eq. (l), is to write it in terms
of the transmission coefficient t and the reflection
coefficient x. This representation of M is simple
and is clear in physical interpretation.

In order to answer the above questions, we first
set up a model to represent the one-dimensional
amorphous material or liquid. We do not arbitrar-
ily draw a random curve (usually restricted by
some statistical properties for the potentials4 ),
and we do not represent such a system by an array
of square-well potentials of arbitrary sizes and
depths. A crystalline material and its amorphous-
or liquid-state counterpart differ only in the geo-
metric arrangement of the sites of the constituent
atoms. The potentials representing the constituent
atoms should not change much from those in the
crystalline state. In the disordered system, only
the geometrical locations, or the site separations,
are at random. Our model is therefore the follow-

44~46a 48
Qo

A one-dimensional liquid or amorphous material
is represented by a linear chain of potential cells.
Each cell consists of a central potential with two
flat arms. The central potentials are assumed to
be the same in all cells representing the same
atoms (see Fig. l). The lengths of flat arms vary
at random from cell to cell within certain natural
limits. In this model the transfer matrix in each
cell can be written as

tials and the specific geometrical arrangement of
their sites. These characteristics show up in the
electronic spectrum of the particular system. By
rearranging the same constituents in a different
way, the electronic spectrum will certainly change.
It would be most interesting to sort out parts of
the spectrum which are completely characterized
by the properties of the constituent potentials and
are independent of the geometrical arrangements.
In other words, these are the sample-independent
properties of the amorphous material.

Following this trend of thought, we were able to
give a definite answer to the first question. 43 44

We proved, using the phase-transfer method, that
energy gaps do exist in such model systems. They
depend solely on the property of the central poten-
tial. This result is a generalization of the 5-po-
tential study of Borland, and is in agreement with
the general theorem established by Hori3'12 and
others 18a22

As regards the second question, the prevailing
view is that all wave functions in one-dimensional
disordered systems are localized. The statement
was originated by Mott' and subsequently several
proofs 6 36 have been given including several re-
cent studies of Economou et al. 8 '4 On the
other hand, it has also been stated that no state is
localized for a system of finite number of scatter-
ing sites.

The Mott definition'8 of a localized wave function
is the following: a wave-function whose envelope
decays exponentically from a central position xo,.
g-e ""o . By an extended wave function we
mean a wave function whose amplitude keeps more
or less the same magnitude throughout the whole
system. Notice that the Mott definition, when it
is applied to one-dimensional systems, does not
exclude the extended states which are the limiting
case of the localization length L ~. Thus to
study whether all wave functions in one-dimension-
al disordered systems are localized or not, we
should not just show that all wave functions have
the exponentially decaying envelopes. It is more
meaningful to examine whether extended states
exist or not.

In our previous study ' we have shown that
such extended states do exist in the model systems.
They are the resonance states of the scattering
potentials characterized by transmission coeffi-

(4)

where h, and h„are the lengths of the flat arms.
This model is consistent with the following basic

concept that we put forth, ' and has been men-
tioned by Ziman and Weaire. '1 A one-dimensional
system is characterized by the constituent poten-

Gp I g
I I I

FIG. 1. Model of one-dimensional liquid.
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functions in going through a series of the same
square-well potentials located at random on the
linear chain. We shall examine the growth of
wave functions by numerical computation in Sec.
II. In Sec. III we shall prove the conjecture an-
alytically and obtain further insights into the prob-
lem of one-dimensional disordered systems.
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FIG. 2. One-dimensional disordered systems built up
from symmetric square wells of the same well width W

and depth V but variable arm lengths h.

cient (t 1
= 1 in the transfer matrices [Eq. (4)].

