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A study of the effect of umklapp electron-phonon scattering on the low-temperature resis-
tivity in polyvalent metals yields the following results: (i)The exponential [exp(- 0/T)] be-
havior in the alkalis is replaced by power laws in temperature; (ii) for single-OP% scattering
states (i.e. , spherical Fermisurface) a T law results if a constant matrix element is used;
if the wave-vector dependence of the matrix element in the vicinity of Bragg planes is included,
a comparable T law occurs; (iii) two-OPW corrections are important qualitatively only at
the lowest temperatures, where they reduce the umklapp contribution to resistivity, distort-
ing the power laws and producing the ultimate low-temperature behavior T5. Nevertheless,
the umklapp process strongly dominates the normal at all temperatures. The use of a simple
trial function in the variationa1 formula for resistivity makes the calculation and these re-
sults applicable to the temperature-dependent resistivity of impure metals. Comparison with
experiment supports this interpretation.

I. INTRODUCTION

Qur considerations of umklapp electron-phonon
scattering are motivated by the observation that
a T' power law does not dominate the low-temper-
ature electrical resistivity in certain simple met-

1als'. For example, Garland and Bowers have
analyzed such measurements in indium in terms of
T and T components over a wide range of puri-
ties, and find a significant T component" in each
case studied. In the case of aluminum, Ekin has
found similar deviations from the T power law,
but it appears impossible to assign a unique power
law to the deviations. In aluminum alloys, and at
somewhat higher temperatures (greater than about
—,'0 th the Debye temperature), Caplin and Rizutto
have observed an approximate T' dependence in
resistivity. Some of the experimental results are
plotted in Figs. 1(a) and 1(b), along with our re-
sults for electron-phonon scattering. In each of
these experiments, the temperature-dependent re-
sistivity has a marked dependence on impurity re-
sistivity.

The present authors have investigated theoreti-
cally the contribution to resistivity from electron-
electron scattering (originally suggested by Gar-
land and Bowers because it is known to produce a
T' dependence) and have concluded that it should be
as great for the alkali metals Na and K as for the
simple polyvalent metals Al and In. Since no T
term is observed experimentally in alkali metals,
we are led instead to consider umklapp electron-
phonon scattering as a source for the observed
deviations from the T law at low temperatures.

As the details of the calculations are fairly com-
plicated and only approximate, it is perhaps use-
ful to set out several aspects of the problem which
will not be so obvious once we are in the midst
of it. First, a brief review of the variational prin-
ciple leading to a formula for the resistivity will
be given. Then the effects of Fermi-surface geom-
etry on the various parts of the resistivity formula
will be analyzed to predict their contribution at
low temperature. Finally we shall show how the
resistivity formula can lead to an understanding
of deviations from Matthiessen's rule.

A. Resistivity Formula (Uariational)

We wish very briefly to review the derivation of
the (Kohler) variational result for electrical re-
sistivity in a notation appropriate to our uses.
More detailed treatments are available elsewhere. '
The Boltzmann equation for the electron distribu-
tion function f (k) in the presence of a (unit) elec-
tric field E is

X(k) =- v(k) Ee&f'(k)

= -Z P(k, k') [C(k)-4(k')], (1.l)

where the electron of charge e, energy E(k), and
velocity v(k) has an equilibrium distribution func-
tion f (k). The deviation (from equilibrium) func-
tion @(k) can be thought of as the shift of single-par-
ticle energies due to the applied field:

s '(k
f(k) =f (k)+ 4(k)
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Finally the collision operator P(k, k') which strives

to relax the nonequilibrium distribution can be
written for the case of electron-phonon scattering
as

P(k, k')= „Zegg(k, k )i
)

e(|,)g~ r e(p)gi, r [ ( (k) —E(k') —Im, )„)+5(E(k)—E(k')+h~, „)],B~
(1.3)

Normal: k —k' in first Brillouin zone;
(l. 4)

Umklapp: k —k' not in first Brillouin zone .

In either case the phonon wave vector q always lies
in the first Brillouin zone so that

k-k'= q+G, (1.5)

where G is a reciprocal-lattice vector. Then the
matrix element gi(k, k') for the scattering of an
electron from k to k' through the emission or ab-
sorption of a phonon with wave vector q, polar-
ization R,&, and energy ~,& is

(g (k, k')
i

= (h/M¹o~g) imp(k, k')
i

where
~i(k k )=(kl~ai'~i'lk )

is the reduced matrix element, N is the density of
unity cells, and M the ionic mass.

%'ith this unavoidable detail out of the way, we
return to (i.1) which we observe can be written,
dropping the arguments, as

(1.8)

where H is a real, symmetric integral operator.
The conductivity can likewise be written in a simi-
lar simple fashion

0

o=Zev(k) E „-e(k)

=Z e(k) X(k) = (e,X), (i.9)

where the convention in the second line of (1.9) is
(hopefully) obvious. Let 0, be some trial function
which is reasonably well behaved; then the Schwarz
inequality gives

(4, , H4, ) (4, H4) ~ (I, , H4)

The application of (1.8) and (1.9) to (1.10) gives
an upper bound on the resistivity6

(1.10)

Note that (1.3) is invariant to the interchange of k
and k'. In this section we work in the extended zone
scheme (in the course of the detailed calculations
the reduced zone scheme will be more convenient).
Hence the division into normal and umklapp pro-
cesses is simple:

p = a-'- (e, , He, )/(e, , X)'. (1.11)

This form will be useful for general discussions
later, but a more explicit form is immediately
needed. The standard trial function is

e,(k)=v(k) E, (1.12)

where only the angular dependence of v(k) on the
Fermi surface is retained. Each sum over k can
be written as a product of an integral over E(h)
and one over the Fermi surface S~. Then we find
that

)2
6h 4v'hj iv(k)i tv k I

~Z jg„(k,k')
i
'y(K(o, „/h,r)

We have not bothered to write out (0, , X) since it
does not contribute to the temperature dependence
of the resistivity. The factor f(h&u/heT) results
from the integral over the energy variables and is
given by

f(x) =x/[(e" —1) (1 —e ")] . (1.14)

B. Temperature Dependence of p due to Normal and Umklapp
Processes

In order to extract the low-temperature be-
havior of the resistivity we must determine the
small-q (hence small &u ) dependence of the three
factors comprising (1.13):

The only important points about f(h&o/he T) are (i)
that it falls off exponentially for finite x and (ii)
that it is the source of all the temperature depen-
dence of p, as we shall see.

Finally we should observe that the velocity-
transfer term

—,
'

i
v(k) —v(k')

(

'
comes from observing that inside the integrals it
is equal to

v(k) ~ (v(k) —v(k )).
The symmetric form is clearly more convenient
for complicated geometries. For the case where
v(k) is proportional and parallel to k, either ex-
pression reduces to the well known (1—h .h ) = 1
—cose.
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Aluminum (i) phase-space integral: fd &» d Sl... . (1.15a)

20

(ii) velocity transfer '

(iii) (matrix element):
(1.15b)

(1.15c)
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If the resultant q dependence is q" dq, then p is
proportional to T"", due to the homogeneity of
f(h(u/ke T').

