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&honon dispersion curves for YZn along the (0, 0, g), (L, 0, 0), L, i;, i;), end ($, s, i:)directions
have been measured by inelastic neutron scattering at room temperature. A sixth-neighbor force-
constant model was used to obtain a fit to the data; there is residual indication of weak forces
of still longer range. The frequency distribution function, Debye temperature as a hction
of temperature, and mean-square atomic displacements were calculated from the model. No
Kohn-type anomaly was observed, and YZn was not found to become superconducting down to
1.2 K. Comparison of the dispersion curves of YZn with those of 8-brass shows some pro-
nounced differences, though there is a coincidence of accidental degeneracy between the trans-
verse acoustical and transverse optical branches in both materials at (0, 0, 2).

I. INTRODUCTION

The elucidation of phonon dispersion curves and

vibrational spectra from inelastic-neutron-scatter-
ing (INS) measurements has been done for a number
of materials, but relatively little work has been
done on metallic materials involving both lattices
with bases and two different atomic species. The
first such study was of p-brass (formula CuZn with
the cubic CsCl-type structure) by Gilat and Doll-
ing. ' fn the case of P-brass, the over-all shapes of
the dispersion curves were found to be quite simi-
lar to those which would be expected for a simple
bcc element. Because of the small mass differ-
ence between copper and zinc atoms, only two of
the theoretically expected splittings between the
acoustical and optical branches of the dispersion
curves at the Brillouin-zone boundaries were large
enough to be observed. The present investigation
was undertaken to look further at another CsCl-
type structure. Initial attention was given to the
phases AuZn which is congruently melting at 725

C. The valence-electroD conf lgul atloD iD gold
should be closely analogous to that in copper and
the primary difference between AuZn and CuZn
was expected to be the mass difference between
goM and copper. A suitable single crystal of AuZD

was grown, and an ultrasonic technique was used

for the determination of the elastic constants. 3

Some initial neutron scattering data were accu-
mulated, but it soon became apparent that the ab-
sorptivity of AuZn for neutrons was more severe
than anticipated. As a result, the requisite time
at the neutron flux levels of the presently available
reactor was considered too costly to justify the ac-
cumulation of sufficient data for a complete de-
lineation of the dispersion curves.

An alternative material had, therefore, to be
selected, and the phase YZD was chosen. This
phase also crystallizes with. the CsCl-type struc-
ture. Selection of YZD as the test material sacri-
ficed the advantageous similarity in valence-elec-
tron configuration that exists between AuZn and
CuZn, but retention of zinc as the second compo-
nent did at least maintain a common factor. The
dominant consideration in the selection of YZn was
the favorable ratio that was indicated between neu-
tron scattering and neutron absorption. Thermal
neutron cross sections have been tabulated' for
yttrium as 1.28+ 0. 02 b for absorption, 7. 60
+ 0.06 b for coherent scattering, and 0. 05 + 0. 03 b
for incoherent scattering, and for zinc as 1.1+0.04 b
for absorption and 4. 1+0. 1 b for coherent scat-
tering. The neutron cross sections are colliga-
tive, so the favorable scattering-to-absorption
ratios for the elements are also characteristic of
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the compound YZn. During the experimental ac-
quisition of the inelastic-neutron-scattering data,
this favorable ratio resulted in relatively intense
phonon peaks.

