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A procedure for constructing very localized d basis states for generalized pseudopotential
calculations is suggested and applied to the alkaline-earth metals calcium, strontium, and
barium. Unlike the d states of the free ion or atom, these localized d states do not significant-

ly overlap their neighbors in the metal.

They also appear to lead to more accurate estimates

of the s-d hybridization. Form factors and energy—wave-number characteristics are calcu-
lated and used to study the effects of hybridization on representative physical properties of the
alkaline earths. In general, hybridization is found to make important contributions to the
liquid-metal resistivity and the low-temperature-phase stability, but not to the binding energy
nor to the phonon frequencies. A preliminary calculation also suggests that the fcc-bec phase
transitions in calcium and strontium can be understood in terms of the generalized pseudopo-

tential theory.

1. INTRODUCTION

The generalization of pseudopotential theory to
the d-band metals'™ relies on a power-series ex-
pansion of the electron density and the total energy
in each of two small quantities, The first of these
quantities is a pseudopotential w,, which is exactly
analogous to the pseudopotential entering the sim-
ple-metal theory. The second is a hydridization
potential A; which embodies the fact that ionic or
atomic d states are not good eigenstates of the
crystal Hamiltonian . Formally, if one defines
a set of localized d states |, by the Schrdinger
equation

H'|op)=Ei|@y, (1)

then the hybridization potential A can be expressed
in the form

A=5V- (<p,,lGV|<p,) @)
where
8V=H'-H, (3)

In principle, one is free to choose H* at will,
so long as the | ¢, remain orthogonal to the core
states of the metal |¢,) (which are assumed to be
eigenfunctions of H). In a given calculation, if
one were to keep terms of all orders in w; and A,
then the result would be independent of the choice
of H', Of course, one always wishes to terminate
these expansions at a finite order (e.g., first
order in A? and w, for the electron density and
second order in these quantities for the total en-
ergy), and thus the result one obtains will generally
reflect the choice of H,

In practice, the most obvious procedure is to
take H' as the Hamiltonian of the free ion or atom,
as we did recently with the noble metals,*® Then
6V is, for example, the difference in potential
seen by an electron in a free ion and an electron
in the vicinity of an ion site in the metal, and the
hybridization potential A can be expected to be
small, at least inside the core region of the ion.
Free-ion d states, however, may extend well out-
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side the core, and hence this 67 may not minimize
the strength of the hybridization potential, as
would be expected for the optimum choice of H?,
Moreover, the tails of the ionic d states centered
on neighboring ion sites in the metal overlap, and
this overlap is not negligible. This not only com-
plicates the theory but makes its practical applica-
tion uncertain because the evaluation of overlap
matrix elements like (¢, | Al @,) is extremely dif-
ficult at best.

The above problems become more serious as
one moves from the noble metals to the left in
the Periodic Table, because the effective spatial
extent of the ionic d state is increased. In the
alkaline-earth metals, in fact, the d stc‘es in the
free ion are unoccupied and extend far beyond the
radius of the unit cell of the metal. In this paper
we suggest a simple calculational procedure for
constructing a more useful set of d states for
pseudopotential calculations on such metals. In
this procedure, we localize (r| ¢, within the unit
cell of the metal by adding to the free-ion Hamil-
tonian a suitable attractive potential, The d
states on a given ion site are easily localized to
the degree that overlap with their neighbors be-
comes negligible. At the same time, the effective
strength of the hybridization is decreased and be-
comes relatively insensitive to further changes in
HE,

Highly localized d basis states have been used
previously in modified-orthogonalization-plane-
wave (OPW) methods® to speed the convergence of
the d-like states in the calculation of the band
structure, Although the point of view in such ap-
proaches is quite similar to ours, we are not con-
cerned here with a direct calculation of the energy
eigenvalue spectrum itself. For this reason, the
details of our method are somewhat different than
those of the modified-OPW methods.

In Sec. II we consider the construction of local-
ized d states for the alkaline-earth metals calci-
um, strontium, and barium. We then proceed to
demonstrate the explicit advantages of these basis
states in generlized pseudopotential calculations.
The alkaline earths are prototypes of metals with
empty d bands lying above the Fermi level and are
especially interesting because they have historical-
ly been treated as simple metals in pseudopotential
calculations. "® After reviewing the relevant
formalism in Sec. III, we shall study the relation-
ship of the hybridization to | ¢, in Sec. IV and the
effect of the hybridization on the properties of the
alkaline-earth metals in Sec. V.

il. LOCALIZATION OF (¢

We begin by considering free-ion-like calcula-
tions with a Hamiltonian

[£=2)

Hi=T+1)’°n, (4)

where T is the kinetic-energy operator and v!°® is
a spherically symmetric potential of the form

vion(y)=vCoul(,',)+vex(1,)+vloc(,r)’ (5)

The quantity v°°"!(») represents the Coulomb po-
tential arising from the nucleus and the electron
density of filled core states. The net charge on
the ion is + Ze, where Z is the appropriate metallic
valence. (For the alkaline-earth metals, Z=2.)

For v**(r) we use a free-electron exchange po-
tential of the form®

)= a{[ (Z @loted £ )"

3 z\/3 ,
(e) | ©
where Qg is the appropriate atomic volume of the
metal and the sum runs over the filled core states.
This is a suitable form for the valence-core ex-

change potential in the metal (although this form
is slightly different from the one we used pre-

viously®). The first term on the right-hand side

of Eq. (6) gives (to zero order) the total exchange
potential near an ion in the metal, while the second
term subtracts the self-exchange of the valence
electrons, which is included separately.

The last term on the right-hand side of Eq. (5)
represents the arbitrary attractive potential which
we wish to use to better localize the unoccupied d
state about the origin. In our calculations, we
have considered only two closely related forms

for v'°%(y), The first of these is a square-well
potential
loc _J)= ast/st y 7 <st
v (r)—{ 0, ¥R )

where ag, and R, are constants. (The use of this
potential will hereafter be referred to as method
1.) The general idea here is to choose Ry, ap-
proximately equal to the Wigner—Seitz radius Ryg
in the metal, (The actual values of Ry, and Ry
used in our calculations are given in Table I.)
Then the core wave functions will be modified only
slightly by »'°¢, while, for sufficiently large a,,
the d wave function will be well localized within
the Wigner—-Seitz cell. In practice, this method

TABLE I. Parameters for the alkaline-earth metals
used in the present calculations, in a.u.