That the temperature dependence due to normal
and umklapp processes will be different seems ob-
vious if only because v(k) —v(k ) will "surely" be
different in the two cases. That the same umklapp
process may produce a different temperature de-
pendence at different temperatures is less obvious.
The important point is that the distortion of the
Fermi surface due to the band gap V(G) determines
a characteristic wave vector q- kz(V(G)/E~) and
hence a characteristic temperature.

8)- 8~(V(G)/E„), (1.16)

60

IO

indium

50 IOO

where 8~ is the Debye temperature. Since V(G)/
E~ of the order of 0.01 to 0. 05 are common, it is
possible that for Og& T«O~ the distortions of the
Fermi surfaces would not be important in the re-
sistivity while for T &OH& they would. These two
regimes give different temperature dependences.
We will illustrate this by considering each of three
factors (1.15a)-(1.15c) in turn.

30-

20- q:

1. Phase-Space Fuctor

Our aim is to write (1.15a) as an integra], over

fdS~dS~. = fdqP(q),

Ol
Io—

0

C 6-

0
CVI-

where presumably P(q) can be expressed as a pow-
er series in q. Consider first a normal scatter-
ing event. In that case both the initial and final~(
electron wave vectors k and k, lie on the same
Fermi sphere, as shown in the extended-reduced
zone spheres of Fig. 2(a). The phase space
P~(q) dq for such an event is the number of pairs
of points (k, k ) on the sphere whose separation

W]
Ik —k) is within dq of q. For given initial state
k the number of appropriately distant final states
is 2' dq. The number of initial states is simply
the Fermi-surface area 4nk~, so the total number
of pairs is

P„(q)dq = 8v kz q dq -
q dq (1.18)

0.6
I Io 20 30

FIG. 1. Measurements on samples of various purity
compared with the results of this work (upper curves) and
with the Bloch-Gr'Uneisen formula gower curve). The
same Debye temperature, corresponding to the transverse
phonon modes, is used in both curves.

which is recorded in Table I.
Turning now to the umklapp process, consider

first the case where T &8&, so that any distortion
of the Fermi surface from a sphere can be ignored.
Then referring to Fig. 2(b), an umklapp scattering
event is one in which k and k lie on different
spheres in the reduced zone scheme. For a scat-
tering event with reduced momentum transfer q to
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surface
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FIG. 2. (a) Normal and umklapp events. (b) Umklapp events with fixed q. (c) and (d) Scattering through small q on a
distorted surface.

occur at all, the initial state must lie within a dis-
tance q of the second, or remapped, sphere. The
locus of such initial states is a strip centered about
each of the Bragg planes (aG). The area of each
strip is 4m kq~/G. For a given initial state k in one
of these strips, the number of appropriately dis-
tant final states is 2' dq. So the umklapp scatter-
ing phase space, taking the contribution from each
of the two strips, is

Kind of process Normal
Umklapp

T &OH& T& o.
&

TABLE I. The q dependences of three factors in the
resistivity integrand determine the temperature depen-
dences fromnormal scattering, and from umklapp scat-
tering in the two temperature regimes. Momentum de-
pendence of the form factor adds an umklapp contribution
proportional to T for T &OH&, and to T for T& 8~.

P~(q) dq= (16& k~/G) qmdq-q2dq .
In other words, an additional factor of q appears
in PU(q) because both k and k must lie within a
distance q from the intersection of the two spheres
in order for an umklapp process to occur.

Phase space
Velocity transfer
(Matrix element)

Total integrand
Temperature dependence

q cfq
q2

dq
T5

q dq
Q2

j.!q

T2

qdq
q2

q
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Finally consider the case T & O~, where distor-
tions in the Fermi surface are important [see Figs.
2(c) and 2(d)]. Since

~k -k~ &[V(G)/Z, ]u, ,

and furthermore since both wave vectors must lie
within that distance from the Brillouln-zone plane,
the surface available for scattering is roughly a
flattish cyfinder. Accordingly, as in the normal
scattering case, the number of appropriately dis-
tant (from k) final states is 2' dq, and the number
of initial states is independent of q, - 2'~ [kz V(G)/
E~]. The net result is that at low temperatures
(T & 8,), we again recover the phase-space factor
qdq as for normal processes.

2. Velocity-Transfer Factor

The discussion of the velocity-transfer factor

i v(k) —v(k')
i

' (1.15b)

is considerably simpler. For a spherical Fermi
surface v(k)-k. Since Ik —kl =q for a normal
process, (l. 15b) -q . In the case of umklapp pro-
cesses where we may neglect the Fermi-surface
distortions (T &8,), tk'- kt = i G+ gl. Accordingly
(1.15b) - G . Finally at very low temperatures
(T&O, ) the distortion of the Fermi surface destroys
any direct connection between v and k. But clearly
on the lens-shaped surface in Figs. 2(c) and 2(d),
the velocity is continuous across the Bragg plane.
Not suprisingly, a direct calculation in Sec. III
gives (1.15b) -q, again, All of these results are
recorded in Table I.

3. (Natrix Element)~

To discuss the matrix element we note since
~, ~q for small q, that from (1.6) and (1.V),

The fourier transform of V (above) has no singular
dependence and is a constant at small q. Any in-
teresting behavior arises from the gradient in
(l. 19). For normal processes and for umklapp
ones where T&8, , the states k andk maybe rep-
resented by plane waves. Accordingly, the gradi-
ent produces q and G, respectively. Hence,
tgl Of-q for normal processes and q

~ for umklapp
(T& 8,). Finally for low temperatures (T&8~),
two plane waves are required to describe the states
on the lens surface [Figs. 2(c) and 2(d)], After a
slightly tedious calculation (Sec. III), one finds that
Igl fx: q as in the normal process.

In Table I we have collected all the results of the
preceding discussion. In the final two rows we
tabulated the total q-dependent integrand [except
for the factor f(&o,/4~ T)] and the resulting tem-
perature dependence, respectively. It is interest-
ing to observe that for normal processes and for

In the preceding discussion (Sec. I B) we have as-
sumed that the deviation function 4'(k) was known
and given by

e0(k)=v(k) Z. (1.12)

If that mere the case, then the additivity of the
various scattering processes [Matthiessen's rule
(MR)] would hold. To see this, note that we can
write

II= Hq + H~+ HU, (1.20)

where II, , represents scattering due to impurities
(a process not mentioned until now, but very im-
portant in most samples), and H„and H„repre
sent normal and umklapp electron-phonon scatter-
ing, respectively. Accordingly, if (1.12) satis-
fied (l. 8)

X=H4'0,

then (1.11) would be an equality and we would have

P(@0) Pimy(+0) + PN(@0) + PU(+0)

But in general (1. 12) is not a solution of (1.8).
Suppose, as is the case in pure Al, that umklapp
scattering dominated the resistivity. Now, as we
shall see, umklapp scattering is more anisotropic
than normal, by which we mean that scattering
probability depends strongly on the wave vectors
as well as the difference between the wave vectors.
Accordingly 4'(k) has greater variation than re-
flected by the simple trial function (1.12)—being
more depressed in regions of greater scattering.
Let C~ be the solution of the equation

X=Il~e~ . (l. 21)

Then in the calculation of p, the pieces due to um-

klapp scattering would be considerably less using
4u in place of 40 [since one can do a, variational
principle for (1.21)]

Pu(@~) &P~(+0) . (1.22)

Now since H~» H. .. H„(byassumption), the ma-
jor improvement in calculating p~ outweights the

umklapp processes at very low temperatures
(T&8~) where distortions of the Fermi surface
from sphericity are important, a T' law is ob-
tained, although with different coefficients for the
two cases. For umklapp processes a'„sufficiently
high temperatures (T & O, ) where we may treat the
Fermi surface as spherical, we find a T depen-
dence. If one would take into account, as we do
in Sec. II, additional q dependence from the ma-
trix elements, etc. , then an additional T term is
found. Accordingly, it is impossible to charac-
terize the temperature dependence at low tempera-
ture by a single (or simple) power law.