II. PROCEDURE AND RESULTS

Zinc of 99.999'% purity was purchased from
Cominco American Inc. , and yttrium near 99.9%
purity was generously supplied by J. Croat and
Qr. F. H. Spedding of the Ames laboratory. An
equiatomic alloy was prepared by placing 53. 6255
+ 0.0001 g nf yttrium and 39.4335+ 0. 0001 g of
zinc in a pointed, l-in. -diam tantalum crucible.
A lid was sea.led onto this crucible with an elec-
tron-beam welder under reduced pressure of - 5
~ 10 Torr. The tantalum crucible was in turn
encapsulated in stainless steel. Chiotti et al.
have reported that YZn melts congruently at 1105
'C. The alloy was therefore homogenized by agi-
tation in a rocking furnace for 2 h at 1135 C. The
tantalum crucible was subsequently removed from
the stainless-steel capsule and placed in a Bridg-
man furnace. In this Bridgman furnace the tanta-
lum was protected from atmospheric reaction by
maintaining reduced pressure of - 10 6 Torr. The
YZn was remelted and then lowered through a tem-
perature gradient of 200 'C/in. at a rate of 0. 08
in. /h. After removal of the YZn specimen from
the tantalum crucible, the specimen was etched
with an H,O~-HNO& mixture; no grain boundaries
were detected. Single crystallinity was confirmed
by x-ray diffraction, and crystal orientation was
determined by the back-reflection Laue technique.
The volume of the crystal was about 16 cm . The
degree of atomic order in the crystal was also
checked by x-ray diffraction with an X&D-6 single-
crystal orienter. Because it was necessary to cut
a (100) face on the crystal, this check was made
after completion of the neutron scattering mea-
surements. Integrated intensities of (h00) Bragg
reflections through 12th order were determined by
the step-scan technique. Analysis of these inten-
sity data showed no experimentally detectable
atomic disorder. A high degree of atomic order
has subsequently been corroborated by Jan, ~ who

has observed de Haas-van Alphen oscillations in a
specimen from this crystal.

Inelastic -neutron- scatte ring measurements were
made on the YZn crystal with the triple-axis spec-
trometer at the Ames Laboratory Research Re-
actor. These measurements were made in the con-
stant-Q mode of operation with fixed incident neu-
tron energy. All measurements were made at
room temperature with monochromated wavelengths
of either 1.265 or 1.617 A. The large majority of
the phonons were observed with the shorter wave-
length, but a few of the low-frequency phonons
were. observed with the longer wavelength. Data
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FIG. 1. Typical phonon profile, in this case the TA~

phonon along the O;, 4, 0) direction with 4 = 0.198.

were accumulated for a total of 108 phonons along
the 18 branches of the dispersion curves for the
(g, 0, 0), (g, g, 0), (t;, g, t;), and (-,', —,', g) direc-
tions. Because of generally better instrumental
resolution, most of the 108-phonon scans were
done with neutron energy loss, i.e. , phonon-crea-
tion processes. In a very few instances, better
access to some of the optical phonons was afforded
by scans with neutron energy gain, i. e. , phonon-
annihilation processes.

A representative phonon profile is shown in Fig.
1. Phonon frequencies were evaluated by utilizing
a computer to fit each individual phonon peak, to-
gether with background, to a sum of Gaussian func-
tions of adjustable magnitude, position, width, and
base ordinate. This at least partially compensates
for extraneous contributions to the peak„e. g. ,
elastic and inelastic incoherent contamination.
Possible errors arising from asymmetry were re-
duced by choosing the centroid of the neutron dis-
tribution as determining the peak position. Uncer-
tainties in the phonon frequencies were estimated
from the statistical errors in the positions that
were obtained in this manner. In those cases
where several equivalent measurements of the
same phonon were carried out under different con-
ditions, the composite data were combined to eval-
uate the phonon frequency and uncertainty. Table
I lists values and uncertainties for 111phonons;
108 of these result from the inelastic-neutron-:
scattering measurements and the remaining three
are derived for low-frequency acoustical phonons
from measurements of ultrasonic wave velocities
in the 1110]direction.

III. EXPERIMENTAL DATA ANALYSIS

The experimental values for the phonon frequen-
cies represent points on the various branches of
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the dispersion curves. A force-constant model to
serve for interpolation between the experimental
points was developed. For CsCl structures the
AA and AO branches are susceptibile to direct
Fourier analysis in the manner suggested by Fore-
man and Lomer. ' For these branches the follow-
ing expression may be written:

N

2w MOM, v„o(q, j)= 5~ A„cos2wng .
n=0

For other branches the following expression is ap-
propriate:

2w MOM, [v„(q, j)+vo(j, j)]= ZA„cos2mzg . (2)
n=0

In these relationships, Mo and M, are the atomic
masses of the two different atomic species, v is
the frequency of the phonon with wave vector q and

polarization j, and the variable g is defined as
q/q, „. The subscripts A and 0 refer to the acous-
tical and optical branches of the dispersion curves.