Metal z QO EF kF Rws RN
Ca 2 290.0 0.3468 0.5889 4.106 3.725
Sr 2 373.6 0,2929 0.5412 4.468 4.019
Ba 2 424.,3 0.2690 0.5187 4,662 4.124
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is not entirely satisfactory because the perturba-
tion of the outer core states (e.g., the 3s and 3p
states in calcium) turns out not to be negligible in
general. This will be demonstrated quantitatively
in Sec. IV. A preferable approach (hereafter re-
ferred to as method 2) is to let v!°® operate only
on the unoccupied d state. This can be accom-
plished mathematically by multiplying v'°° by a
projection operator

PZ“ Z) |Y2m><Y2m‘ (8)
m==2

where |Y,,) is the usual /=2 spherical harmonic,
The operator P, has the effect of operating »!°°
only on states of d symmetry. The core states of
d symmetry, i.e., the 3d state in strontium and
the 3d and 4d states in barium, are sufficiently
localized so that ¢ has no important effect on
them and in practice it is unnecessary to include
v'°® in calculating these states.

For the Hamiltonian given by Eq. (4), the core
and d wave functions, (r|l¢,) and (¥|¢,), have the
familiar form

[Pnl (T)/V]Y,m(i'.) ’

where n, I, and m are the usual quantum numbers
and P, (r) satisfies the radial Schrédinger equation

2
) +(vlo..(y)+&lr;ﬂ - E;',)p",(r)=0 :

9)
In all of our calculations we have used a suitably
modified form of the Herman-Skillman computer
program?® to solve Eq. (9) self-consistently for
each v!°® of interest. Specifically, we have cal-
culated the appropriate P,, and E!, for calcium,
strontium, and barium with both methods 1 and 2
for various values of ag,. Figure 1 illustrates
how the 3d radial wave function (P,,) in calcium is
localized as a function of ag, through use of
method 2. Note that Py,(») is changed rather sig-
nificantly near Ryg and beyond by a small »'°¢, but
that the wave function becomes relatively insensi-
tive to the depth of the square well for ag, >5.
The same qualitative picture emerges in method
1, although the localization is slightly less rapid
as a function of ag,. The localization of {¥|¢,)
accomplished with ag, 25 is sufficient to make d-
state overlap negligible, as we shall show in Sec.
V.

III. PSEUDOPOTENTIAL FORMALISM

The wave functions and term values generated
from the solution of Eq. (9) can be used directly
in the generalized pseudopotential formalism to
make calculations on the alkaline-earth metals.
Before discussing such calculations, we shall
briefly review the basic theory'™ as it applies to

metals with empty d bands above the Fermi level.
The two principal theoretical quantities of in-

terest are the form factor and the total energy.

The form factor is given by the matrix element

AL
E,- 12
(10)

evaluated on the free-electron Fermi Sphere (i.e.
IE+q1= IKI=kp), where FIE)=05'2'**F and
E+qlwolK)=®+q|v|E)
+ 2 (k-

a=cyd

+d2<ﬁ+alA|<pd><¢alk’>+c.c.>. (11)

(E+a|w|ﬁ)= (E+a|wolﬁ)

<k+q|(pa><(pa |k>

In Eq. (11) we have used the simplified Austin
form! of the pseudopotential rather than the
Cohen-Heine form!? used previously. *® The
Fourier transform of the self-consistent potential
v may be written

v,= €+q|v|E)

_ 8m ) _{ core core ﬁ ex
_qze*(q)<—ﬂo+("“ ") gy v

+[1- G(q)](n3“+nf)) , (12)
where n{°™, v, and n" are, respectively, the
Fourier transforms of the core-electron density,
the valence-core exchange potential [Eq. (6)], and
the orthogonalization hole density,

n(r) =~ [220/@7)°] [, d*[(F|P|EXE|T)

+c.c.)- & PIRXE|P|T)], (13)

where P=Y4.0,41 9a){¢]. (Note that the orthog-
onalization hole density includes a sum over d
states as well as core states.) The quantity nZ is
given by

1.0, T T T T T T

CALCIUM

E osf
o
0_l\')
Ol | 1
(0] 2

r(a.u.)
FIG. 1. 3d radial wave function of calcium for five
different values of the square-well depth.
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R 4 3 [(k+qlvv|k> Vg (<E|Qodx‘ﬂd'e-ia.?l([’d)(‘f’dlA|E>"&+a|¢d><¢d|AlE>
= k
Koo [Tt o
<klAl<Pd)<<ﬂ.,|e"“ T109(@ql AIK) ] (14)
2(E,- )

The quantities G(g) and e*(¢g) are the usual ex-
change-correlation function for the electron gas
and the dielectric function as modified by G(g),

. respectively. In all of our calculations, we have
used the interpolation formula for G(g) suggested
by Singwi ef al., as we did recently® with the
noble metals,

The zero of energy in terms like (% -E,) is
chosen at the bottom of the conduction band, so
that (0lw10)=0, where |0) equals |K) at K=0.
Since (OlAlpn={0l¢, =0, Eqs. (10) and (11) lead
one to the following identity for the expectation
value of H between core states:

Ec=<¢clH|¢c>

- Yot W= E )0l @)@ 10)
=—<(UO_Ec)+ 1—020'<0|§0c'><¢’c'|0> ) ’

(15):

where v, equals v, at ¢=0. In Eq. (11) one needs
E_ and hence v, - E, only to lowest order. The
latter quantity is easily evaluated to zero order:

I

18 Z 4m
v B=- 22 AT 5 ol
c

+oF—Ei v (o,|6V]0,), (16)

where E! is the appropriate ionic term value [i.e.,
E! in Eq. (9)] and v§ equals v at ¢=0. The cal-
culation of 6V is discussed below. Equations (15)
and (16) also hold for the position of the d reso-
nance,

Ed=<¢le‘¢d (17)

with E,, Ei, and |¢,) replaced by E,, E}, and
oy, respectively.