C. Deviations from Matthiessen's Rule
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overestimates in p, , and pN which occur for using
4~, and we can assert that

p(+v) & p(@o) (1~ 23)

(1.as)

P(+0) = P~iuy ~

On the other hand, we identify

P(@U) Pyure r

(1.27)

(1.as)

since 4 =4~ is appropriate where umklapp scatter-
ing dominates. Accordingly from the inequality
(1.23) together with (1.27) and (1.28), we have

pyux'8 pal roy pimy ' (1.ao)

The bulk of the difference between the two sides of
(l. 29) arises from the difference between p~(4~)
and p~(@0)~ As we can see from Fig. 1 for Al this
amounts to a change of 300/o at 20 'K.

In this paper we have not attempted to find the
appropriate deviation function for the case of
umklapp scattering dominance, Co. Instead we
have always used Cp so that our calculations
should be compared against the experimental re-
sults for p —p, , for al/oys. %'hen this is done, as
may be seen from Fig. 1, the agreement between
theory and experiment is considerably improved.
We would further suggest that all calculations for
polyvalent metals which used 4 p as a trial function
should compare their results against experiments
for dilute alloys, for which 4'p is more appropriate.

provided that umklapp processes are dominating
the resistivity.

Unfortunately we have been using 4p, in our ig-
norance of C~. Does that correspond to any phys-
ically realizable case'? Consider the case of pure
impurity scattering. Then the Boltzmann equation
has a very simple form

v(k) ' Ee = —fdS„Q(k,k ) [4(k) —4(k )], (1.24)

where Q(k, k ) is some effective probability (for
elastic scattering) onthe Fermi surface. For a
spherica/ Fermi surface where we take Q(k, k )
=Q(lk —k I) and v(k)-k, (1.24) can be solved ex-
actly to give

e(k) = —r v(k) ' Ee, (1.as)

where the k-independent relaxation time v is

1/~= f d&g Q(~k —k ~) (1—&'& ) .
But clearly (1.25) is just @0 (up to an irrelevant

constant for use in a variational expression for the
resistivity). So in the case where impurity scatter-
ing dominates, such as in dilute alloys or at the
very lowest temperatures, clearly 4'0, or (1.25) is
nearly the correct deviation function; it is exact
for II. .. fairly good for H~, and rather poor, pre-
sumably, for II~. In any case, we can identify
p(40) with the resistivity for an alloy

(For alkali metals such as K, deviations from MR
are much smaller. ) Finally we observe that al-
though we have not done the calculation for 4~, we
believe that the mechanism suggested here for
deviations from MR is at least as probable as
others that have been suggested recently.

We turn now to the plan of the rest of the paper.
In Secs. II and III we shall calculate the resistivity
from a Fermi surface intersected by only a single
set of Bragg planes (+G)., In Sec. II, we treat the
electronic states as single plane waves, and the
Fermi surface as spherical. This is done for sim-
plicity, but it shows that the dominance of umklapp
resistivity at low temperatures is essentially a
geometrical effect —it requires only that Bragg
planes intersect the Fermi surface. The resulting
distortion of the Fermi surface is quite incidental.
In Sec. III we include approximately the effects of
surface distortion and perturbation of electronic
states by the Bragg planes. These corrections
are important typically for temperatures up to
-0~~/10, and their effect is to reduce the umklapp
resistivity. In Sec. IV we attempt to generalize
our result to the case in which many Bragg planes
intersect the Fermi surface, and to calculate the
resistivities of aluminum and indium. Finally, in
Sec. V we review general results, and speculate
on possible improvements to the theory.

m t'3vv Ip=—2Ine & n M

where

(a. 2)

II. SPHERICAL FERMI SURFACE

If the Fermi surface intersects Bragg planes,
then umklapp electron-phonon scattering persists
at all temperatures and in fact dominates the low-
temperature resistivity. The dominance is an es-
sentially geometrical effect —it. does not require
that the electronic states be perturbed from plane
waves. Our effect is therefore well illustrated iri
this section by treating the electrons as unper-
turbed by the static lattice. Within this single-
plane-wave model umklapp scattering produces
pure T and T components in the low-temperature
resistivity, which strongly dominate the T from
normal scattering.

To begin the discussion we write out in detail the
equation for resistivity (l. 13). The denominator
of (1.13) is given, in general, by

(y, , ~) = en/~i. „=e(»v'~)-' fd-S,
~
v(n) I, (a. 1)

where n is the electron density and m„,is the "op-
tical" effective mass. With the present case of a
spherical Fermi surface (FS)

yn„,= m (spherical FS)

. and (1.13) becomes
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i ~(e) t i~(~') t

S2'Z (g~,„)-'f
~

'" ~ II„(k,k') . (2. 3)

To shorten the writing we have written the product
in the integrand of (1.13) as

(2.4)

where I„is the matrix element (l. 7). We have
divided by qn in (2. 3) to give S the unit of inverse
time. The relation qD = 6m N together with the fac-
tor N ' in (1.13) [see (1.6)] explains the presence
of N in the numerator of (2 ~ 1)~

To prevent the calculation from becoming un-

wieldy, we make various simplifying assumptions
along the way, most of which can be pointed out as
they arise. It is appropriate to describe here at
the outset, however, our treatment of the phonon
frequencies and polarization vectors. %e assume
a phonon's frequency is proportional to its wave
vector ~,„-I q t, and we allow the "transverse"
frequencies ~,T to differ from the "longitudinal" one

~,~ but take the two transverse frequencies equal
to one another. In the formal expressions (except
where noted) we take C,z-q and ~,r j=0. Since
this assomption is not valid except at very small
wave vectors, we take the liberty in the actual cal-
culation of averaging over polarization directions
e,

„

in the higher-temperature corrections. The
only important consequence of this average is to
multiply the "T' term" (which will be derived
shortly) by 35, The "T term" (T&8&) would re-
main unchanged, although the very-low-tempera-
ture behavior (T &8,) would be enhanced if we
chose to perform the average there. Qur treat-
ment of the phonon parameters will be reviewed in
Sec. IV with the presentation of results.