The Fourier coefficients Ao, . . . , A„are them-
selves expressible as linear combinations of the
interatomic force constants a.,', and p,', . The o, 's
and P's are, respectively, the diagonal and off-
diagonal elements of the force-constant matrix,
with s being the order of the stn nearest neighbor,
i being an index associated with the directionality
of atomic pair interactions, and g being the inter-
acting atomic species. The explicit relationships
between the force constants and the Fourier coeffi-
cients are given in the Appendix. The notation fol-
lows that adopted by Squires' in his development
of expressions for monatomic bcc and fcc lattices
and has also been used by Gilat and Dolling' in
analysis of their data for P-brass. The coeffi-
cients A, . . . , A„can be described solely in
terms of force interactions between like atoms,
while the coefficients Ao involve force interactions
between both like and unlike atoms. Since the
force interaction between two unlike atoms is un-
affected by choice of coordinate origin at one atom
or the other, it follows that o.', 0= n'„and Pf 0= P'„
for unlike-neighbor interactions, so the 0 subscript
may be deleted. This deletion for unLike-neighbor
interactions is practiced in Table II and in the Ap-
pendix.

Direct Fourier analyses of Eqs. (l) and (2) do not
produce enough linearly independent relationships
for good resolution of atomic force constants if in-
teractions extend to fifth neighbor and beyond.
Therefore, a nonlinear least-squares program'
of the general form suggested by Boyter and Mc-
Murry' was developed to find a satisfactory set of
atomic force constants. Best fits for the force
constants were obtained by mlnlmlzlng the vari-
ance ratio
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1 p (vp, p
—vp. p)

Nn —Np, t (hvar p)

where ND is the number of experimental phonon
frequencies, N~ is the number of adjustable pa-
rameters, and v» v» 0 and 5v» 0 are, respective-
ly, the calculated value, observed value, and ex-
perimental uncertainty of the sth phonon frequency.
It was found that a fifth-neighbor mpdel with 20
constants produced reasonable fits for all branches
of the dispersion curves except the AA and AO
branches. The over-all fit, particularly to these
last two branches, was significantly improved by
expanding the force-constant model to 24 constants
to include sixth-neighbor interactions. The fit
was sufficiently good with inclusion of sixth-neigh-
bor interactions to justify termination of effort,
but the lack of perfection in the fit does indicate
the presence of residual, still longer-range force
interactions. The force constants for both the
fifth-neighbor model and the sixth-neighbor model
are shown in Table II, and dispersion curves are
shown in Fig. 2, where the solid lines represent
interpolation between the experimental points with

the sixth-neighbor model.

IV. DISCUSSION

A number of features that appear in the disper-
sion curves in Fig. 2 arise solely from symmetry
and continuity constraints. A group-theoretical
analysis of the CsCl lattice has been performed by
Warren, ' who has indicated which degeneracies
must occur at the points of high symmetry. In
metallic materials, screening of the macroscopic
electric field by the conduction electrons results in
an additional degeneracy between the LO and TO

TABLE II. Interatomic force constants for fifth- and
sixth-neighbor force-constant models {units of dyn/cm).

Fifth- Sixth-
neighbor neighbor

model model

Fifth- Sixth-
neighbor neighbor
model model

i

P', 6723

5242

o.2«6244
n2p —1042

n2i 1719

n/p —1366

oIft -271

(y33p 2641

-1409

Psp

P'i -1134

5788 6199

6271

8829

-1261

2214

—1249

-479

—202

—851

-600

a'i
n4

2

P4

P2

otp

Gii

Pio

Dip

6

&2o
6

Q2i
6

645

546

620

1223

450

96

20

143

-168

1236

5538

—2631

—723

520

Variance ratio, fifth-neighbor model =6. 83
Variance ratio, sixth-neighbor model =2.24

modes at the symmetry point I'. Thus there is a
degeneracy that is both required and observed in
the dispersion curves for metallic CuZn and YZn
but is not requisite in ionic materials and is not
observed" in CsBr. At the symmetry point M,
continuity requires that the TO, (g, g, 0) branch
meet the AO(—'„—'„f)branch and the TA, (t;, g, 0)
branch meet the AA(-,', —,', g) branch, but the experi-
mental degeneracy between these pairs of optical
and acoustical branches, which was observed in P-