The total energy (per ion) E,.;,; can be written
as a sum of four contributions:

Etotal=E1e+Ebs+Ees+Eol' (18)

The formula for the free-electron energy E,, is
complicated but this quantity is, nevertheless,
independent of the ion configuration to second
order:

4 1 o (s}
Ete= %Zk?v‘+Exc+Z*<—§'£‘; E <(pc‘1’2 “Pc>+03x>-gjd3"’v h('r)n h(,,.)
c

el

a=¢,d

2“"5 [( Y T <k1<pa><<palk>+E(<klAl<pd><¢dlk>+c c. )(1+<1?IPIE>)
k<t

KlAlg){(p,lAIK) o (ElwglK) EIAl@ )@l AIK)
_%‘, (P <1+<1'<’!Plk>+ E,,-Okz _Z;; FRAC )] ,  (19)

E,-

where Z * is the usual effective valence,

z*=2-(1/Q) [ drur), (20)
and
- (0al (Z* = ZW?/RYs - v°"() 1 94)
To®)=F*+ 1+&IPIK)

-ELi(paloV]oa) . (21)

The quantity E,, represents various exchange-
correlation terms® for the valence electrons, and
in all calculations we have approximated E,. by
the standard formula!* for a uniform electron gas
of density Z/8,.

The remaining three terms in E,,,, depend ex-
plicitly on the positions of the ions. The band-
structure energy E,, can be written

(By-R2 P

[
=2'|s@|*F), (22)

where S(@) is the usual structure factor N13,e ¥
(with F, denoting the position of the ith ion) and
where the prime means that the g =0 term is to

be omitted from the sum. The energy—wave-
number characteristic F(q) takes the familiar
simple-metal form

20, s, |E+qlwlk)|?
F(‘I)—(z,n)a k<dek k2_ lk‘+q=|2

4"9"{[1 G(@)]|m|? + G(g)| m |2},

(23)
where n3° is the Fourier transform of the screen-
ing electron density and is given by Eq. (14) minus
the single term involving v,. The quantity E, is
the usual electrostatic or Ewald energy per ion of
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N point ions of charge Z *e immersed in a uniform

compensating background, Last, E;, is the over-
lap energy which accompanies the overlapping
basis states |¢,). This energy can be written

- 2

1 - -
Eolzz—ﬁ g},vol(ri—r/)y (24)

where the sums of ¢ and j are over all ion positions
r;and r; (r; =1, excluded) and

V(T — 1) = (MZLZ;TJ dak{ 2 [@’a‘ @) ((Ed— E X0 [RYE| 00— (op |E)E| Al @) +c. c. )+<%' |AIR)EI Al gy )
k<kF ;

dyd’

E, - k*

+ (‘Pdl A | de') («Dd' EXE' ¢d> -

In Eq. (25), {(Fl¢, is centered on ion site i while
€@y is centered on ion site j.

IV. HYBRIDIZATION AND g}

The localization of (¥|,) by the methods dis-
cussed in Sec. II can make the matrix elements
{@sl ©4) and {@,| Al @4, and hence the overlap
energy, vanishingly small. This localization, of
course, will also affect the hybridization terms in
E+qlwlK), E,, and F(g) through the position of
the resonance E; and the hybridization matrix ele-
ment (K|Alg,). We now consider how v'°° will af-
fect these latter two quantities.

To evaluate the quantities E; and (K| A|¢,) one
needs only to compute the potential 6V to zero
order. In our calculations we have taken

8V(r)=0v'%(r)+ Zr®/R3+ const. (26)

The second term on the right-hand side of Eq.
(26) is (the negative of) the Coulomb potential
arising from a uniform electron gas of density
Z/§%. The constant term in Eq. (26) includes the

T T 1
_ 0.3 _— i
> /

x / Ba
- / Sr
w o2 // F _

b
- /
% / _ Ca
T ol -/ // -~
o
o) 1 I |
0 10 20
Asw

FIG. 2. Change in the position of the d resonance as
a function of square-well depth for calcium, strontium,
and barium. The dashed lines refer to method 1 and the
solid lines to method 2, as explained in the text,

(wdlll?><l'€:flquod>+c.c. _(%lell?><1'<'lAI¢d>)+C.c.]} . @)

(Izd_ sz

exchange-correlation potential associated with the
uniform electron gas and, as an approximation,
the potential due to the neighboring ions in the
metal., In Egs. (16) and (21) it is appropriate to
set this constant equal to zero. The constant also
makes no contribution to the hybridization poten-
tial A, as is obvious from Eq. (2).

From Eqs. (15)-(17), it is clear that with
localization method 2, one may write

Ed=Eg—<¢a|5V|¢a>+C, 27)

where C is a constant independent of »'°°, In Fig,.
2 we have plotted the change in E, as a function of
Qg for calcium, strontium, and barium. In each
case note that E; moves upward in energy and ap-
proaches a limiting value as ag,— . Figure 2
also shows the corresponding results we obtained
with method 1. In method 1, C is no longer a
constant but increases as a function of ag,. The
error introduced into E, by method 1 can clearly
be a significant fraction of total change in E; due
to '°¢, For this reason method 2 is preferred,
The remainder of the calculations described in
Secs. IV and V of this paper were performed with
this method.

Although there have been a number of band-
structure calculations done on the alkaline-earth
metals, especially calcium, the position of the d
band does not seem to be very well established in
any of these metals, Nevertheless, it is interest-
ing to compare our values of E; with the informa-
tion available in the literature about the mean
position of the d band for each of the alkaline
earths. Table II lists the values of both E; and
E,— E we have obtained through use of Eq. (26)
together with estimates of these quantities we have
made from band-structure calculations. Note that
for each metal all five of our values of E; lie be-
tween the extremes of the band-structure results,
For o, 25 the same is true of our calculated
E,- Ep.

Also listed in Table II are the corresponding
values we have calculated for the half-width of
the d resonance,

2 Wy=Qok,A%(R,), (28)
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TABLE II. The position and half-width of the d resonance for the alkaline-earth metals, in Ry.
Estimates from Present work with ag, =
Metal band calculations 0.0 1.0 5.0 10.0 20.0
Ey(E4—EF)

Ca >0.90 (>0,57)* 0.520 0.569 0.617 0.636 0.653
0.47 (0.19)" (0.173) (0.222) (0.270) (0.290) (0.306)
0.56, 0.60°
0.65 (0.34)¢

Sr >0.82 (>0.53)* 0.452 0.540 0.623 0.655 0.683
0.45 (0.20)° (0.159) (0.247) (0.330) (0.362) (0.390)
0.56°

Ba >0,76 (>0.49)* 0.350 0.436 0.531 0.571 0.606
0.34 (0.18)° (0.081) (0.167) (0.262) (0. 302) (0.336)
0.63¢

_Wd

Ca e 0.086 0.106 0.125 0.135 0.143

Sr v 0.088 0.141 0,200 0.225 0.249

Ba . 0.143 0.168 0.236 .0.271 0,306

*B. Vasvari, A. O. E. Animalu, and V. Heine, Phys. “S. Chatterjee and D. K. Chakraborti, J. Phys. F 1,

Rev. 154, 535 (1967); B. Vasvari, Rev. Mod. Phys. 40,
776 (1968). The values of E; are the (I'y5r —I'y) energy
differences.