This is related to the Ramsauer —Townsend effect
in the three-dimensional-scattering problem. '
Since the central potentials in the cells represent
the same constituent atoms, a resonance state of
one central potential is also the resonance state of
all other central potentials along the linear chain.
A plane wave at the resonance energy coming in
from one end will be transmitted through the po-
tential as if-the potential is not there. Such a
wave will therefore be perfectly transmitted from
one end of the one-dimensional disordered system
to the other. The disorder in the chain will not
affect the transmission and it is a sample-indepen-
dent property. In all arbitrary one-dimensional
potentials other than the 6 potentials (see com-
ments in Sec. III) such states exist. They are
discrete energy levels. They are observed only
in our model systems because we insisted that all
constituent potentials are exactly alike. In a more
realistic model the potentials in different cells
differ slightly. One may ask whether such small
deviations in the central potentials will erase all
such extended states or not. In Ref. 46, we con-
jectured that states close to )t I = I resonance
states are also highly extended. If this is the case,
such small perturbutions will not affect the local-
ization too much. Perhaps there are wide ranges
in the energy spectrum which have wave functions
quite extended, say of the size of the sample. The
existence of these also opens the possibility of a
nonhopping type of conductivity in one-dimension-
al disordered systems even in the presence of
impurities or in alloys.

It is the purpose of this article to study this con-
jecture and examine the properties of wave func-
tions at energies close to the resonance states. In
Sec. II we shall examine the behavior of wave

II. COMPUTER CALCULATION OF WAVE FUNCTIONS

To examine the behavior of wave functions at
energies close to the resonance energies, we cal-
culate each wave function numerically as it passes
through each cell. For simplicity we have chosen
the central potentials as square-well potentials of
width W (in eV) and depth V ( in eV) located sym-
metrically in the cell having two equal flat arms
each of length k (in A) (Fig. 2). The lengths of
the flat arms vary at random from cell to cell
within limits (in A): 1 —d —k —1+d, where d is
an arbitrarily assigned number designating the
degree of disorder At C. o of the first cell [Fig.
2(b)], we take a wave function with ho= B)= 1

[Eq. (1)]. The transfer matrix for such a square
well is given by Eq. (4) with

$2kh QI2 p2

t
= cos(k'w) cos(2kk) —

kk, sin(k'zv ) sin(2kk)

—i k, sin(k'xu) cos(2kk)+ cos(k'so) sin(2kk),
2ut '

(5)

(6)y (k ~3 k2)—= i k, sin(k'w),

where k=E" and k'= (E+ V) . It can be easily
shown that with this choice of Ao and 80, $&=A&
at any site C&. By multiplying the transfer ma-
trices together we can find the amplitude I A„l at
the nth site C„. For a given energy, this can be
calculated numerically on the computer. We also
calculate the final change in amplitude IA& ( —= [AN [,
where N is the last cell in the chain. The quantity
log&0)Ay) is closely related to the degree of local-
ization introduced by others. 6' ~' ~'

In Fig. 3, we have plotted log, o)A&) for a wide

range of energy values integrated through 4000
cells. The vertical straight lines indicate boun-
daries of allowed and forbidden bands in the peri-
odic lattice (i. e. , d = 0). The wave functions grow
to a large magnitude very rapidly at energies lying
in the forbidden bands of the corresponding peri-
odic lattice. (A clear explanation why a wave func-
tion usually grows in a disordered system is given
by Mott6 and Readig and Sigel. 36) At energies
lying in the allowed bands of the periodic lattice,
the wave functions of the disordered system grow
less rapidly. Log,o)A&( is usually small near the
middle portions of the corresponding allowed bands
of the periodic lattice. They are weakly localized
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FIG. 4. log~p l Ay I vs energy for square wells having
V=20 eV, W=3 A, d=0. 2 A, and N=4000.

FIG. 6. log~p )Ay t vs energy for square wells having
V=20 eV, W=1 A, d= 0. 4 A, and N=2000.

states, and have been reported previously.
The arrows indicate the resonance energies of the
central square well. At these points log~elA~I = 0.
The wave functions are extended. There are wide
ranges of energies close to these resonance states
which also have logqelAyl fluctuating close to zero.
They are the fairly extended states conjectured by
us. (Notice that even in the periodic case the cal-

'

culated value of log, 0IA&I fluctuates about zero and

is usually not exactly zero except at the resonance
points. This is related to the choice of the form
of ( and the definition of f and x. ) The weakly
localized states near the centers of the allowed
bands are less extended than these regions close
to I&I =1.