To preface our evaluation of S, we digress on the
distinction between normal and umklapp scatter-
ing. With single-plane-wave electronic states (and
a spherical Fermi surface), the normal and um-
klapp processes are distinguished geometrically,
as reflected in S by their separate domains of in-
tegration. Qur convention will be to work in the
extended-reduced zone scheme —that is, for each
initial state k on the Fermi surface, we sum over
all final states k which may lie on the same Fermi
surface or on any of the remapped surfaces, but
must be separated from k by a vector in the first
Brillouin zone. As shown on Figs. 2(a) and 2(b),
the umklapp processes are those for which k lies
on a remapped surface.

For normal processes, we shall be content with
reproducing the usual Bloch-Gruneisen formula,
which requires (in addition to the approximations

listed above) only that we place the form factor
equal to its value at zero argument, V(0). With
these approximations, the longitudinal component
of His

II~ =q V (0) (normal processes) (2. 5)

and the transverse components of G are zero. The
resulting (normal) contribution to resistivity is
given by

"=@a 9
v'(0)

B D
(2. 6)

where we define the usual Debye temperature,

&B 0" D-@L, qD, (2. 7)

with c~ the longitudinal sound velocity. Because
it will be useful later, we define the standard func-
tions Z„for general integer n'.

In the case of umklapp processes, the small-q
limit of the form factor is V(G), where +Gare
the reciprocal-lattice vectors corresponding to
the set of Bragg planes of interest. Since V(G) is
in many cases quite small, the momentum depen-
dence of V is important in determining the umklapp
contribution to resistivity. To partially account
for this, we expand V (to first order only) about
the small-q limit:

v(iq+Gi)= v(G)+q Gv'(G), v'(G)=
dx ~g

(2. 9)

,

Using (2. 9) to evaluate the matrix elements m~
[(l.6) and (l. 7)] and using the velocity difference
function,

v(k') —v(k) = (n/m) (g —0), (2. 10)

we find that the product fl [defined in (2. 4)] is a
fourth degree polynomial in q. Denoting as H~"' the
term proportional to q" (n = 0, 1, .. . , 4) we have, for
example,

H~~ ~=y~G V (G), X=L, T (2. 11a)

II'r" =2(g 6) yr O' V(G) [V(G) —GV (G)], (2. lib)

Ii,'"= q' G' y, (V'(G) + (q - G)' [G'(V'(G))'

—4GV (G) V(G)]} . (2. llc)

The polarization factors y„aredefined by

(2. 6)4 ~-f
0

For the present case we note that J, has the low-
temperature limit

lim J5(OD jT) = JI;(~) = 5l g(5) = 124. 4 .
T 0
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y~=(q ~ G) and Z yr=1 —y~. (2. i2)

x '" Iii"'(k, k') . (2. 13)
m

Then the total S will simply be the sum

Since we are assuming that the two transverse pho-
non frequencies are equal, it is sufficient to know
only the sum of the two transverse polarization
factors, rather than each individual factor.

The linear, cubic, and quartic components of 0
are strongly dominated by II~ ' in their contribu-
tions to resistivity (as shown in the Appendix), and
we restrict our discussion in the text, therefore,
to II'0' and II'2'. The contribution to S (2.3) from
each component of II will be denoted separately as
S'"'

S(tl) — (2v 2) 3 ~t I dSdS
(k ) iy'

I vt I
v'I

Since Q» is roughly twice 8» (typical values are
given on Table II), the transverse contribution to
S' ' dominates the longitudinal contribution by
roughly a factor of 16. Since S~ ' dominates S~ '

by an even larger factor, we shall restrict our
discussion to the transverse components in our
treatment of umklapp processes. Again referring
to Appendix A for the surface integrations, we find
that

Sg) J "DT P "2r ODT

[GV'(G)] 4V(G) 5 P~ V(G)
kkzO~oT GV'(G) 2 P4 GV'(G) &

(2. 20)

'The partial cutoff of umklapp scattering phase
space is represented by P4 and P4".

1 90
P4(x, y) =

2 +4& 4 z dz min(z, x)
0

4

s=s„+ZZ s„"'. (2. i4) x[az y (1 —a)min (z, x)],
(2. 2i)

2 J ™DL P 21 ™DL

P. '-," . 215

We introduce a transverse Debye temperature in
the same way as the longitudinal one:

k~SD~ —Ic„q~. (2. i6)

The slowly varying function P2(x, y) is defined by'0

Pz(x, y)=-+, . „,,', (2. 1V)
1 3

"' zdzmin(z, x)

and is depicted in Fig 3. P2 represents a partial
cutoff of umklapp scattering phase space at wave
vector 2k~ —G. This wave-vector cutoff defines a
characteristic cutoff in temperature,

kzO~z~ = Kc~(2k~ —G) (2. iS)

at which P2 begins to drop from its low-tempera-
ture limit of unity. Since the low-temperature lim-
it of Zz is pz/3, the low-temperature limit of S+' is

2 8 VR(G) G s T )8 1 2 O 'l8

r-0 3 IkzOHDL qg) SDz & -3 3 8DTj
(2. 19)

The evaluation of the surface integrals in the um-
klapp contributions to S is described in Appendix
A, and the results are as follows: First, the con-
tribution from G~

' is

(0) p S(0) V (G)
It

G T
@&asDL ia'D ODL

a=2(I —G'/4k~) .

P4 is very similar to P4, and multiplies an unim-
portant factor in (2. 20). The low-temperature
limit of both is unity. Since the low-temperature
limit of J4 is 24m /90, we have

y) 4 24+ G T [GV (G)]
15 90 qD O~D T Sk~O~D T

4 V(G) 5 V(G)
GV'(G) 2 GV'(G)

I.O

8
X 0.5—
~CV

0 I

0.5

FIG. 3. Partial cutoff of umklapp scattering phase space.

Three points should be made: (i) The low-temper-
ature limit of the resistivity is a polynomial in T,
the dominant umklapp contributions being propor-
tional to T2 and T, and the normal contribution
proportional to T'; (ii) the normal contribution is
strongly dominated by the umklapp contribution
over the entire temperature range for which our
treatment is valid; (iii) finally, deviations from the
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TABLE II. Listed values of the characteristic tern-
peratures 8& and 82 correspond to the Bragg planes (200)
of aluminum and (111) of indium, which provide the
dominant umklapp contributions to the resistivity of each
metal.

Dominant
Bragg G I V(G) )" GV'(G)

8D ('K) planes (G) k~ Ez Ez 8,('K) Q('K)

A l 395 (200) 1.77 0.066 0.33 26 104
In 90 (111) 1.54 0.076 0.47 7 47

O, ~ V(G) ~ ~8 2k„-G
Og E~ '

OLI qL)

In our work we shall take Q~ T to be equal to the "ex-
perimental" values of GD tabulated above, which are
found in H,ef. 5 for Al, and in Ref. 1 for In. The tabulated
values are close to those determined from transverse
sound velocities. The values calculated from longitudina'
sound velocities are roughly twice as great.

"See Ref. 9.

T and T power laws, represented by P2 and P4,
are to be expected at temperatures near Q», which
is considerably less than QD~ or 0». For typical
examples see Table II.