PReference 21.

where E,=#2 and

<k.d| A] Q) == 4T, (Ed)A(kd) . (29)

Of more direct interest, however, is the behavior
of &lAl@,) for |K|<kp, since the form factor and
the total energy for the alkaline earths depend only
on the hybridization within the Fermi sea, Figure
3 illustrates the effect of »'°° on A(k) for calcium.
Note that for 2< kg, |1A(R)| decreases as ag, in-
creases but becomes insensitive to »'°° for ag, >5.
Also note that the first maximum in | A(k)| tends
to occur near k=%, for ag,25.

0.05 T T T
CALCIUM
=0
0.04f L %sw o
—_— =5.0
- SN T =10.0
L —_— =200 |
& 003 ‘ 0.0
= I T
5 0.02 -~ A \\\\.\\ -
< - / \ ‘Q\
/ // N
// \
0.0l //// o]
(0] = 1 L 1
0] 0.5 1.0 1.5 20
k/7k

FIG. 3. Hybridization matrix element A() =— (k| Al @)/
[47Y,,,(K)] of calcium for five different values of the
square-well depth. The arrows indicate the appropriate
values of ky =E}/2,

638 (1971).
43, L. Altmann, A. R. Harford, and R. S. Blake, J.
Phys. F 1, 791 (1971).

V. APPLICATIONS \

We now consider the question of how hybridiza-
tion and d-state overlap affect the form factors
and the total energy, and, hence, the electronic
and atomic properties of the alkaline-earth metals.
In order to do this systematically, we have defined
five separate models for the hybridization and
overlap. For future reference these models are
summarized in Table III, Model A corresponds
to the simple-metal limit in which (¢1¢,)=0. Model
B represents the opposite extreme in which we
take (F | ¢, as the unlocalized ionic d state defined
in Sec. II. In the remaining models, C, D, and
E, the d state has been localized via »!°%(r) with
a5, =1.0, 5.0, and 10. 0, respectively. In gen-
eral, the quantities considered below converge
more rapidly as a function ag, than does either
Ejor (KlAlg,). For this reason, we have not de-
fined models for a4, >10.0.

TABLE III. Summary of the five models defined in the
text.
Hybridization
Model overlap Olgw Comments
A No see Simple-metal limit
B Yes 0.0 Ionic d state
C Yes 1.0 see
D Yes 5.0 s
E Yes 10.0 v
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0 1.0 2.0
q/Kkg

FIG. 4. Form factor of calcium for models A—E.

A. Form Factors and Electronic Properties

The form factor (K+qlw|K) is one of the prin-
cipal ingredients needed in the calculation of the
electronic properties of a metal. Figure 4 shows
the form factors we have calculated for calcium
with models A-E. Note that in each case
K +qlwIK) exhibits a maximum for g <2k, The
inclusion of hybridization increases the strength
of this maximum and moves it toward ¢=0 in
such a way that (K+qlw|K) takes on a relatively
large negative value at g =2k;. The form factors
for strontium and barium exhibit the same qualita-
tive features. Figure 5 shows the form factors
for all three metals calculated with model D, while
Table IV gives the values of &+qlw|K) at g=2ky

TABLE IV. The form factor (k+§lwlk) at ¢=2kp
for the alkaline-earth metals, in Ry.

Model
Metal HAA-P HAA-IP A B C D E

Ca +0.007 —0.002 +0.010 —0.129 —0.060 —0.036 —0.032
Sr —0.004 —0.002 —0.185 —0.067 —0.038 —0.035
Ba —0.032 —0.032 —0.012 —0.509 —0.145 —0.073 —0.064

aReference 16.
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TABLE V. Resistivity of the liquid metal, in uQ cm,
calculated with various form factors and the Ashcroft—
Lekner structure factor (Ref. 18).

Model
Metal Experiment* HAA-I° ZEC* A B c D E
Ca 33.0 15.5 16.4 11.9 190 40.5 17.5 15.2
Sr 84.8 7.2 7.2 592 71,5 24.5 20.8
Ba 306 15.4 12.2 8.6 5810 444 110  84.0

2J, B. Van Zytveld, J. E. Enderby, and E. W. Col-
lings, J. Phys. F 2, 115 (1972). The theoretical values
(ZEC) were computed at liquid densities by the Heine—
Abarenkov model-potential method (Ref. 15).

bForm factors from Ref. 16; resistivity values quoted
from Ref. 18.

for each of the five models. For comparison cor-
responding values of the Heine— Abarenkov form
factors'® calculated by Animalu’® are also listed
in Table IV, Note that there is rough agreement
between these latter values and our results for
model A,

We have made a simple application of the form
factors discussed above to the calculation of the
resistivity of the liquid metal using the well-known
Ziman formula.!” This calculation involves an
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FIG. 5. Form factors of calcium, strontium, and barium

for model D.
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integral of the intensity function (structure factor
squared) times the form factor squared over the
free-electron Fermi surface. Unfortunately, there
is no experimental information on the structure
factors of calcium, strontium, or barium. In lieu
of such information, we have used the theoretical
hard-sphere model®® for the structure factor with
an assumed packing:density of 0.45. The latter
structure factor shows good agreement with experi-
ment in the region of interest (¢ <2%) for most
simple metals,'®* in particular potassium® to

the left of, and magnesium®® above, calcium in the
Periodic Table,

The resistivity values we have calculated are
listed in Table V together with the experimentally
measured values and other theoretical results
obtained with simple-metal form factors and the
Ashcroft— Lekner structure factor. !* Because of
the uncertainty in the structuré factor (and also
the fact that our calculations were performed at
solid rather than liquid densities), little quantita-
tive significance can be attached to the theoretical
results. Nevertheless, several interesting quali-
tative features can be seen from Table V. Note
first that the simple-metal form factors consistent-
ly lead to resistivity values much smaller than the
experimental ones, especially for strontium and
barium. The inclusion of hybridization clearly

TABLE VI. Binding energy for the alkaline-earth
metals, in Ry. The values in parentheses are the ex-
perimental cohesive energies.