We also see that a lt I = 1 state always lies in the
allowed band of the periodic lattice. This is ob-
vious from Eqs. (6) and (6). At a resonance en-
ergy 0'~ =em, the half-trace of the transfer ma-
trix M is cos(2kb) which is always less than or
equal to 1, and therefore it lies in the allowed
band. 4' "

Figures 4-'7 give more detailed features of the
wave functions with energies close to a resonance
state It[ = 1. Comparing Figs. 4 and 6, and 6 and

7 we see that an increase in the disorder (d = 0. 2 A

as compared to d = 0. 4 A with h lying between
1+d A) narrows the width of the extended region
close to It I = 1.

If instead of integrating through 4000 cells we
examine the behavior of a random system of 2000
cells formed from the same square-well potentials
we see from Figs. 5 and 6 that the width of the
logqelAyl =0 region close to It I

= 1 does not change
much. An increase in N tends to smooth the fluc-
tuation in the log~0 IAy I curve.

Figure 8 shows that in a weakly localized region
which does not contain It I

= 1, an increase in dis-
order changes the degree of localization quite a
bit. Although the d = 0. 2-A curve shows a similar
shape as the d = 0. 1-A curve with a small over-all
increase in logqelAyl, it no longer contains a large
region fluctuating about the logqelAy I = 0 line in
this region. On the other hand, in regions close to
It I

= 1, an increase in disorder does not raise the
whole curve of log~0 IAI I away from zero. lt only
narrows the range of the fluctuating logqelAgl about
zero.

To give us a feeling how extended a wave func-
tion is at energies close to a resonance line„Fig.
9 gives a plot of the amplitude against the cell num-
ber. The amplitude IA„I is the accumulated
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FIG. 5. log&p lA~ t vs energy for square wells having
V=20 eV, W=i A, d=0. 4 A. , end M=4000.

FIG. 7. log 1 A~I vs energy for square wells having
V=20 eV, 8'=1 A, d=0. 1 A. , and ¹2000.
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growth from Co to the nth cell. The change in am-
plitude after 200O cells is less than 7%% at E= 17. 5

eV. In the strong-scattering region ( i. e. ,
when I'I is large) the wave functions grow rapidly
with an exponential envelope indicating that the
wave functions are localized (Fig. lo). This has
been repeatedly pointed out by authors who studied
the question of localization of wave functions in
one- dimensional disordered systems. The
regions close to It I =1belong to the weak-scatter-
ing regions. A weak scatterer is defined to be one
which has a small reflective coefficient I& I in Ref.
46. The amplitudes of the wave functions as shown
in Fig. 9 fluctuate about the initial value. The
growth, if it is present, is very slow indeed.

III. WEAK-SCATTERING STATES

In this section we shall examine analytically the
weak-scattering states having energies close to

the resonance states. First of all let us note that
such resonance states always exist in an arbitrary
centra1. potential. In 5 potentials, however, the
resonance energy is at E ~. This is perhaps the
reason why such resonance states have not been
discussed by Borland. 1'~~ A typical example of
the transmission coefficient T= ~f 1 -vs-energy
curve is represented by that of a square well
(Fig. 11). We are interested in the weak-scatter-
ing states. T = 1 states are discrete points, but
T = 1 states lie on the approximately parabolic por-
tions of the T'-vs-E curve. It is therefore quite
likely to have bands of considerable width whose
states have wave functions not too different from
the extended wave functions of the resonance states.