The polynomial form of resistivity in the low-
temperature limit is a consequence of the single-
plane-wave approximation. As mentioned in the
Introduction, the effect of admixing a second plane
wave in the vicinity of the Bragg planes is to sup-
press the umklapp contribution to resistivity for
temperatures below the characteristic temperature
0». Only for somewhat higher temperatures does
the polynomial form (with partial cutoffs at 82r) re-
main valid.

To conclude this section we warn that the T'
term S&

' may not be recognizable experimentally.
Identification of S~ ' would require that the poly-
nomial form of S be quite fully developed at tem-
peratures low enough that S~ ' be comparable with
or greater than S~'. In our study of specific cases
we shall find that this requirement is not fulfilled.

III. DISTORTED FERMI SURFACE

In this section we describe an approximate meth-
od for including the essential effect of the pertur-
bation on electronic states induced by a pair of
Bragg planes which intersect the Fermi surface.
To give a brief preview, the result of using two-
plane-wave electronic states is that for energy-
conserving transitions, both the velocity difference
v' —v and the squared matrix elementm~(k', k) go to
zero linearlyas reduced wave vector q goes to zero.
This in turn means that the limiting low-tempera-
ture resistivity is proportional to T'. The T -like
behavior begins at such temperatures that typical
phonon wave vectors exceed the scale of Fermi-
surface distortion, q- krV(G)/E~. So the charac
teristic temperature is roughly OH» - 8» V(G)/E~.

Typical values of 8» are given in Table II.
Before going on, we mention an effect not in-

cluded in our treatment —the increased m„,, (2. 1),
resulting from Fermi-surface distortion. The rea-
son it is not included is that there are comparable
corrections to S, (2. 2), which cannot easily be in-
cluded in our treatment, but which tend to cancel
the re„,increase. Moreover, we estimate that the
final result, with all its approximations, is valid
only to within about a factor of 2. We feel that
the smaller numerical corrections' such as m„,
are therefore unwarranted. One might neverthe-
less argue that since we are calculating an "upper
bound" to resistivity (1.11)we ought to use an up-
per bound to the value of m„,. However, this cal-
culation is intended as an upper bound in. the sense
of (l. 29), i. e. , as the temperature-dependent re-
sistivity of an alloy as opposed to that of a pure
metal.

Before discussing the computation of S, we re-
view the two-plane-wave formalism for an elec-
tronic state in the vicinity of the Bragg plane (G).
We write the wave function

~4

q, (r) = e'" ' "sin8+ e' a- ' ' cos8 . (3.1)

In a basis where g„is written ("
~~), the (truncated)

pseudo-Hamiltonian matrix is

5 0
2m

V(G)

(3. 2)

We diagonalize H by the choice

tan8, =ri+ sgn[V(G)] (q'+ I)'~2,

where

2
1 2

( )(k 6 ——G).

(3. 3a)

(3.3b)

g is a measure of the "distance" of k from the
Bragg plane (G), and will be frequently referred to
in this sense. We write the wave functions corre-
sponding to Eq. (3. 3a) as $„"'(r),with (+) to denote
the upper band and (-) to denote the lower band.
The energies and velocities are

E(k)" =(P"'~ H~|)"')=k k/2m+ V(G)cot8, ,

(3.4)

v(k)"'= ttt"' —.g"' =k.-Gcos 8 =—kv 1 sE(k)+i
mi Bk

(3.5)

IThe second-zone Fermi su."face is given by E»"
=E~, and the first-zone surface by E~ '=E~, as
shown in Fig. 4. The matrix elements m~(k'+, k+)
= (P„"'I i„&VI/,"') are given by

—imr, (k', k) = qV(q)(SS'+ CC')
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the Bragg planes. Our classification is as follows:
We define as normal, one of the several terms in
rr,'4'.

11„=—q V (q) (SS'+CC'), (3.6)

(+)
Ek =EF

(-)
k F

5 G(EF& s M
+ IV(G)l)

FIG. 4. Distorted Fermi surface, with {+) band indexes
indicated.

+ qV(q —G)SC'+ qV(q+ G)S'C

+ q ~ G[V(q+ G)S'C —V(q —G)SC'], (3. 6a)

~l~r(k' k)l'=G'(I -ri)[V(q+G)S C

and we define everything else as umklapp:

11,-=(ll,"& -Il„,ll,"'), n=0, . . . , 3 .
The reason for this ostensibly arbitrary assign-
ment is clear from the asymptotic forms of II for
k and k' far removed from the Bragg planes. [1q I

and lq't, (3.3b), large. ] Referring to Fig. 5 for
the asymptotic values of the angle 8, one can verify
that for k and k' both on the unremapped Fermi sur-
face (a normal process in the sense of Sec. II):

rr -q'V'(q)[I+O(q ')], ll -O(q ') .
For k' on a remapped surface (an umklapp process
in the sense of Sec. II), we have

II, -O(q '),
11„"'-(ll„„),"' [1+O(n ')].

That is, each component of II~ approaches asymp-
totically the value of the corresponding single-
plane-wave (spw) component of II. In particular,
the limiting large-lql forms of II„'', Q~', and II~'
[(3.7a)-(3.7c)] are given by (2. 11a)-(2.11c).

where

—V(q —G)SC'), (3. 6b)
q', q" both in lst B.Z.

S' = sin8(k'), C' = cos8(k'), etc. (3. 6c)

The band indices (+) are carried by the coefficients
S and C; (3.6a) and (3.6b) are otherwise indepen-
dent of the band indices (see Fig. 5).

Treating momentum dependence of the form fac-
tor as in Sec. II, and using (3. 5) and (3. 6), we
write the product II as defined by (2. 4). Because
of implicit q dependence in the mixing coefficients
8 and C, II is no longer strictly a polynomial in q.
So we define as II' the term ex/i jcitly propor-
tional to q", and obtain, for example,

II~I '=y~G V (G)sin (8' —8)(C' —C ), (3.7a, )

Iir'" = 2(q G)G yr(C' —C ) [V (G) sin~(8' —8)

—(C' —C ) GV'(G)V(G)], (3.7b)

k-+ k':
k-+ k":

(k'+ k+)

rn) (k"-, k+)

8 o+

IIr '=q G yrf(q G) [(C' —C~)~G3(V'(G)) sin~(8'-8)

—4(C' —C ) GV'(G)V(G)]+ V (G) sin (8' —8)) .

(3.7c)
In this section we shall distinguish a given con-

tribution to resistivity (or equivalently, a given
term in II) as normal or umklapp, even though a
given scattering process cannot be so distinguished
unless both k and k' are far removed from both of

e-—
2

Asyrntotic values of 8
os Iql~m, for V(G)&Q.