Model
Metal  Experiment?® A B C D E

Ca —1.457 (0.134) —1,361 —1,270 —1,347 —1.373 —1,378
Sr —1.355(0.124) ~—-1.206 —0.528 —1.093 —1.188 —1.200
Ba —1.256 (0.137) —0.888 +1.472 —0.679 —0.857 —0.878

2The experimental binding energy is equal in magnitude
to the cohesive energy plus the first and second ionization
energies of the free atom.
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TABLE VII. Band-structure energy (top number) and
the overlap energy (bottom number) for the alkaline-
earth metals, in Ry. The values listed are for the fcc
structure except where noted.

Model
Metal A B c D E
Ca -0.0159 -0.0198 —0.0134 —0.0146 —0.0157
0.0 -0.0817 —0.0077 —0.0005 =~0,0001
Sr -0.0164 —0.0273 -0.0120 —0.0132 —0.0138
0.0 —0.2569 —0.0116 —0.0005 =—0.0000
Ba —0.0226 -0.0065 —0.0311 —0.0266 —0.0271
0.0 —0.8847 -0.0341 -0,0009 —0.0000
Ba (bcce) —-0.0222 +0,2232 -0,0124 —0.0216 —0,0233
0.0 -0.8939 —0.0342 —0.0010 —0.0000

allows for substantially larger values of the re-
sistivity, and for each metal theory and experi-
ment can be made to agree with a value of ag, be-
tween 0 and 5. Finally, note that in models B-F
hybridization has ordered the resistivities such
that calcium always has the smallest value and
barium the largest in agreement with experiment.

B. Binding Energy

The binding energy per ion of the valence elec-
trons in the metal is just Ey,;,; as defined by Eq.
(18). We have evaluated E,,, for the alkaline
earths in their observed lattice structures (see
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Table VIII) for models A-E. These results to-
gether with the experimentally determined binding
energies are listed in Table VI, Note that model
B gives a rather poor result for strontium and an
unreasonable result for barium. This is a conse-
quence of the large values of (E;— E)"! which ac-
company model B for these metals (see Table II).
Also note that agreement with experiment improves
for each metal as ag, is increased. Last, it can
be seen from Table VI that the difference in energy
between E,.,, for model A and that for model E is
much less than the cohesive energy in each case.
This suggests that hybridization plays no impor-
tant role in the cohesion of the alkaline-earth
metals.

Equally as interesting are the values of the four
components of E;u,, in our five models, The free-
electron energy and the electrostatic energy have
the largest magnitudes, and these quantities alone
determine the first two significant figures in
Eiota1, €xcept in model B in which anomalously
large values of the overlap energy occur. The
electrostatic energy depends only on Z * and the
geometrical arrangement of the ions and is deter-
mined rather precisely. Our evaluation of E,,,
on the other hand, is quite approximate due to the
relatively crude formula we use for the exchange
and correlation energy E,,. The correct exchange
and correlation energy probably lies somewhere
between the uniform electron-gas value for an
electron density Z/§, and that for an electron
density Z*/§,. This difference is comparable to
the cohesive energy itself and is sufficient to ex-
plain the discrepancies between theory and experi-
ment in E,,, for calcium and strontium, although
not for barium. Of course, the error in E,, is of
no consequence in calculations which involve only
the structure-dependent terms in the total energy,
such as those considered below,

The variation of the structure-dependent band-
structure energy and overlap energy with |, is
illustrated in Table VII. The band-structure ener-
gy is only a function of the values of the energy-
wave-number characteristic at reciprocal-lattice
vectors. Figure 6 shows the normalized energy—
wave-number characteristic

Fylq)=~ (¢°Qy /471Z ¥*)F(q) (30)

for calcium in models A-C. The curves for mod-
els D and E lie between those of models A and C
and have been omitted from the figure for clarity.
Note in particular that Fy(g) in model B actually
becomes negative near g=2k;. This behavior re-
sults from an overestimate of the hybridization
contributions to F(g) in model B and is even more
pronounced in strontium and barium, In barium
this anomaly leads to an unrealistically large
energy difference between the fcc and bece struc-

tures, as can be seen from Table VII,

The overlap energy has been evaluated by an
approximate procedure analogous to that used for
the noble metals.® Specifically, to evaluate the
matrix element (¢l Al ¢,), we have employed a
modified form of §V in which the Coulomb poten-
tial arising from the neighboring ion in question
is taken into account. The right-hand side of Eq.
(25) was then fitted to a simple analytic form.
Table VII shows just how rapidly the overlap en-
ergy thereby calculated decreases as (¢ | @y is
localized. In particular, note that the overlap en-
ergy is unreasonably large for a,,=0.0, especial-
ly for strontium and barium, while, on the other
hand, it is essentially negligible for all three
metals for a4, 25.

C. Effective Interaction Potential

In passing we should point out here that the total
energy can also be written in terms of a two-body
effective interaction potential between ions, v, ():

Etotaleo(Qo)‘*”%E’vefl(‘?i_irjl ), (31)

¥

where E, depends only on the atomic volume §; and

popyr) = 2z*% 4z I Fo@ 2% gg. 0. 0r).
7 s qr
0 (32)
The first term on the right-hand side of Eq. (32)
is the direct Coulomb repulsion between ions of
charge Z *e, which arises from the electrostatic
energy.

Figure 7 shows the effective interaction poten-
tials we have calculated for calcium with models
A-D, The curve for model E is almost the same
as that for model D and is omitted for clarity.
Note that, except for model B, there is a distinct
minimum occurring just outside the nearest-neigh-
bor distance 7,, in each case. The minimum deep-
ens and moves toward 7, as a,, is increased.

Also note the onset of the familiar Friedel oscilla~-
tions at large 7.

The above transformation to a real-space rep-
resentation of the total energy, of course, offers
no computational advantage in practice, The band-
structure energy, for instance, converges much
faster in reciprocal space than in real space.

For this reason, we shall make no further use of
Vege() in this paper.