Another indication that a weakly scattering state
has a fluctuating wave function along the linear
chain is the following. It has been shown [Egs.
(2O)-(22) of Ref. 46j that in going through the jth
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FIG. 9. Growth of a wave function at E=17.5 eV close
to the resonance state at 17.7 eV along the linear chain
of three disordered systems formed from square wells
having V=20 ev, W=l ", N= 002, 0and d& ——0.1~, d&

=0.2 ~, and d~=0. 4", respectively. A„is the amplitude
at the ~th cell and I AO I = 1..
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FIG. 10. Growth of wave functions at energies away
from the resonance energy at 17.7 eV. A„ is the ampli-
tude at the nth cell and I A() I =1.
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cell, the amplitude is modified by a factor e&
characterizing all the effects of the potential in the
jth cell, and that the values of a& lie between

1+ I ~l~uz~ for all j.
1 —l~l

The allowed values of n& are shown as the shaded
area in Fig. 12. For strong scatterers, i.e. , for
a particular lxl close to 1, it is far more likely
for 0,

&
to take up a value greater than one. As a

result, a wave function tends to grow exponentially.
In the weak-scattering region, i.e. , lr I close to
zero, n& has practically equal chance to be greater
than or less than one, resulting in a fluctuating
amplitude in going through the cells. This is in-

deed observed in the numerical study of square-
well potentials in Fig. 9. Notice that even in a
perfectly periodic lattice, )x ) is in general non-
zero, but the phase relation introduced by the pe-
riodicity guarantees equal probability for e& to be
greater than or less than one.

To examine this more closely, let us return to
the transfer matrix [Eq. (14)]. It is obvious that
a I& I = 1 state always lies in the allowed band of
the periodic lattice, for

~ TrM = Re(e ""/t)
~ « = cos2kh —1. (8)

In transferring a wave function from Co through
two cells to C, (Fig. 1), we multiply two such ma-
trices together:

$2khg

5 2kh2

&-52k(a~+ h2) &2
+

$2khy %2kh2

t t t*
(9)

&+&» ~g+ h2&

If in the weak-scattering region we can neglect I&/t I in comparison to 1/tt, the infinite products of the
matrices give diagonal elements of the form

xp[- i20(h~+h~+ ~ ~ ~ + &„)]
tt e ~ ~

exp[i2k(h~+h~+ ~ ~ ~ + k„)]
tt

n (10)

We are interested only in the half-trace of M„or
Re(exp[- i2k(h, + hz+ ~ ~ )]/tt. ~ ~ ) in applying
Kramer' s condition. 4 For a perfectly periodic
lattice, all the h's are the same. The half-trace

FIG. 11. Schematic sketch of the variation of the trans-
mission T= I t l2 as a function of energy. The heavy os-
cillating curve represents the T-vs-E curve of a square
well, and the thin growing curve is the T-vs-E curve of
a 6 potential.

of M„ is Re(e "/t"), n ~. In the disordered
model, we can certainly impose the condition that
the disorder does not change the length as a whole,
i. e. , h, + k2+ ~ ~ ~ + h„=nh. This gives the same
half trace of M„ for the disordered system. In
other words, if [r/f I can be neglected in compari-
son to 1/tt for the central potential in the weak-
scattering limit, the state is practically the same
as that of a periodic lattice. Since a weak-scatter-
ing state in the periodic lattice has an extended
wave function (this is obvious from the fact that a
tt ) = 1 state lies in the allowed band, and from the
property that if T, —1, T„1in Ref. 42), th—e
status of a weak-scattering state in the disordered
system is not changed.

We can therefore conclude by saying that a weak-
scattering state in a one-dimensional disordered
system has a wave function which is extended to
the approximation of neglecting [x/f ( in compari-
son to 1/tt. If we do not make such an approxima-
tion, the wave function has a very broad localiza-
tion envelope. The resonance states jt ) = 1 are
definitely extended. Unlike the three-dimensional
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0

FIG. 12. Allowed values of n (shaded region). The
vertical dotted line represents a weak-scattering state
and the vertical solid line represents a strong-scattering
state.

case, we do not expect a sharp change from an ex-
tended to a localized state in the one-dimensional
disordered system. There is. however, a physical
length parameter to help us in the discussion. This
is the size of the physical system. Most amor-
phous materials are studied in the form of thin
films several thousand angstroms thick. If the lo-
calization length is greater than the thickness of
the sample, we can, for practical reasons, call it
an extended state in the one-dimensional problem.
Our study here shows that they are most likely to
occur at the weak-scattering regions close to the
resonance states. These regions are fairly wide.
Unlike the weakly localized states in the allowed
bands of the corresponding periodic lattice, these
regions persist when the disorder is increased.
Of course, their widths decrease with increase of
disorder.
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Acoustic geometric and acoustic cyclotron resonances n high-purity single crystals of gal-
lium were investigated at 1.3 'K and in the normal geometry where the magnetic field is per-
pendicular to the wave vector of the ultrasonic waves. These waves, polarized longitudinally
and of frequencies in the range 60-400 MHz, were propagated along the three principal crys-
tallographic axes a, b, and c of gallium. The extremal dimensions of the Fermi surface
in the k~k&, kg~, and kg~ planes, obtained by measuring the periodicity D(1/H), of the geo-
metric-resonance oscillations, are compared with the predictions of the augmented-plane-
wave and pseudopotential models. The results are in good agreement with the values given
by the pseudopotential model. A map of effective masses in the ab, bc, and ca planes, ob-
tained from acoustic-cyclotron-resonance experiments, is given. These data are compared
to those of Moore, who used the Azbel'-Kaner cyclotron resonance (AKCR). Some branches
of effective masses were found which have not been observed by AKCR and, reciprocally,
many resonances observed by AKCR were not observed in the present work.

I. INTRODUCTION AND THEORY

Although many experimental studies of the Fer-
mi surface of gallium' have already been done,
this surface, which appears to be a very compli-
cated one, is still far from well known. The meth-
ods which have been used to investigate its prop-
erties include de Haas-van Alphen effect, mag-
netoresistance, magnetoacoustic effect, cyclotron
resonance, and others. The comparison of the
experimental data with the theoretical models
proposed for gallium shows that, whereas the near-
ly free-electron model is not confirmed, the aug-
mented-plane-wave model (APW)' is in better
agreement with available data. Recently, Reed
made some calculations using the pseudopotential
model. The form factor was adjusted in order to
give the best fit between the calculated surface and
the experimental results.

First ultrasonic measurements on gallium mere
carried out by Roberts, who was the first to ob-
serve acoustic cyclotron resonance (ACR) in single
crystals of gallium. Some data mere published,
too, on the shape of the Fermi surface determined
by acoustic geometric resonance. ACR was also
further investigated' ' and led to the knowledge
of some effective masses of the carriers.

In the present work we have studied the proper-
ties of gallium by propagating longitudinal ultra-
sonic waves along the three principal crystallo-
graphic axes of high-purity single crystals. All
the experiments were made in the so-called nor-
mal geometry where the magnetic field II is per-
pendicular to the ultrasonic wave vector q. The
ultrasonic frequencies used ranged from 60 to 400
MHz, which corresponds to ql »1, and ~T =-1 or
~T & 1 (/ is the mean free path of the electrons; it
is related to the collision time v by I = ~v~, where
v~ is the Fermi velocity).

Before presenting the experimental data, we will
review the basic results of the theory of the mag-
netoacoustic interaction, using the formalism de-
veloped by Cohen, Harrison, and Harrison
(CHH) '

At low temperatures, the attenuation of an ul-
trasonic wave in a metal is due to mainly the elec-
tron-phonon interaction. Instead of a real metal,
we consider a gas of free electrons moving through
a uniform background of positive charges. The in-
teraction between the sound wave and the electrons
takes place via the electromagnetic field asso-
ciated with the wave. Under such conditions it was
shown in Ref. 13 that the attenuation Q.'of a longi-
tudinal wave, propagated perpendicularly to a