FIG. 5. Examples of umklapp scattering on a distorted
Fermi surface. Asymptotic values (for large g) of the
parameter & are shown. 0 is understood as 8+ on the
second-zone surface, and as 8 on the first-zone surface.
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We shall also require the small-q asymptotic
form of (3.7a). For sufficiently small q, only in-
traband processes can conserve energy [Figs.
2(c) and 2(d)]. It follows from (3.3), therefore,
that ~8=—8' —8-0 as q-0, and that to lowest order
in g8 (3.7a, ) becomes

II„'@-y~G4 V2(G) (2 sin8 cos8)2 (68)

We write ~8 in terms of q by using two identities:
from (3.3a)

(s. 9)

—= 2 sin28 cos28 = —2(7) +1)
d7l

and from (3.sb)
2

( )(q G)

(S. ioa)

(3. 10b)

for both (+) bands. So

E(G) g G 1

2 V(G) G 2(g +1)

where E(G)= 8G2/2—m, and (3.9) is

(~. G)' E'(G)
x. ~x G4 V2(G) [2( 2 1)]5

. (

(3. 11)

As with normal processes [(2.5) and (3. 8)] the
quartic q dependence leads to a T' temperature de-
pendence in S' '. However, the coefficient of T' is
larger in S' ' than in S„,even if the transverse
Debye temperature is used in both. Ignoring the g
dependence in (3. 12) gives

limII,'"/ll, - E'(G)/V'(G) .
q 0

The effect of the q dependence is to restrict the
contribution of the surface integral f dS in the ex-
pression for S„'2', (2. 13), to the regions near the
Bragg planes. The fraction of the surface which
contributes is of order V(G)/E(G), so in fact

limSP'/S„- E(G)/ V(G) .
7 0

(s. is)

The inverse proportionality to V(G) indicates that
the Bragg planes with the smallest band gap may
dominate the very low-temperature behavior. As
a result the temperature regime in which the T'
behavior is realized is determined by the smallest
band gap of the metal (T «smallest 8, ).

It is instructive to compare the low-temperature
asymptote of S~+', (3.13), with its T&e, , or spw
form (2. 15):

3

»mS,'"/(S„„),'"- (3. 14)

The temperature at which the two asymptotic forms
of S,'0' are equal is

T [V(G)/E(G)] Og 0'g

[E(G) is of the same order of magnitude as E~]. So

S,'"-=(eq, )
'
d0

dq (If~„)-'f ""
I(q) . (3. 15)

k~T

Precisely defined, I(q) is the double surface inte-
gral (2. 13) over k and k' subject to (k' —k) = q.
Our scheme is to interpolate between the small-q
asymptotic form of I(q), which we calculate analyt-
ically from (3. 12),

limI(q)- q /V(G),
q 0

(s. i7)

and the large-q form which we take to be the single-
plane-wave function (All )

I„„(q)= ', V'(G)(G/q~)' -q[q+ min(q, q, )]/qD .
(s. is)

The interpolation is shown on Fig. 6, using (3. 18)
as a scale of reference. The step function repre-
sents the onset of interband transitions at the in-
terband threshold wave vector

V(G)
"

G 2 -1/2
q,„,=k~ ~ 1 —

2kp p
(3. 19)

For q& q,„,we allow the small-q form to saturate
at only half the large-q form, assuming the phase
space to be roughly equally divided between intra-
band and interband scattering near the threshold.

The interpolation function I(q) manifests the prop
erty (3. 15). It is clear from (3. 19) that for differ-
ent geometries (G/)'2z), different functions F are
required in (3.15).

On Fig. 7 we have plotted the contributions to
resistivity S~ ' resulting from our approximations
to I. Again the plots are appropriate to the geom-
etry and band gap of the (111)and (200) planes of
aluminum. In Sec. IV we shall apply the results
to Al and In.

as we have said, it is 8& which separates the two
power-law regimes of S~ '.

From the foregoing a general property of S,' ' is
apparent. If we make the Debye approximation and
ignore the cutoffs Q~ and QD, then for a given
species of Bragg planes S~ ' is the product of the
single-plane-wave form and a function E of )'22 T/
V(G) only:

S,"& = (S.,„),'F, (a, T/V(G)) . (s. is)
Since (S„„)~2-V (G)T2 it follows from (3. 15) that
if the low-temperature asymptote is proportional to
T, it must also be proportional to V '(G). It also
follows that the "change-over" temperature Q, is
proportional to V(G).

In order to calculate S~ ' over the entire temper-
ature region T «8» we have used the following
scheme for approximating the surface integrals of
(2. 13). We introduce a temperature-independent
interpolation function I(q) defined by
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FIG. 6. Interpolation between high-
and low-q asymptotes of I(q).

0.5- Al (III) 0.5

.OI .02 .05 O. I
q/qo

IV. APPLICATION TO ALUMINUM AND INDIUM

If a Fermi surface intersects many Bragg
planes, the same method for counting states dis-
cussed in previous sections still applies: For each
initial state k on the Fermi surface, we sum over
final states k' which may lie on the Fermi surface,
or on any of the remapped surfaces; but k' -k is
restricted to the first Brillouin zone. We there-
fore estimate the total umklapp contribution to re-
sistivity by adding together the separate contribu-
tions from each pair of Bragg planes. Our ignor-
ance of the effect of states which require three or
four plane waves for their description is the only
new approximation introduced by this procedure.
Except near points of contact between second- and
third-zone Fermi surfaces, the continuity of veloc-
ity and vanishing small-q transition probability
remain intact, so the resistivity is not altered sig-
nificantly.

One special feature we d0 account for is the ab-
sence of much of the third-zone Fermi surface of
indium, as described in Table III. The third-zone

I.O
Aluminum

constant form factor

C

05
Q)

arms which lie along the edges of the rhombohedral
(200) faces of the zone are almost completely re-
moved by the lattice potential. This precludes in-
terband transitions near the (200) faces, and re-
moves half of the intraband contribution to p~ at
low temperatures. Since the edges of (200) zone
faces comprise two-thirds of the edges of the (111)
faces, the contribution to p~ from (111)planes is

TABLE III. The number of pairs of each species of
the Bragg plane is listed, together with the fractional re-
duction in the intraband and interband contributions from
each pair. There is no reduction in aluminum, and in
indium the reduction results from the near absence of
segments of the third-zone Fermi surface which border
the (200) faces of the Brillouin zone.

Plane

No. of pairs

Weight

Al No. of pairs

(200)

Intraband y
Interband 0

(002)

Intraband 3
Iriterband g

IO 30

FIG. 7. S~~ resulting from a pair of (111)planes, and
from a pair of (200) planes in aluminum. We have plotted
the ratio of S~ with both high-temperature and low-tem-
perature cutoffs, to the same quantity with neither of the
cutoffs.
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also reduced, as shown in the table.
The results of our calculation are shown on Fig.

8, where we have plotted resistivity divided by T~
to accentuate the low-temperature behavior. The
umklapp contribution is broken into its "T " and
"T " components, to show in what temperature re-
gime each is important. As in Fig. 1 the total re-
sistivity is obtained by adding a "normal" contribu-
tion to the umklapp contribution developed here.
The "normal" contribution is given by the Bloch-
Gruneisen formula, and the transverse Debye tem-
perature QDT is used. Since the "T " components
are important only at higher temperatures, we per-
formed an average over phonon polarizations in
evaluating them. The effect is to multiply S~ '

i(2. 20) and (2. 22)j by the factor +3. The strength
of the "T "term is independent of the polarization
directions, but the low-temperature cutoffs below
8» are quite sensitive. In evaluating the low-tem-
perature asymptote we therefore assumed that the
low-frequency modes were purely transverse.
This assumption minimizes the coefficient of the
T' asymptote.