D. Phonon Spectrum

Only a knowledge of the structure-dependent
terms in E,.;,, is needed to compute the phonon
spectrum of a metal. The formulas for the eigen-
frequencies w(g) in terms of E.,, E.s, and E,, are
well known and adequately discussed elsewhere ?*"®
In brief, for a given structure and a given atomic
volume, the only input information needed is the
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mass of the vibrating ion, the effective valence

Z *, the energy—-wave-number characteristic
F(g), and the overlap potential v,,(»). From these
quantities, we have calculated the fcc phonon fre-
quencies of the alkaline-earth metals along the
principal symmetry directions for all five models.
Figure 8 shows the longitudinal modes of calcium
in the [100] direction for models A-D. The dis-
persion curve for model E lies approximately be-
tween those of models A and D and has again been
omitted for clarity. The contribution of the over-
lap energy to w(g) in calcium is quite small (~1-
3%) for a,, =0.0 and is utterly negligible for a,,
21.0. The hybridization contribution to w(q) is
relatively large, but clearly it is still very small
for a4, 25.0. No experimental phonon spectra
have been measured for the alkaline-earths and
our only contact with experiment here is through
the mean longitudinal and transverse speeds of
sound. The measured mean longitudinal speed of
sound for calcium is indicated on Fig. 8 and clear-
ly is most consistent with the dispersion curves
for models A, D, and E,

The same over-all qualitative picture emerges
for the other phonon modes of calcium as well as
for the phonon spectra of strontium and barium.
(In barium, however, the phonon frequencies gen-
erally turn out to be imaginary at small ¢ with
model B.) In Fig. 9 we have plotted the complete
phonon spectra for calcium, strontium, and

o

barium calculated with model D,

Pseudopotential calculations of w(g) for the
alkaline earths had previously been done by Ani-
malu®® using the HAA-II and HAA-III form fac-
tors. ® His results generally show semiquantita-
tive agreement with ours for models A4, C, D, and
E. His HAA-III phonon spectrum for strontium,
in fact, shows fairly good quantitative agreement
with our results., This latter finding has an in-
teresting consequence, which we shall discuss be-
low.

E. Phase Stability

As our final example, we shall briefly consider
the subject of phase stability in the alkaline-earth

w(q) (10" cps)
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qa/27w qo/21n/§ qo/21r»/3-
3 T T
[1o0] [no] o]
4
8. 2k L
2]
2 =
= b .
o
\5 Sr
(o] | |
0 0.5 1.0 0.5 ) 0.5
(b) qa/2w qa/2w V2 qa/27 V3
3 T T
[i00] [io] (]
@
g2t
2] L
o
=L 7
Cs
3 Ba
0 !
0 0.5 1.0 0.5 0 05
(c) qa/2rw qa/2w V2 qa/2w 43

FIG. 9. fcc phonon frequencies of the alkaline-earths
along principal symmetry directions for model D: (a)
calcium, (b) strontium, and (c) barium.
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metals. At zero temperature and pressure, one
again only needs the structure-dependent terms

in the total energy to determine therelative stability
of two different crystal structures. (The differ-
ence in zero-point vibrational energies is usually
negligible, This has been confirmed for the alka-
line earths by Animalu.?®) The crystal structure
which has the lowest total energy should be the

one which is most stable.

We have computed the total energies of calcium,
strontium, and barium in each of nine different
crystal structures [fcc, bee, and hep at ¢/a axial
ratios of 1,5, 1.6, 1,63 (ideal), 1.7, 1.8, 1.9,
and 2,0] with models A~E. The predicted stable
structures are listed in Table VIII together with
the experimentally observed ones. Note that
models B-E all give the correct fcc structure for
calcium and for strontium, but that none of our
models predict the observed bce structure for
barium. (For comparison the results obtained
by Animalu®® with the HAA-II and HAA-III form
factors’® are also listed in Table VIII.) Figure 10
shows graphically the relative total energies of
the various lattice structures of calcium for
model A and for model D. Note that in both cases
the hcp structure with the lowest total energy has
the ideal c¢/a axial ratio. This is generally found
to be the case. In Fig. 11 we have plotted for all

LOCALIZED d STATES FOR PSEUDOPOTENTIAL,.,

4455

30 T T T T

y)

CALCIUM (a)

n
o

S

ENERGY RELATIVE TO fec (1074 R

~ 40 T T T T
>
@ (b)
< STRONTIUM
J
]
Z 30 .
(2]
©
2
(o]
= bee
w 2 -
> o i —— hecp
-
<
]
@
- 10~ \\\\ ‘1
©o | T —— —
o
w
P-4
w
ol 1 J | !
[o] 10 20
Esw
120 T T T T
BARIUM (C)

@®
o
T

N
o
T

ENERGY RELATIVE TO fec (10°% Ry )

-

o
o
N
o

Isw
FIG. 11. Total energy of the bcc and the ideal hep
structures relative to that of the fcc structure as a func-
tion of square-well depth: (a) calcium, (b) strontium,
and (c) barium.



4456 JOHN A. MORIARTY 6

TABLE VIII. Low-temperature stable phase for the
alkaline-earth metals.

Model
Metal Observed HAA-IP HAAII?* A B c D E

Ca fee bee bee hep® fce fee fec fec
Sr fce bee fee hep® fee fee fee fee
Ba bee bee bee fce  hep® fee fec  fec

2Reference 20. See also Ref. 16. Only the energies of
the fcc and bee structures were compared in these calcu-
lations.

*c/a=1.63.

°c/a=2.0.

three metals the total energy of both the bcc and
the ideal hcp structure relative to that of the fcc
structure as a function of ag,. For each metal
the energy differences are unreasonably large for
a4, =0.0 (model B), but decrease rapidly to ac-
ceptable limits as ag, = <.

The phase-stability question is especially in-
teresting in the alkaline-earth metals because of
the temperature- and pressure-induced transitions
which are observed in these metals. Animalu®
has made a relatively extensive theoretical investi-
gation of fcc-bec phase transitions in these metals,
His work, of course, was done in the spirit of the
simple-metal pseudopotential theory, It is now
quite interesting to attempt to reinterpret his
findings in light of the generalized pseudopotential
theory.

In brief, Animalu compared free energies of the
bce and the fcc phases of the alkaline earths as a
function of temperature and pressure. He com-
puted the relative free energy of the two phases as
a sum of a zero-temperature electronic contribu-

" tion (i.e., the contribution from the structure-
dependent terms in E,.;,,) and a phonon contribu-
tion, It seems clear in retrospect that Animalu
did poorly in estimating the former because the
large effect of hybridization (as exemplified in
Fig. 10) had, of course, been neglected. On the
other hand, he did relatively well in estimating
the phonon contribution, because of the rather
small effect hybridization has on the phonon spec-
trum as was noted above. This seems to explain
his qualitatively successful calculation of the tem-
perature-pressure phase diagram for strontium,
In particular, at zero pressure if Animalu’s elec-
tronic contribution (1.9x10™* Ry) is replaced with
a more realistic value (e.g., the 13.4x10™ Ry
from model D), one would predict an fcc-to-bec
phase transition very near the observed transition
temperature of 830 °’K. More specifically, one
obtains transition temperatures of approximately
1000, 950, and 900 °K for ag,=5.0, 10.0, and
20. 0, respectively, as compared with the value of
150 °K found by Animalu,