6.0 --=

5.0- TO - 5.0

hJ

3.0Z

TO

— 4.0

3.0

2.0 2.0

I.O l.o

O. l 0.2 0.3 0.4 0.5 O. l 0.2 0.3 0.4 0.5 0.4 0.3 0.2 O. l 0 O. l 0.2 03 0.4 0.5

FIG, 2. Phonon distributions for YZn at room temperature along the principal symmetry directions. The solid lines
represent dispersion curves fitted to the experimental points with a force-constant model including sixth-neighbor inter-
actions. The dotted lines represent dispersion curves computed from a two-force-constant model involving only nearest-

neighbor interactions with values for the force constants derived from single crystalline elastic constants. The dashed
lines are limiting slopes at long-wavelength limits as indicated by measurements of ultrasonic wave velocities.
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brass, ' is not a symmetry requirement and does
not occur for YZn. In fact, the observed splitting
at M between these particular optical and acousti-
cal branches in YZn is quite large and, while the
mass difference between yttrium and zinc is a con-
tributory factor, the degree of splitting in YZn can
be shown to arise from interactions other than
nearest neighbor. This is illustrated by the dif-
ferences between the dotted and solid lines in Fig.
2. The dotted lines were generated with a near-
est-neighbor model with two atomic force con-
stants. Values for the two force constants of Qy
= 10999 dyn/cm and P', = 8071 dyn/cm were obtained
from a least-squares fit to the ultrasonic-wave
velocities through the relations

(vi /2a ) (Mp+ M1 ) = o.1 + p1,

(v1/2a ) (Mp+ M1) = o.1,
(v,'/2a') (M, + M, ) = ~,' P', , -

(4a)

(4b)

(4c)

where vz, vq, and vz are the longitudinal and
shear wave velocities along the [110]direction, a
is the lattice parameter, and the other quantities
are as previously defined. Thus, differences be-
tween the dotted and solid lines in Fig. 2 reflect
contributions from atomic force interactions of
second through sixth neighbors, but in the sixth-
neighbor model both fifth- and sixth-neighbor in-
teractions vanish at the symmetry point M. There-
fore, within this model the major portion of the
splitting at M between the TO2-AO optical branches
and the TA~-AA acoustical branches may be attrib-
uted to second- through fourth-neighbor interac-
tions.

At the symmetry point X the experimental data
for YZn indicate degeneracy of the TA(0, 0, f) and

TO(0, 0, f) branches. A similar degeneracy was
earlier observed in P-brass. This is accidental
degeneracy and is not required by symmetry, and

such degeneracy does not occur in the limited pho-
non dispersion data which have been published
for CsBr. In P-brass the occurrence of this de-
generacy, coupled with the near equality of the
copper and zinc masses, yields the result noted by
Gilat and Dolling' that copper-copper and zinc-
zinc interactions must be very nearly equal. In
YZn no such simple conclusion can be drawn owing
to the large difference between the yttrium and zinc
masses, though the degeneracy must be attributa-
ble to long-range forces arising from the valence
electrons.

Reference to Fig. 2 shows that there is no evi-
dence for a Kohn anomaly. However, the very
pronounced splitting between the TO, -AO and
TA&-AA branches at the point M created some
suspicion of strong electron-phonon coupling so
that a check for superconducting behavior was
made. No superconductivity was detected down to

C11 (I a) (2+1+ &lp+ +11+4+10+4Q11+ 18@1

+2 4+10 +4+11+4+10+4+11)&

4 5 5 B B

TABLE III. Net resultant restoring forces resisting
atomic displacement along an axial direction (units of
dyn/cm).

+Y
+2'n

+Y ++3

Nearest-
neighbor

model

87 991
87 991

175 982

Fifth-
s eighbor
model

61 208
67408

128 616

Sixth-
neighbor
model

61 558
67 788

129346

1.2 K.
It is widely recognized' that individual inter-

atomic force constants a'„and p,*„which are gen-
erated from phonon dispersion data, are not phys-
ically meaningful as measures of atomic pair in-
teractions but are simply fitting parameters.
Comparison of values from fifth- and sixth-neigh-
bor models in Table II shows appreciable variation
between values for some of the constants. How-
ever, it should be emphasized that evaluation of
the total resultant restoring force experienced by
an atom displaced from equilibrium is muchless
sensitive to the number of neighbor interactions
that are considered. Table III shows values for
the restoring force resisting displacement along an
axial direction from the nearest-neighbor model,
the fifth-neighbor model, and the sixth-neighbor
model. Values from fifth- and sixth-neighbor
models agree to -0. 5% and are only 25-30% below
values from the simplistic nearest-neighbor model.
The implication is that the nearest-neighbor co-
ordination shell dominates the force field but is
modified by successive coordination shells with the
degree of modification attenuating rapidly with in-
creasing coordination shell number. Such domi. -
nance of the force field by near-neighbor coordina-
tion shells provides some justification and explana-
tion for the fact that quasichemical approximations
have been used with some success for estimating
enthalpies of intermetallic phase formation. '7

A phonon frequency distribution function g(v) was
calculated from the sixth-neighbor model by the
method of Raubenheimer and Gilat. ' This dis-
tribution function is shown in Fig. 3, and Van Hove
singularities 0 are indicated by letters a-I. Debye
temperature as a function of temperature was also
calculated from the sixth-neighbor model. The re-
sult is shown in Fig. 4. Here it may be noted that
eo is 290. 6 K, in reasonable accord with the value
of 306. 8 K from low-temperature elasticity data.
Elastic constants were computed from the inter-
atomic force constants through the relations
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FIG. 3. Frequency distribution function calculated
from the sixth-neighbor force-constant model. Van Hove
singularities are indicated by a-l.
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Respective values of 9. 38, 4. 61, and 4. 67 (&&10

dyn/cm2) compare favorably with values of 9.443,
4. 600, and 4. 731 (x 1011 dyn/cm2) from ultrasonic
data. 8 This comparison is quite acceptable when

it is remembered that the three phonons that were
generated from ultrasonic-wave propagation along
the [110]direction were not given appreciably
greater weight in evaluating the force constants
than were the 108 INS phonons.

Finally, the mean-square vibrational amplitudes
of both yttrium and zinc atoms were calculated
from the sixth-neighbor model with summations
being made for varying numbers of points in the
irreducible zone. Because the frequency distribu-
tion function in Fig. 3 show s a strong minimum
near 3.6 THz, which almost constitutes a gap in

FIG. 4. Debye temperature as a function of tempera-
ture from the sixth-neighbor force-constant model.

the distribution, it is meaningful to consider fre-
quencies below this value as dominantly represen-
tative of acoustical modes and above this value as
dominantly optical modes. It is therefore possible
to divide the mean-square vibrational amplitudes
into acoustical and optical contributions, and the
results are shown in Table IV. Two features of
this table seem significant. First, it seems quite
reasonable to find (uY2)„«~, less than (uoz, )„«„„
since this implies that the lighter zinc does most
of the moving during out of phase vibration. Sec-
ond, convergence is sufficiently slow to indicate that
summation over a large number of points in the
irreducible zone is necessary to obtain meaningful
values for mean-square vibrational amplitudes.

APPENDIX

The Fourier coefficients A„of Elis. (1) and (2) are
here expanded in terms of the atomic masses and

the 24 independent atomic force constants, Q.'„and
P,', , to include atomic interactions through slxtll
neighbor. The listing is by wave vector and mode.

1. Il=(0, 0, g)20/a; LA, LO modes:

Ap (nl nl+ n2) ™0+~1)™0(nll+4nll+ nil

+ nil) ™l(nip nlo 4nlp nlo)B 2 8 5 B

TABLE IV. Mean-square vibrational amplitudes of Y and Zn atoms along the [001] direction evaluated with the sixth-

neighbor model (units of 10 cm ).

No. of points
in the

irreducible
zone

35
84

220
680

1540
2925
4960

(ttY )acmatic
2

0.603
0.696
0.781
0. 857
0. 899
0.925
0.944

(aY) cot tent
2

0.062
0. 070
0. 078
0.085
0.089
0.092
0.093

~+Y ~total
2

0.665
0.767
0. 859
0.942
0.988
1.017
1.037

O. 403
0.467
0.524
0, 577
0.606
0.624
0.636

(azn) oct teal
2

0.241
0.276
0, 307
0.335
0.351
0, 361
0.367

(tt Zn) total
2

0.644
0.743
0. 832
0.913
0.957
0.985
1.004
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Al Mo(all +4all+ nlt) ™1(alp+alp+ 4alo) I

A2 MQQf f M1Qf Q ~
8 6

2. q= (0, 0, t;)22'/a; TA, TO, modes:

Ap (Mo Ml) (nl+ nl+ Q2) ™0(Q21+2all+ 2asl

nll nsl) ™l(asp alp+ nso+4nlp+ Q20)
5 8 2 3

' 3' 5

A1 Mp(Q21 + 2nll + 2nsl all )

Ml(Q20+ 2alo 2nso + alo) s
2 3 3 5

~2 MD+21 Mf +2D '6 8

q =. (t;, t;, g)22'/a; LA, LO modes:

Ap = 4(MO+ Ml) (nl + nl+ 2ns)+ Mo(all+ 2QR, + 2nll

+ asl y 2psl+ 4all+ all+ 2asl) +Ml(alp+3 5 8 2 2

+,2nlp+ Q30+ 2Ps1 + 4nlo + alp+ 2Q20) &

S S A 5 8 8

Al Mo(all +2Q21+ nll 2P11)

—Ml(»0+ 2nso+ &n»-2J8, 0),2 2 5 5

&2™o(2all+asl+ 2Psl+ a» + 2asl)3 3 3 8 6

Ml(2 alp+ nsp + 2psp+ alp+ 2QRO)
3 3 S e 8

As Mo(nll 2P11) ™1(Q10+Plo)

q=(t;, f, f)2m/a; TA, TOmodes:

0 4(MO™1)(nl+ al+ 2Q2) ™0(all+Q21+ nll

+ asl+ 4all Psl + all + 2Q21) ™1(alp nso
3 5 r4 8 8 2 2

+ 2alo+ nso Pso+4alo+ alo+ 2nso) ~

3 3 r4 5 8 8

A1 Mo(all+ 2Q21+ 8 all+ Pll)

Ml(alp+ 2aso+ 10+Plo)

+2 Mp(2al1+ nsl Psl+ all+ 2Q21)

Ml(2alp t aso Pso+ alp+ 2Q20)
3 3 3 8 8

As=-M, (QS„-P'„)-M, (n'„- Pso) .
6. q=(g, &, 0)22/a; LA, LO modes:

Ap 4(MO™1)(nl+ nl+ 2QR) ™0(Q11+Q21+ 8nll

+ 2asl + Psl+ 2nll + 2P11+ nll + Q21) ™1(alo3 ~ 5 5 6 8 2

+ QSO+ 8alp+ 2nso+ Pso+ 2nlo+ 2~10+ alp+ Q20) s
2 3 3 r4 5 5 8 8

Al = —Mp(all + asl + 2nll+ 2as 1)2 2 3

—Ml(alp+ aso + 2nlo + 2asp) ~

2 2 3 3

As Mo(all+ P31+ 2all+ 2P11+ all+ Q21)
3 S 5 5 6 8

—Ml(alo+13sd+ 2nlo+2Plo+ alo+ QRo) .3 3 5 5 8 8

6. q = (g, t;, 0)22/a; TA, , TO, modes:

Ap = 4(Mp+Ml) (QI+ al+ 2ns)+Mo(2QR, +4nl, + asl

2nll 2QRl) ™1(nso+4nlo

+ aso+2nlo+2aso) &

3 5 8

Al = —Mo(2asl +4all) —Ml(2QRO+ 4nlo),

As Mo(nsl 2nll 2nsl) ™1(asp+2nlo 2Q20)

7. q = (g, g, 0)211/a; TAR, TOR modes:

0 (Mo ™1)(al+ al + 2Q2) Mo(nll nsl+ 8Q11

+ 2o 31 —psl+ 2Q» —2pll + al, + as, ) ~ M, (alp
5 5 e 8 p

Q20+ nlp + 2aso Isso+ 2alo+ alp+ Q20 2P10) ~

3 S r4 5 8 8 5

Al = Mo(all + Qsl+ 2Q11+ 2Q31)
2 2 S 3

-Ml(alo+ aso+ 2alo + 2aso)

As Mo(nll Psl+ nll Pll+ all+ Q21)
3 3 5 5 8 8

Ml(alp Pso+ 2alo 2P10+ alp Q20)
3 r4 5 5 8 8

8. q= (2, 2, f)21'/a; IIA, IIO modes:

&0 = 4(Mp+Ml) (al+ nl + 2n', )+Mo(2nll+ 8nsl

+ 2all + 2asl+4nll+ Q21)+Ml(2alo+ 8QRO
S S 5 2 2

nlp Q30 nlo Q20) ~

3 3 5 8

Al Mo(Q21 2all 2Q31+ 4all)
2 3 3 5

—Ml(nso —2alp —2nsp+4alp) &

p 3 3 5

A2 = —MD@21 —Mf n2p .8 8

S. q = (—,', —'„f)22/a, ' AO mode:

Ao ™0(4nl + 4nl + 8Q2+ 4Q21 + nll1 4 4 2 2

+ 4nll+ 4nll+ nll) &

3 5 8

+1 Mo(nll 4nll+4nll)

A2 = —

MDIV(

ff .8

10. q=(—'„—2, f)2n/a; AA mode:

+0 Ml(4nl + nl+ Q2+ Q20+ nlo
1 4 4 2 2

+ 4Q 10+4 alp+ alp) ~

3 5 8

Al — Ml(alp 4nlo+4alo)S 5

A2 = —Mfefp.8
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A procedure for constructing very localized d basis states for generalized pseudopotential
calculations is suggested and applied to the alkaline-earth metals calcium, strontium, and
barium. Unlike the d states of the free ion or atom, these localized d states do not significant-
ly overlap their neighbors in the metal. They also appear to lead to more accurate estimates
of the s-d hybridization. Form factors and energy-wave-number characteristics are calcu-
lated and used to study the effects of hybridization on representative physical properties of the
alkaline earths. In general, hybridization is found to make important contributions to the
liquid-metal resistivity and the low-temperature-phase stability, but not to the binding energy
nor to the phonon frequencies. A preliminary calculation also suggests that the fcc-bcc phase
transitions in calcium and strontium can be understood in terms of the generalized pseudopo-
tential theory.

I. INTRODUCTION

The generalization of pseudopotential theory to
the d-band metals' relies on a power-series ex-
pansion of the electron density and the total energy
in each of two small quantities. The first of these
quantities is a pseudopotential wo, which is exactly
analogous to the pseudopotential entering the sim-
ple-metal theory. The second is a hydridization
potential 6,, which embodies the fact that ionic or
atomic d states are not good eigenstates of the
crystal Hamiltonian H. Formally, if one defines
a set of localized d states ) ye) by the Schrodinger
equation

(I)

then the hybridization potential 6 can be expressed
in the form

b. = 5 V- (p, ~
5 V

~
9&,), (2)

where
5V =H' —H. (s)

In principle, one is free to choose H' at wOl,
so long as the I pe) remain orthogonal to the core
states of the metal l p, ) (which are assumed to be
eigenfunctions of H). In a given calculation, if
one were to keep terms of all orders in wo and 6,
then the result would be independent of the choice
of H'. Qf course, one always wishes to terminate
these expansions at a finite order (e. g. , first
order in 6 and wo for the electron density and
second order in these quantities for the total en-
ergy), and thus the result one obtains will generally
reflect the choice of H'.

In practice, the most obvious procedure is to
take H' as the Hamiltonian of the free ion or atom,
as we did recently with the noble metals„' Then
5V is, for example, the difference in potential
seen by an electron in a free ion and an electron
in the vicinity of an ion site in the metal, and the
hybridization potential b, can be expected to be
small, at least inside the core region of the ion.
Free-ion d states, however, may extend well out-