Focusing on aluminum, the following features de-
serve special comment: (i) The T term, repre-
senting largely the momentum dependence of the
form factor V(q), is unimportant below about 20
K. However, it does become important before the

T~ term is fully developed, precluding experimen-
tal isolation of a T component in the total resis-
tivity. (ii) The low-temperature resistivity is not
well represented over any sizable temperature
range by a power law or a polynomial in tempera-
ture. The ultimate low-temperature form T is
achieved only for temperatures below about 3 'K in
aluminum. In the 4-10 K range the behavior is
roughly T, and an approximate T dependence oc-
curs in the 20-40 'K range.

From Fig. 1 we see that the inclusion of umklapp
scattering improves both the qualitative and quanti-
tative agreement with experiment over the agree-
ment obtained using the Bloch-Gruneisen formula
alone, even when the transverse Debye tempera-
ture is used in the Bloch-Gruneisen formula. Re-
call from Sec. I that this theory and all such cal-
culations for polyvalent metals must be compared
with the measured resistivities of dirty metals.
Having completed our calculation, it is appropriate
to repeat its interpretation here.

0
I IO2 4 7 20

T( K)

FIG. 8. p/T2 for aluminum and indium. The separate
umklapp contributions are sho~n: the "T2 term» result-
ing from a constant form factor, and the "T4 term" re-
sulting primarily from the momentum dependence of the
form factor Imore precisely, momentum dependence of
Il, Eq. (2.4}].

A. Interpretation

The predominance of umklapp scattering between
states close to the Bragg planes tends to produce a
highly anisotropic relaxation time. The effect of
impurities is to reduce the degree of anisotropy in
the total scattering time. According to the varia-
tional principle, this will increase the (tempera, —

ture-dependent) resistivity due to electron-phonon
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scattering. Our present calculation, through its
choice of a trial distribution function (l. 12) used in
the resistivity formula (1.11), assumes an isotrop-
ic relaxation time 7', and therefore represents the
"dirty limit" temperature-dependent resistivity.
In a clean metal, the umklapp-induced anisotropy
must be reflected in the trial distribution function.
According to the variational principle, the improved
trial function will reduce the temperature-depen-
dent resistivity.

This interpretation suggests that the measured
resistivities of dirty samples can be understood as
resulting primarily from electron-phonon scatter-
ing, and that it is unnecessary to invoke other
mechanisms, such as perturbation of the electron-
phonon transition amplitudes by impurities. 3'3 The
impurities are necessary only to support an ap-
proximately isotropic relaxation time. The reduc-
tion of temperature-dependent resistivity in clean-
er samples can be understood qualitatively as a
breakdown of the relaxation-time approximation
due to anisotropy. This conclusion is supported by
the observation that the effect is more pronounced
in polyvalent metals than in potassium, ' for ex-
ample, where the umklapp-induced anisotropy is
less. While other mechanisms may be present,
none leading to the large observed effects have yet
been proposed. For example, a breakdown of the
momentum-conservation condition for electron-
phonon scattering due to the presence of impurities
has been shown to lead to a negligible contribution
to the observed deviations from MR.

Before terminating this section we cite the work
of Pytte, ' who uses two-plane-wave electronic
states and experimental phonon dispersion curves
in his calculation of resistivity for aluminum.
Since he omits from his surface integrations the
regions close to the Bragg planes, his calculation
is not accurate below about 20-30 'K. It is inter-
esting to note that his calculated resistivity is pro-
portional to roughly T in the 30 'K regime, and
that it falls between the "dirtiest" and "cleanest"
experimental resistivities plotted on Fig. 1(a).

V. CONCLUSIONS

Despite its many approximations, the present
study of umklapp electron-phonon scattering sug-
gests a possible explanation for observed resis-
tivities of dirty polyvalent metals. The following
conclusions briefly summarize the study. Treat-
ing the momentum dependence of the scattering
form factor to first order has resulted in T2 and
T terms in the resistivity. These umklayy con-
tributions are not extinguished exponentially at low

temperatures as in the alkalis, but they are sup-
pressed (due to Fermi-surface distortion) and their
ultimate low-temperature behavior is T'. Because
of the suppression, the T~ term may not be dis-

cernible, as we have found to be the case in Al and
In, where in the T~,p OD regime the total resis-
tivity appears to be proportional to T3, or per-
haps even T4. Finally, the low-temperature limit,
proportional to T~, far exceeds the normal contri-
bution to resistivity, so the umklapp contribution
dominates at all temperatures.

Our theory does not quantitatively account for
impurity dependence of the temperature-dependent
resistivity, but it dramatizes the highly anisotrop-
ic nature of umklapp scattering, and leads us to
suggest that the deviations from MR are manifes-
tations of the breakdown of the relaxation-time ap-
proximation. The present calculation, with its
simple trial distribution function, is appropriate to
the electron-phonon-limited resistivity of a dirty
metal.
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APPENDIX

We are concerned here with the evaluation of the
quantity S which, from its definition (2. 3) and not-
ing that

(a(o)-'y(pa(o) = (4us T sinh' —,'pea) )-',

can be written

p =1/k~T

8'k~T q
„

tvl I v'I, 4sinh ,'ph(u, „—
(Al)

where

ff, (~, k)= (tn /8' ) (v' —v~ ]m, (f', k)[ . (A2)

We limit ourselves to the case under study in Sec.
II of the text —a spherical Fermi surface with
single-plane-wave electronic states, intersected
by a single pair of Bragg planes (+ 6). Although we
are particularly interested in umklayp processes,
we first evaluate the more familiar contribution
from normal processes.

For normal processes, the product II is given by

fly, = q V (q) and IIr =0 (q= ~k' —k~ ) . (AS)

Since the integrand in (Al) depends only on the
magnitude of momentum transfer )k' —k), we write
one of the surface integrals, say S', as

fds' 2~ f ' q-dq.

The limits of q integration are independent of k, so
the S integration trivially contributes the Fermi-
surface area, and the double surface integral can
be written

ff dSdS'-Bil g / qdq, (A4)
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to display the phase space for normal scattering
as written in Table I of the text. The normal
contribution to $ is therefore

hka T„qD 4 sinh ph(o~

Putting V(q) equal to V(0) results in the Bloch-

Qriineisen formula (2. 6).
Turning to umklapp processes, we discuss first

the manipulation of the surface integrals. For a
given k on the Fermi surface, we permit k' to
range over the remapped surface, as shown on
Fig. 2, but constrain the reduced momentum trans-
fer q to be less than qo. Referring to Fig. 9(a)
we rewrite the double surface integral:

dS dS' = k~ sing df dp sing' dg' dp', (A6)
q =k-
cosg= k.G

I A]
cosg= k qc

where the angles, as shown in the figure, are de-
fined by

cosf =—k G,

'G cosP' =- k' ~ qp, qp=—k —0 .
We convert the f and g' integrations to integrals
over the magnitudes of q and qp, which we denote
by q and q„respectively. For fixed k (fixed g
and Q) the expression

q = k + qp
—2k qpcos)

leads to

(q/qc) dq= k~ sing'dg' .
Next, the expression for qp,

qp = k'+ G' —2kG cosg,

lea.ds to

qpdqp= k~G sin& Q .