Calcium exhibits a similar temperature-induced

fce-to-bee phase transition. Since, unlike Animalu,
we can correctly predict a stable fcc structure at
zero temperature and pressure in this metal, we
would expect this transition to also be explainable
in terms of our theory. Barium, on the other
hand, is already bcc at zero temperature and
pressure, Our incorrect predictions of a stable
fce structure for barium may be a consequence of
our neglect of the f resonance (in addition to the d
resonance) not far above the Fermi level in this
metal. The band-structure calculations of
Kmetko,?! for example, show an unoccupied f
band only about 0.25 Ry above the unoccupied d
band,

VI. CONCLUSIONS

From a purely practical standpoint, it is clear
that the localized d states we have constructed
make better basis states for the alkaline-earth
metals than do the pure ionic d states. Although
our method does not single out a “best” choice of
¢4, our calculations suggest that there is prob-
ably a range of d states with which meaningful
calculations can be done, Clearly, we have seen
that the physical properties, especially the atomic
properties, are not highly sensitive to the depth
of the square well for a,,25. The quantitative
difference between the results for two similar
calculations, one done with ag, =5.0 and the other
with ag, =20. 0, is actually less than or equal to
the absolute uncertainty in either calculation.

This fact can be appreciated by noting the differ-
ence in E; between methods 1 and 2 in Fig. 2 and
is consistent with the observation that for a,,=5.0
the spatial extent of the d state for each of the
alkaline earths is roughly the same as that of the
s and p core states of the same principal quantum
number (e, g., the 3s and 3p states in calcium).

In this sense, we judge the results obtained in
calculations with oy, >5.0 to be equivalent to those
obtained with ag,=5.0. For future reference we
have tabulated the form factors and normalized
energy—wave-number characteristics calculated
with ag,=5.0 (model D) in Table IX,

From a theoretical point of view, the introduc-
tion of a seemingly arbitrary potential »'°° is the
price one must pay to construct rapidly convergent
expansions in the hybridization potential A, Con-
ceivably, one could use some optimization criterion
to pick »'°° uniquely, such as requiring that it
lead to the correct d phase shift of the total poten-
tial. There is, of course, no fundamental signifi-
cance to the square-well form for v!°° that we have
used here. Our success with the square well
seems to be attributable to two things. First, by
localizing (¥l ¢, we have effectively allowed for a
more accurate calculation of both E, and KlA|¢,)
because Eq. (26) for 6V(r) is clearly a better ap-
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proximation for small 7 than for large 7. Second, portance, We would expect, therefore, that other
there is an obvious tendency for variations in forms of »!°® would work equally as well,
{Flg, to be compensated for by changes in A, so The use of highly localized d states for pseudo-

that the details of »!°¢ become of secondary im- potential calculations on other d-band metals holds

TABLE IX. Form factors and normalized energy—waye-number characteristics for the alkaline-earth metals from
model D, in a.u. (For ¢=2ky in (k+qlwlk), 1kl = 1k +ql =kp. For q>2kp, |kl=kpandk and § are antiparallel.)

Ca (Z*=2.3997) . Sr (Z*=2,5041) . Ba}.(Z*=2. 7359)

q/kx (k+qlwli) Fylq) k+qlwik) Fy(q) (k+Glwlk) Fy(g)
0.00 - 0.2300 1.00000 —0.1944 1.00000 -0.1778 1.00000
0.10 —0.2282 0.988 29 -0.1929 0.98792 -0.1761 0.987 22
0.20 -0.2234 0.95377 —0.1888 0.95235 -0.1719 0,949 68
0.30 —0.2140 0.898 26 -0.1810 0.89522 -0.1630 0.88955
0.40 —-0.2022 0.82413 -0.1711 0.81928 -0.1523 0.809 63
0.50 —0.1864 0.73571 -0.1579 0.728 94 -0.1375 0.71501
0.60 —0.1684 0.63673 —0.1427 0.628 49 -0.1211 0.61007
0.70 —0.1475 0.53313 -0.1252 0.52381 -0.1017 0.501 64
0.80 -0.1250 0.429 45 -0.1062 0.41992 -0.0811 0.394 88
0.90 -0.1011 0.33140 -0.0861 0.32226 -0.0593 0.296 07
1.00 —-0.0768 0.243 28 —0.0656 0.23532 -0.0373 0.20981
1.10 -0.0531 0.16832 —0.0457 0.161 92 —-0.0165 0.13921
1.20 —-0.0308 0.10911 -0.0270 0.104 54 0.0028 0.086 31
1.30 -0,0115 0.065 20 -0.0109 0.06230 0.0183 0.049 86
1.40 0.0044 0.03615 0.0023 0.034 56 0.0297 0.027179
1.50 0.0153 0.018 68 0.0109 0.01780 0.0348 0.016 05
1.60 0.0206 0.009 65 0.0148 0.009 04 0.0331 0.00994 .
1.70 0.0189 0.00547 0.0123 0.00470 0.0225 0.006 38
1.80 0.0096 0.00338 0.0033 0.00262 0.0023 0.00387
1.90 —0.0083 0.00239 -0,0133 0.00183 -0.0291 0.003 59
2.00 —-0.0358 0.00267 -0,0382 0.00232 -0.0729 0.006 30
2.10 -0.0389 0.001 89 —0.0406 0.001 38 -0.0795 0.003 56
2.20 —0.0410 0.00151 —0.0420 0.001 05 -0.0835 0.00281
2.30 -0,0418 0.00118 -0.0420 0.000 82 —0.0846 0.002 37
2.40 —0.0412 0.000 92 —0.0404 0,000 68 -0.0828 0.00212
2.50 -0.0390 0.00072 -0.0374 0.000 61 . -0.0782 0.00201
2.60 -0.0353 0.000 60 —-0.0329 0.00061 -0.0709 0.001 98
12.70 -0.0304 0.000 54 —0.0272 0.000 67 -0,0613 0.00201
2,80 —0.0244 0.000 54 - 0.0205 0.00075 -0,0499 0.00207
2.90 -0.0177 0.000 58 -0.0132 0.00086 -0,0373 0.00213
3.00 -0.0105 0.000 64 —0.0055 0.000 97 -0.0239 0.00218
3.10 —-0.0034 0.00071 0.0021 0.001 06 -0.0104 0.00221
3.20 0.0036 0.00078 0.0094 0.00113 0.0028 0.00221
3.30 0.0100 0.00083 0.0161 0.00117 0.0151 0.00218
3.40 0.0156 0.000 86 0.0219 0.00118 0.0262 0.00211
3.50 0.0202 0.00087 0.0267 0.00115 0.0357 0.002 00
3.60 0.0238 0.000 86 0.0304 0.00109 0.0434 0.001 86
3.70 0.0262 0.000 83 0.0328 0.00102 0.0492 0.00169
3.80 0.0274 0.00079 0.0340 0.00093 0.0530 0.001 51
3.90 0.0275 0.00074 0,0340 0.000 83 0.0548 0.00133
4.00 0.0265 0.000 68 0.0329 0.00073 0.0547 0.00114
4.10 0.0247 0.00063 0.0308. 0.000 63 0.0529 0.000 97
4.20 0.0221 0.000 58 0.0280 0.000 55 0.0496 0.00082
4.30 0.0189 0.00053 0.0245 0.00047 0.0451 0.000 69
4.40 0.0153 0.000 50 0.0205 0.00041 0.0397 0.000 58
4.50 0.0115 0.00046 0.0164 0.000 36 0.0336 0.00049
4.60 0.0077 0.000 44 0.0122 0.000 33 0.0271 0.00043
4.70 0,0041 0.00042 0.0081 0.000 30 0.0206 0.000 39
4.80 0.0007 0.00039 0.0043 0,000 27 0.0143 0.000 35
4.90 -0.0022 0.000 38 0.0009 0.000 25 0,0085 0.000 33
5,00 —0.0046 0.000 36 —-0.0020 0.000 24 0,0033 0.000 31
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considerable promise. Such a representation is
certainly desirable from the standpoints of sim-
plicity and calculational accuracy. Moreover, the
generalization of the methods of Sec. II to other
d-band metals is quite straightforward, The major
qualitative difference we foresee is that the core
states will be affected by changes in the d states in

JOHN A. MORIARTY

o

cases where the latter are partially or fully oc-
cupied.
ACKNOWLEDGMENT
The author wishes to thank Dr. John H. Wood
for supplying his version of the Herman—Skillman
computer program and for helpful discussions and
technical advice on the free-ion calculations.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.

'W. A. Harrison, Phys. Rev. 181, 1036 (1969).

3. A. Moriarty, Ph.D. thesis (Stanford University,
1970) (unpublished).

7. A. Moriarty, Phys. Rev. B 5, 2066 (1972).

J. A. Moriarty, Phys. Rev. B 1, 1363 (1970).

’J. A. Moriarty, Phys. Rev. B 6, 1239 (1972).

bSee, for example, E. Brown and J. A. Krumhansl,
Phys. Rev. 109, 30 (1958) [applied to copper by F. A.
Butler, F. K. Bloom, Jr., and E. Brown, ¢bid. 180,
744 (1969)]; R. A. Deegan and W. D. Twose, ibid. 164,
993 (1967).

'"W. A. Harrison, Pseudopotentials in the Theory of
Metals (Benjamin, New York, 1966).

8V. Heine and D. Weaire, in Solid State Physics, edited
by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic,
New York, 1970), Vol. 24,

"We use the atomic units 7=2m =4e? =1 throughout. In
these units energies are in rydbergs and lengths are in
Bohr radii.

UF, Herman and S. Skillman, Atomic Styucture Calcu-
lations (Prentice Hall, Englewood Cliffs, N, J., 1963).

1B, J, Austin, V. Heine, and L. J. Sham, Phys. Rev.

127, 276 (1962).

12p, H. Cohen and V. Heine, Phys. Rev. 122, 1821
(1961).

BK. s. singwi, M. P. Tosi, R. H. Land, and A. Sjo-
lander, Phys. Rev. B 1, 1044 (1970).

H4gee, for example, C. Kittel, Quantum Theory of
Solids (Wiley, New York, 1963), p. 114.

15y, Heine and I. Abarenkov, Phil. Mag. 9, 451
(1964).

18several sets of form factors for the alkaline-earth
metals have been calculated by Animalu. The original
set (HAA-I), which included only calcium and barium, was
reported by A. O. E. Animalu and V. Heine [Phil. Mag.
12, 1249 (1965)] and is tabulated in Ref. 7. A second set
(HAA-ID) is given by A. O. E. Animalu [Proc. Roy. Soc.
(London) A294, 376 (1966)]. Yet a third set (HAA-III) was
used in Ref. 20. :

13, M. Ziman, Phil. Mag. 6, 1013 (1961).

18N, W. Ashcroft and J. Lekner, Phys. Rev. 145, 83
(1966).

B3, B. Van Zytveld (private communication).

2A. O. E. Animalu, Phys. Rev. 161, 445 (1967).

g, A. Kmetko, Electvonic Density of States, Natl.
Bur. Std. (U.S. GPO, Washington, D. C., 1971).

PHYSICAL REVIEW B

VOLUME 6,

NUMBER 12 15 DECEMBER 1972

Magnetoacoustic Evidence for the Existence of the L-Centered Pocket
of Fermi Surface in Palladium

C. R. Brown, J. P, Kalejs, T F. D. Manchester, and J. M. Perz
Department of Physics, University of Tovonto, Tovonto 5, Canada
(Received 22 June 1972)

Quantum oscillations in ultrasonic attenuation have been observed in Pd. We report a new

frequency which is attributed to small hole pockets at the L symmetry points.
were predicted by theory but have not been seen in de Haas—van Alphen experiments.

Such pockets
Measure~

ments have been made of the angular variation of the extremal area of these pockets and of

their cyclotron effective masses in the (100) plane.

I. INTRODUCTION

Relativistic-augmented-plane-wave (RAPW)
band calculations for palladium by both Mueller
et al.! and Andersen® have predicted small pockets
of holes around the symmetry points L, but oscilla-
tions corresponding to such carriers were not ob-
served in the detailed de Haas—van Alphen (dHvA)
studies of Windmiller ef al.® We report here the
frequencies of magnetoacoustic quantum oscilla-

tions in Pd, which we relate to the hole pockets

at L. Our measurements yield cyclotron masses

m¥=1.1m, consistent with the theoretical pre-

dictions™? of low velocities for these holes. The

low effective masses usually associated with

small pockets normally assure adequate ampli-

tudes for the various oscillatory effects; the ab-

sence of dHVA signals from the holes at L in Pd

is probably a consequence of the unusually high ne¥,
Quantum oscillations in ultrasonic attenuation