(A6)

(AV)

Fina], ]y, from cylindrical symmetry the Q integra-
tion trivially contributes 2z, so from (A5)-(AV)':

dS dS' = 2v(ks /G) dqo q dq dQ (Aa}

q varies from k~ —qc (the shortest distance from k
to the "remapped surface") to qo, and qs varies
from G —k~ to k~+ qD. Since q and qp vary between
these limits at each Bragg plane, we multiply by
two and

cosf= q'qc
n

cosx = G ~ qo

i)qo

f f d Sd'S=( 4szk/G) f dqc f qdq f dQ'.

(A9)

To simplify the expression we change variables,
q, =p+k„ to get

q 5 = cosXcosf+cos$' sin){sing

{b)

FIG. 9. Angular variables for surface integrations.

f Jdsds'=(4&k,'/G) f D
dp f nqdqf

(A10)
We can derive the form of the umklapp scattering
phase space (Table 1) by assuming the integrand is
independent of p and Q': The angular integration
gives 2&, and the p integration is done by parts to
yield

f f'ds ds'= (6v'k~/G) f q'dq[1+ min(l, q, /q)],

qs -=2k~ —G. (A11)
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The cutoff at 2k~ —6 represents the partial cutoff
of umklapp scattering phase space discussed in the
text.

The integrand in (Al) does, of course, depend
on p and p', through the factor ll(k', k). To make
the dependence explicit, we note that II can be
written as a sum of terms proportional to q" (j 6)
(where v and m are integers), and we expand

(q G) using the addition theorem,

(q G) = cosy cosset + cosP' sing sing, (A12)

where the angles [shown on Fig. 9(b)] are defined
by

tegration, which therefore [(A12)-(A14)] leaves a
polynomial in p /q . The p integration is done by
parts as in (All) to leave a single integration over
wave vector for resistivity. As an example we
evaluate the double surface integral of (q G)~ as
follows: From (A12) and (A14) we find

(1/2m) f dy' (q ~ G) = cos y p /q

+-,' sin'y (1 —p'/q'),
(A15)

and integrating by parts over p we have, for exam-
ple,

cosy = qo ' G and cosg = qo ' (Als) f'Ddp f qdq(p'/q')=-, 'q', f' dq/q
To first order in the small quantity q/k~, the
angles are given by

cosy = G/2k+ and cosp =p/q . (A14)

With this information we discuss the two cases.
(i) Even Power of j 6. Only even powers of

cosQ' in the expansion of (q 6)" survive the Q' in-

+-'. (f" +f")q'dq.
(A16)

With (A14)—(A16) we write out the surface integrals
of S~ ' for the case in which phonon polarization
vectors are purely transverse or longitudinal:

f f dSdS'[1 —(q G) ] (2sinh —,'Phw)

= (Sm k~/G) [—', ( f +f )q dq+(1 ——', sin y)q2 f qdq ——,'(cos y ——,'sin y) q2 f dq/q] (2sinh —,'PS'~)

= (Sm k~/G)s f q
—dq(2sinh —,ph~) Pz(82/T, Ov/T) .

0
(A17)

TABLE IV. Dominant terms in II'" and S+, divided by
[G V~ (G)]2

G'[V(G)/G V'(G) t'
qG3V(G)/G V'(G)

q2G2

q3G
q4

g(n)

~ [V(G)/G V'(G) ]'(&/SDT)'
V(G)/G V'(G) (T/Q&D T)

(&/SD T)
(y/(M}D T)
(r/eD T)'

One can see that the cutoff function P~ is more com-
plicated than in the text, where polarization direc-
tions were averaged over. The low-temperature
value of. S~ ' remains unchanged, however.

The expression (A17) is proportional to Ts at
low-temperatures T «Q~, so from (Al) S~+' is pro-
portional to T~. In general, an even yower
(q 6)@ in ll leads to a T+' term in S (umklapp)
it low temperatures.

(ii) Odd Powers of j 6. Each term in the ex-
pansion of an odd power of j 6 must from (A12)
be odd in either cosQ' or cosg. The terms which
are odd in cosQ' give vanishing angular integrals.
The terms which are odd in cosg are also odd in p

to lowest nonvanishing order in q/k~ (Al.4), and
therefore contribute to (A10) only for values of p
greater than the threshold 24~ —G. The resulting
temperature dependence falls exponentially for
temperatures less thanOz, e.g. , exp(-82/T).
The correction to cosg, of order q/kz, survives
the p integration, but the resulting resistivity is
suppressed by roughly a factor / T8oDver what one
would otherwise expect. As a result, an odd
power (j 6)@' ' in ll leads to a T2"4 term in S at
low temperatures. In particular S"' is propor-
tional to T .

For the sake of comparison these facts are col-
lected in Table IV. We have written the leading
term in each of the umklapp components of II and

S, ignoring aQ such details as phonon polarization
effects and cutoffs O~. In the low-temperature re-
gime of interest in this payer, we would ordinarily
retain only the lowest power of (T/eo) in the cal-
culations, S' '. However, S' ' must be kept as
well in view of the differing prefactors, V(G) being
considerably smaller than GV'(G), which is of or-
der E~. S' ' is ignored because of the extra factor
of (T/Qv) discussed above, without which it would

still be less than the sum S' '+ S' '.
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1'he nature of wave functions in a one-dimensional disordered system is examined in terms
of a model system in which the central portion of a cell is represented by the same potential
in all cells a nd only the lengths of the flat arms vary randomly from cell to cell. It has been shown
previously that although most wave functions are localized, states corresponding to the reso-
nances states of the central potential have extended wave functions. Here we show that states
close to these resonances also have fairly extended wave functions throughout the physical
sample. Numerical calculations on a model system formed from symmetric square wells in-
dicate that even in a highly disordered system there are wide energy ranges close to the res-
onances which have fairly extended wave functions. Wave functions having energies in the
allowed bands of the corresponding periodic lattice are also weakly localized, but their degree
of localization is raised as a, whole with an increase in disorder, whereas an increase in dis-
order only narrows the energy range of these fairly extended states.

I. INTRODUCTION

Extensive reviews on the electronic properties
of one-dimensional disordered systems are avail-
able. ' Owing to the complexity of the solutions
and their interpretation, and because of the recent
indications of the experimentally measurable phys-
ical systems, ' '" the one-dimensional disordered
systems are still being actively studied. ' The
two key questions studied in the electronic proper-
ties of such systems are (a) the existence of energy
gape and the density of states, 'k a'4' 44 and (b) the

~(x) &ikt: g(x) &
$kx-

g,«, A'(x) e'~+ B'(--x) e '~,

(".)™(":)
where

(1)

(2)

localization of electronic wave functions. 6

We studied the problems using the phase-trans-
fer method. ' ' ~' A wave function connecting
through a cell of a potential shown in Fig. 1 is
represented by a phase-transfer matrix M:


