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The effects of uniaxial compression up to 40 kg/cm2 on the areas of the [110]-y and [100]-P
orbits of the third-zone Fermi surface of aluminum have been determined by means of a de
Haas-van Alphen phase-shift technique. Both areas were found to increase under compres-
sion, the V-orbit area by (4. 6+ 0. 0) x 10 ~%/(kg/cm ) and the p-orbit area by (3.4 s 0.7)
x 10 3%/(kg/cm2). The estimates of the errors allow for the possibility of systematic errors.
The nearly-free-electron (NFE) and four-orthogonalized-plane-waves (OPW) models for the

aluminum Fermi surface were used to calculate the effects of uniaxial compression, hydro-
static pressure, and alloying on the y and P cross sections. The NFE results for both orbits
were not at all satisfactory. T&e predictions of the four OPW model for the stress and pressure
derivatives of the y-orbit area agreed with experiment within the experimental error when the

changes in the matr~ elements with stress and pressure were obtained from the q dependence
of the Heine-Abarenkov form factor. The dependence on alloying, calculated from the four-
OPW model on the assumption that the chang~ in matrix elements and volume was negligible,
was in equally good agreement with experiment. The results of similar four-OPW calculations
for the P orbit did not agree with experiment quite so well, the discrepancies being roughly
twice as large as the experimental error.

I. INTRODUCTION

Knowledge of the Fermi surfaces of metals has
been greatly expanded in the past decade. The
Fermi surfaces of the readily available simple
metals and even many of the more complex transi-
tion metals have been mapped out in considerable
detail by a variety of methods. Theoretical under-
standing has also improved, and Fermi surfaces
calculated from appropriate models can be made
to agree with experiment to within one percent or
better. It is important to test these models
under changes in scale by calculating and measur-
ing the effects on the Fermi surface of hydrostatic
and uniaxial strains and of alloying.

Different information is obtained from each of
these three perturbations. Hydrostatic pressure
changes only the volume of a (cubic) crystal. A

uniaxial stress will produce a small volume
change, but its major effect is to change the lat-
tice symmetry. Alloying changes the concentra-
tion of conduction electrons primarily, while
changing the volume and symmetry of the crystal
only very slightly. A complete understanding of
the electronic structure of a metal must include
an understanding of the effects of these perturba-
tions.

Aluminum is a particularly good choice for such
a study. It is a face-centered-cubic metal which
is light enough for the conduction electrons to
have very little d character. The Fermi surface
and its dependence on the above perturbations
should thus be fairly easy to calculate. The Fermi
surface has a number of rather small pieces which
are very sensitive to the choice of parameters
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is the kinetic energy of the ith plane
wave, E~ is the Fermi energy, and w, and w2 are

used in the theoretical fit and also to perturbations.
The metal is also easy to work with experimentally,
and all three perturbations can be applied.

The experimentally determined aluminum Fermi
surface' bears a well-known qualitative resem-
blance to that predicted by the familiar nearly-
free-electron (NFE) model. Important quantita-
tive (and also some qualitative) discrepancies with

experiment remain in the NFE model, however,
particularly in regard to the third zone section
(Fig. 1). On this section, the strength of the
periodic potential of the lattice has a large effect
and a multiple-orthogonalized-plane-wave (OPW)
model must be used to remove these discrepancies.
In order to obtain rapid convergence in the multi- .

ple-OPW model, the actual lattice potential is re-
placed by a pseudopotential. The theoretical justi-
fication for this procedure and a discussion of the

multiple-QPW model in general can be found in a
number of texts. '

At least four plane waves must be used to de-
scribe the aluminum Fermi surface in the vicinity
of the corner W'of the Brillouin zone, since three
Bragg reflection planes intersect at this point.
The Fermi surface is determined from the equa-
tion
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i &lO of the sample in the field, and because they have
been previously studied under pressure and in
dilute alloys. The experiment and its results and

limitations are discussed in Sec. II. In Sec. ID
the NFE and four-OPW models for the third-zone
Fermi surface are extended to obtain theoretical
predictions for the stress, pressure, and alloy
dependence of the orbits, using various models to
calculate the change in the pseudopotential matrix
elements.

II. EXPERIMENTAL METHODS AND RESULTS

A. Sample Preparation

FIG. 1. A portion of the third-zone Fermi surface of
aluminum. The y and P orbits are indicated.

the matrix elements of the pseudopotential for
plane waves differing by 2v/a[1, 1, 1] and 2v/
a[0, 0, 2] (a is the lattice parameter and units such
that g /2m =1 have been adopted). Values of the
parameters E~, sv„and so~ which, together with

Eq. (1), excellently reproduce the experimental
aluminum Fermi surface have been obtained by
Ashcroft and by Anderson and Lane. Both cal-
culations were performed using four pl.ane waves
throughout the minimal symmetry element of the
Brillouin zone.

In addition to having been mapped out in detail
by means of the de Haas-van Alphen (dHvA) effect
and fitted with a four-OPW model, portions of the
third-zone Fermi surface of aluminum have been
studied under pressure and in dilute alloys. Melz~
has found the y- and P-orbit areas (Fig. 1) to
change by (- 0.47+ 0. 06)%/kbar and + (1.2+0. 15)'%%up/

kbar, respectively. In their experiment on dilute
alloys of aluminum, Shepherd and Gordon and
Abele and Blatt found the areas to depend only on

N„ the effective number of conduction electrons.
For a 0. 33'%%uo decrease in N„corresponding to a
l-at.

%%uozin callo y, forexampl e, theare aof they
orbit decreased by about (7. 0+ 1.5)%, whereas the
P-orbit area decreased by (32+ 3)%.

The purpose of the present experiment is to
study the effects of uniaxial stress on the third-
zone Fermi surface by means of a dHvA phase-
shift method. The [110]-yand [100]-Porbits are
the preferred candidates for this study because
they are perhaps the two most important orbits to
be considered in the theoretical fit, because they
are small enough for the stress effects to be large,
because they are relatively unchanged by a rotation

Samples were spark cut from a l.arge single
crystal of nominally 99. 9999'%%uo pure aluminum ob-

tained from Cominco Products, Inc. , Spokane,
Washington. Most of the samples were 0. 18 in.
square by 0. 5 in. long. The ratio of resistance
at 300 and 4. 2 'K, measured by Melz' on other
samples cut from the same crystal, was 6300.
The spark-cut samples were mounted for polishing
in an aluminum block with phenylsalicytate. Care-
ful mounting ensured that the rectangular parallel-
opiped shape of the samples was not altered by

the polishing. The polishing was done on granite
blocks using successively 25-, 1-, and 0.05- p

alumina, and finally cheese-cloth abrasives. The
samples were polished until their ends were as
flat and smooth as possible and parallel to within

10 p, (as measured by a capacitance method).

B. Apparatus

The dHvA signals were detected by a field-
modulation technique, using a Varian 40-kG super-
conducting solenoid with 10 field homogeneity to
provide the static magnetic field. The theory and

practice of dHvA spectroscopy by this method have

been treated in detail by Stark and Windmiller. '
Details of the coil assembly are shown in Fig. 2.

Detected dHvA signals were typically about 5-10
p,V at the pickup coils. For the y orbit these sig-
nals were obtained at approximately 25 kG at
4. 2'K. The P-orbit signals were considerably
weaker, and it was necessary to reduce the tem-
perature to about 1.6 'K at approximately 8. 5 kG
to detect them adequately. The P-orbit signals
were stronger at higher fields, but the y-orbit
signals were strong enough to cause unwanted

interference at fields above 9. 5 kG. Typical re-
sults for the y and P oscillations are shown in

Figs. 3 and 4. A modulating frequency of 105 Hz

was used in taking most of the data, although 25
Hz modulation was used occasionally to test the
homogeneity of the strain. The dHvA signals were
detected at the second harmonic of the modulating
fr equency.
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FIG. 3. Sample of the y-orbit data. Stress is mea-
e 2 9.1sure in cm .a '

~y cm Curve 1 0 stress; curv
stress; curve 3 15.5 stress; curve 4, 21.8 stress;

urve 0curve 5, 27. 1 stress; curve 6, 34. 2 stress; curve
stress (repeat of curve 1 after loading).

FIG. 2. Coil form assembly: A, support from top to
probe; B, stainless-steel plunger; C, beryllium-copper
form for modulating coil; D, modulating coil (2000 turns,
No. 30 copper wire); E, nylon form for pickup coil No.
2; F, pickup coil No. 1 (4000 turns, No. 38 copper wire);
G, nylon form for pickup coil No. 2; H, pickup coil No.
2 ( roximately 1300 turns, No. 34 copper wire); I,
sample; J, fired lavite plug with hemispherical boss;
fired lavite support for sample; L, beryllium-copper
support for sample.

provided strength and a very low friction surface.
The plunger was brought out of the Dewar through
a Teflon spacer, and could fall freely for short
distances. For the experiment on the P orbit i
was necessary to pump to 1.6 K. Therefore a
large vacuum can was placed over the top of the
probe to keep air from being cryopumped into the
Dewar, which could freeze the plunger in place.
The weights were tied together in a manner such
that they could be raised or lowered individua yll
through a seal at the top of the can. The stress
was applied parallel to the field in both cases,
i. e. , parallel to [110]for the y orbit and parallel
to [100] for the P orbit.

E. Measurement Procedure

C. Noise

Aside from some distortions of the signal, to
be discussed later along with other possible
sources of systematic error, the ma~or source of

Anoise in the experiment was microphonics.
significant reduction in the microphonic noise was
achieved by using concentric series-opposed
balanced pickup coils as described by Stark and
%' dm'lier. ' It was also found necessary to
isolate the magnet from the floor. This was done
by placing the magnet on a, platform constructed
in layers, from the bottom up, of —,'-in. thick rub-
ber, —,'-in. thick plywood, and 1-in. thick stainless
steel. The resulting improvement in signal-to-
noise ratio was quite noticeable.

D. Stresses

The uniaxial stress which can be applied to an
aluminum single crystal without introducing plastic
deformation is not very large; typical strains
must be 10 . Even if the effect of the stress

The samples were stressed by direct loading
with calibrated weights through a long plunger and
a highly polished fired lavite plug. This plug had
a hernispherica, l boss to help ensure a uniaxial
stress. T'he bottom support for the sample was
also made of highly polished fired lavite, which

9 070 kG

92. I G

FIG. 4. Sample of the P-orbit data. Stress is mea-
d

'
kg/crn . Curves 1 and 2, 0 stress; curves 3

and 4, 12.5 stress; curves 5 and 6, 37.6 stress.
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were large it would probably be difficult to deter-
mine the stress effect by a direct measurement of
the dHvA frequency under stress. It is therefore
best to measure the change in frequency directly
by means of a phase-shift technique. " If F' and
F are the frequencies with and without stress, the
dHvA oscillations will have the same phase P at
different values of field (H' and H), where

Q = 2'//H+ P = 2' '/H'+ P. (2)

(The constant p is assumed to be unchanged by
stress. ) To find the difference in field, H H', -
the oscillations with and without stress are re-
corded on the same grid (as in Figs. 3 and 4) on

which vertical lines correspond to constant values
of field. The change in field for constant phase is
easily measured, If E ' = F+ 5F and K ' = K+ 5K,
then 6E/E= 6H/H. Since the frequency and area A

of the external orbit in question are related by the
Onsager relation, 2vE= RcA/e, we obtain 6E/F
= 6A/A, where 6A is the area change.

In practice we measure the current in the mag-
net rather than the field, and plot this on the
horizontal axis as in Figs. 3 and 4. The current-
field relationship is sufficiently well known that
this procedure introduces negligible errors. To
be able to measure small changes in the current,
a mercury cell zero offset was provided for the
recorder. A sufficiently slow and resettable field
sweep mas also required. This was provided by

driving a ten-turn helipot connected in parallel
with the fine control helipot in the magnet power
supply by means of a low speed motor. The fre-
quency shifts did not depend on the direction of
the field sweep. Homever, the field lags the cur-
rent in the magnet during a sweep, so all measure-
ments during a given loading cycle were made with

the field swept in only one direction for internal
consistency. Most of the data were taken with in-
creasing increments of stress, although no definite
difference between runs taken with increasing and

decreasing stress could be detected. The zero
stress curve was usually repeated after each load-
ing cycle, and reproducibility was generally ex-
cellent. The minimum frequency changes which

could be reliably detected were about (4 x10 ')%%uo

for the y orbit and (2 x10 ')%%uo for the p orbit.
Data were taken over several loading cycles for

each sample. The high sensitivity of the y orbit
to stress permitted the use of small and numerous
increments of stress. For the P orbit only four
va, lues of stress were used, but the curves cor-
responding to each value were usually repeated
several times to improve accuracy. The frequency
shifts were measured over two or three oscilla-
tions and averaged for each value of stress. These
results were then plotted as a function of stress
and fitted to a straight line by the method of least

squares. An example of this reduction of the raw

data is shown in Fig. 5. The averaging decreased
the scatter in the data, and hopefully helped to
minimize any systematic error from the distorted
signals.

F. Results

Reproducibility between samples was poor until
the- polishing technique previously described was

adopted. The results for the good samples (those
which were polished in the accepted manner and

which did not have distorted signals) are presented
in Table I. Samples J~ through Le were 2 in.
long, whereas sample S, was & in. long. The
average frequency changes were [4.6+0. 2 (2o)]
x10 3%/(kg/cm') for the y orbit and [3.4+ 0. 2 (2o)]
x10 ~%%uo/(kg/cm') for the p orbit. Given the ample

possibility of small systematic errors, and the
small frequency changes for the P orbit, the P
orbit results are probably reliable to +20/o and

the y orbit results to + 6%% of the stated values.

G. Systematic Errors

Signal distortions can introduce systematic er-
rors in the results. An example of these distorted
signals is shown in Fig. 6. At times, the signals
were only minimally (if at all) distorted, and at
other times, under seemingly identical operating
conditions, the signals were so poor that no reli-
able data could be taken. The results shown in

Figs. 3 and 6, for example, were taken on similar-
ly prepared samples on successive days. The

18
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STRESS (kg/cm~)

FIG. 5. Reduction of y-orbit data. The open figures
correspond to values obtained at different extrema of the

oscillations shown in Fi.g. 4. The solid circles are the

average value of the frequency change obtained using all

the data for this particular sample. The solid line is the

least-squares fit to the average values.
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where A& is the amplitude for the ith domain.
This expression can be rewritten as

A =Q A, sing coso., +Z A, cosP sino,

The first term in this expression is the desired
signal. It is, however, diminished from the ideal
amplitude by the cosa; factors. The second term
is a distortion in the signal. An additional exter-
nal stress changes Q and the o.

&
as well. The

amplitude of the signal could then show a stress
dependence and the shapes of the signals could
also be altered by the stress.

The scatter in the results was appreciable and
the frequency change was sometimes a nonlinear
function of stress when the signal distortion was

TABLE I. Stress dependence of third-zone orbits.

Sample

L(
I2
L3
L4
S)

L5
L6
L)
La

y-orbit results

P-orbit results

gA/A
runits of 10 3%% (kg/t'cm~)]

4, 55
4.70
4.77
4.77
4~ 31

3.64
3.54
3.23
3.35

origin of the signal distortion was not completely
certain. The two most likely possibilities seem
to be flux trapping by the superconducting solenoid
and inhomogeneities in the strain in the samples.
Both were probably responsible to some extent.

Small scale flux trapping would disrupt the rnag-
net current-magnetic-field relationship and hence
distort the signal. Seasoning the solenoid by
sweeping it back and forth through large field
ranges occasionally seemed to help. Some sea-

. soning of the magnet was always done before data
were taken, and a field region in which the signals
were minimally distorted was selected for data
taking.

The samples could also be composed of domains
of varying strain (possibly introduced in the polish-
ing or spark-cutting operations), and the dHvA

signals from each domain could have a slightly
different phase. If the average dHvA phase in the
sample is P, and the phase in the ith domain dif-
fers from P by an amount n&, the amplitude A& of
the total signal will be given by

A =K A, sin(P+ o. ,), (3)

2
3

'-26, 580 I(G 92.l G

FIG. 6. Example of the signal distortion. Stress is
measured in kg/cm . Curve 1, 0 stress, curve 2, 18.6
stress; curve 3, 38.7 stress.

large. If the signals from a given sample were
badly distorted, the results were regarded as un-
reliable and discarded. If the distortion was
minimal, the effects of the n&'s were minimized
by considering the peaks of the oscillations as the
points of constant phase. The second term is
small in this case, since coerce& is approximately
zero. The averagin~ procedure previously de-
scribed will further reduce the scatter in the re-
sults. It should be noted that the amplitudes of
the oscillations were somewhat stress dependent,
even when the distortion was not significant.
Usually the stress decreased the amplitudes,
sometimes by as much as 30/z, although increases
were occasionally observed.

There are a number of possible sources of sys-
tematic error in this experiment besides those
arising from the signal distortion. First, it is
possible to change the observed dHvA frequency
by rotating the sample in the field. This error
would be largest for the y orbit where, for rotation
in a (110)plane, the frequency depends on the ro-
tation angle 8 measured from [110], as I" = E»a(l
+a'8a} for small 8. If the sample were rotated by
one degree relative to the field by the application
of maximum stress, an error of 8/c in the frequen-
cy change would result. However, the coil as-
sembly was a sufficiently tight fit in the Dewar
that a rotation of even a quarter of a degree was
improbable. The curves of the P-orbit frequency
for rotation in both (110) and (100) planes are suf-
ficiently flat within 5' of [100] that any contribu-
tions to the frequency change from rotating the
sample would be insignificant.

Another possible source of error is a displace-
ment of the sample relative to the field when stress
is applied. The field was homogeneous to 1 part
in 10' in the region occupied by the sample, and
the sample was fairly well constrained from such
displacements, so a maximum change of 5 parts
in 10' of the average field at the sample was un-
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likely. Even this change corresponds to an error
in the frequency change of only 2. 5% for the 7

orbit and 3. 8'%%uo for the P orbit.
Plastic deformation is another possible but un-

likely source of systematic error. The maximum
stress used (40 kg/cm') was well below the stress
required for slip. All data were taken after the
samples had been prestressed slightly above the
maximum stress used for data taking. The ex-
cellent reproducibility of the zero stress curves
before and after a loading cycle strongly suggests
that only elastic strains were involved in all runs.

A more serious source of systematic error is
the lack of knowledge of the actual strain in the
crystal. The force applied to the sample was
measured, whereas the strain in the sample had
to be calculated from the elastic constants on the
assumption that the sample deformed properly
under the load. This assumption would not be valid
if the polished ends of the sample were not parallel,
if the sample were a nonrectangular parallel-
opiped, if the sample bowed under stress, or if
barreling occurred to any significant extent. With
the exception of a bowing deformation, which re-
quires a very large stress, it is nearly impossible
to completely eliminate these problems.

Careful polishing of the samples should ensure
that they are in the proper rectangular parallel-
opiped shape. This was confirmed by examination
of the samples under a low-power microscope.
Some of the samples prepared before the final
polishing technique was established were not in
this shape, and the distortion was observable by
careful examination with the naked eye. The
stress derivatives found for the y orbit with these
samples were often far too large, and reproduci-
bility of the results between these samples was
poor. Reproducibility of the results improved
appreciably after the final polishing technique was
adopted. An improperly shaped sample will be
subjected to a shear by the load, which will cause
the transverse strains to be too large. This effect
would lead to too large a stress derivative, par-
ticularly for the y orbit.

The possibility of a barreling distortion is hard-
er to evaluate. The contact between the polished
ends of the sample and the lavite ends of the
stressing apparatus is not perfectly frictionless.
The ends of the sample are thus slightly con-
strained from expanding under the stress, whereas
the central portions of the sample are not, and
the sample can become barrel shaped. The strain
in the sample will be smaller than it should be
and will not be completely homogeneous. In con-
sequence, the stress derivatives will be too small,
and the amplitudes of the oscillations might show
an appreciable stress dependence. Careful polish-
ing of the samples will minimize this friction but

1.2 I [

0.8
U

Up

0.4

0 -2'' —
C/3 3 C/ 2C/ C

FIG. 7. Radial .elongation under extreme barreling con-
ditions. The radial elongation is normalized to the ideal
value {uo). Curve 1, 7ta=c {iong sample); curve 2, 7ta

=3c {short sample).

not eliminate it.
The effects of barreling will be considerably

more important in a short sample than in a longer
one with the same cross section, so a short (—,

' in.
long) sample (sample S,) was run to test for bar-
reling. The amplitude of the y oscillations for
this sample decreased by about 20/0 with maximum
stress, and the stress derivative was (4. 31&&10 )%/
(kg/cm ), which is about 8% lower than the average
found for the —,-in. -long specimens. Initially it
was thought that this difference could be due to
barreling. The stress dependence of the P orbit
could not be measured well enough to provide a
good test for barreling.

The barreling problem can be solved for the
worst possible case, in which the ends of the sam-
ple are completely constrained from expanding
laterally. A solution to this problem has been
published by Filon. ' His numerical results for
the radial strain of a cylindrical sample of radius
a and length 2c for the case ma= Sc are shown in
Fig. V. This choice of dimensions corresponds
roughly to the short sample case. Values of the
radial strain for the case ma= c, corresponding
roughly to the long sample dimensions, were
worked out using Filon's equations and are also
shown in Fig. 7. Considering the scaling of the
barreling with sample length for the worst possi-
ble case, it is probable that the difference between
the short and long sample results would have been
much greater had barreling been a serious prob-
lem.

Data were taken at both 25 and 105 Hz on another
sample to provide a check of the homogeneity of
the strain. At 105 Hz the outer 25% of the sample
was within one skin depth of the surface whereas
50% of the sample was within this region at 25 Hz.
The results for the y oscillation stress derivative
of (4. 93 x 10 )/o/(kg/cm ) at 25 Hz and (4. '7'7

x10 ')%/(kg/cm ) at 105 Hz agree well within the
8'%%uo experimental error. This sample was found
to be misshapen after the experiment, however,
so the stress derivatives were not included in the
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final analysis.
In all, the systematic errors are thought to have

been fairly well minimized. Nevertheless, the
standard deviation of the results is probably not a
true indication of their reliability. A more con-
servative estimate of their reliability is + 8% for
the y-orbit stress derivative and + 20% for the P-
orbit stress derivative.

III. COMPARISON WITH THEORY

A. y Orbit

The NFE approximation provides the simplest
model from which we can calculate the stress de-
pendence of the aluminum Fermi surface. This
approximation predicts an area for the y orbit
which is about twice as large as the actual area
(Fig. 8), so we would not expect quantitative agree-
ment with the measured stress derivative. The
NFE result is important, however, because the
NFE model is a strictly geometrical model which
is the basis of the multiple-OPW model. A

straightforward calculation yields a prediction of
an area increase of (2. 14x10 ')%/(kg/cm ). This
is about 45/o of the experimental value of (4. 6
x10 )%/(kg/cm ), hence the change in the area of
the orbit with stress is largely a consequence of
the change in geometry.

We must calculate the y-orbit stress derivative
from a four-OPW model to obtain quantitative
agreement with experiment. As mentioned in Sec.
I, the four-OP% Fermi surface is obtained from
Eq. (1):

~2
kq —EF

~2
k2 —EJ; A)y

2
Ega k 3

—Ey
~2k4- E~

=0

It is convenient to write the wave vectors in terms
of displacements from the symmetry point U:

k, = [—,', —,', 1]+(1/v 2)[1, 1, 0]x

+(1/v2)[ —1, 1, 0]y+[0, 0, 1]z,
k, =k, —[0, 0, 2],

k, =k, —[1, 1, 1],
k, =k, —[-1, 1, 1].

The orbit is obtained by solving Eq. (1) for z as a
function of x for a y =0 cross section.

The effects of a uniaxial stress are easy to in-

clude in the four-OPW model, and for a crystal
stress along [1, 1, 0] Eq. (1) becomes

(k, +5k, )'- (E,+6E,)
SU2+ C

Ky+&
sv&+ b

M)2+ C

(k+5k) —(E +5E )

SU)+ 0
1+8

SU y+ Ll

Kg+ 0
(k, +5k,)'- (E,+5E,)

SU2+ d

Kg+ 5

zo&+ b

2+
(k4+ 5k4) —(EJ;+ 5E~)

=0. (6)

The changes in the wave vectors 5k; are readily
determined from the elastic constants. Since the
difference between the four-OPW and NFE values
for E~ is very small (0. 85685 and 0. 86057 Hy,

.~z

p ~(27r/ )

FIG. 8. The NFE and four-OPW y orbits. Curve 1,
NFE, T=0; curve 2, NFK, T =104 kg/cm2 curve 3,
four-OPW, 7 =0; curve 4, four-OPW, T=104 kg/cm .

respectively~), and since the changes in the pseudo-
potential matrix elements are expected to be
small, 5E~ should be the same as the NFE value

to a very good approximation. The changes in the
pseudopotential matrix elements (a, b, c, and d)
must be determined from a model for the pseudo-
potential, for which we now consider several pos-
sibilities.

The NFE model suggests that most of the change
in area is a consequence of the geometry change.
As a reasonable first approximation, then, con-
sider the matrix elements to be unchanged with

stress. Equation (6) leads to a stress derivative
of (3.45 x10 ')%/(kg/cm'), which is about 25% too
small. Some change in the pseudopotential matrix
elements is evidently needed.

The change in the matrix elements might be
found from a simple point-ion potential for which a
formula is easily obtained. This potential consists
of a Coulombic attraction to the ion core and a 5-
function repulsion at the nucleus, both of which are
considered to be screened. The equation for the
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form factor is TA BLE II. Summary of four-OPW calculations.

tp(q) = (-4pZe /q + p)/Qs(q), (7) y-orbit stress derivativesa
C d PA/Ap Model

where Q is the atomic volume and s(q) is the
Hartree dielectric function. ' This form factor is
plotted as a function of q/k~ in Fig. 9. The pa-
rameter P can be chosen in various ways. Taking
P= 43. 8 Ry/atomic unit of volume, sets tp(q) equal
to zero for q/k~ =1.41, consistent with Harrison's
"OPW" form factor. ' A uniaxial stress will
change the values of q for which Bragg reflection
planes exist as well as the volume of the crystal.
Values for the changes in the matrix elements
were calculated from this form factor on the as-
sumption that P remains unchanged. These values
(listed in Table II) together with Eq. (6) lead to a
stress derivative of (5. Ox lp 3)'%%up/(kg/cm ), which
is nearly within the experimental error. It should
be noted that the values of sv& and sv~ predicted for
this model for the pseudopotential are far too
large, so only the changes in the matrix elements
predicted by the model were used in all calcula-
tions based on this model.

A better pseudopotential has been devised by
Heine and Abarenkov. ' Physically, their model
replaces the actual potential by a Coulomb poten-
tial outside a sphere of radius R~, and by an ener-
gy- and angular-momentum-dependent square well
inside of this sphere. The form factor for this
model potential is plotted in Fig. 9. The agree-
ment with Ashcroft's values for the matrix ele-
ments (tp, = 0. 0179 Ry and tps --0. 0562 Ry) is quite
good. This form factor can be represented by a
relation of the form tp(q) = f(q)/Q, and the changes
in the matrix elements can be found in a straight-
forward manner. These values, together with Eq.
(6) lead to an area increase of (4. 50 x10 )/p/(kg/
cm ), which is satisfactorily within the experimen-
tal error.

le
V

I
—0.05

FIG. 9. Comparison of the Harrison point-ion and
Heine-Abarenkov pseudopotential form factors. The
Harrison point-ion form factor (open circles) was com-
puted from the formula su(q) = (-4wse2/q t.p)/Qe(q), with

P =43.8 Ry/atomic unit of volume, using a Hartree di-
elect;ric function for c (q).
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gA/Ao is in units of 10 %/(kg/cm ) and matrix element
changes are in units of Ry/104 kg/cm .

"6A/A 0 is in units of %/kbar and matrix element changes

are in units of Ry/10 kbars.

The four-OPW y-orbit stress derivative can thus
be made to agree quite well with experiment. The
result is not very sensitive to the choice of pseudo-
potential, although some change in the pseudopo-
tential matrix elements is needed to explain the
result. The calculations described above were
performed using Ashcroft's parameters as a basis.
The results of all calculations using Anderson and
Lane's parameters as a basis agreed with those
obtained using Ashcroft's parameters as a basis
within the estimated computational errors (3/p of
the calculated values for the y-orbit derivatives).
The areas in stressed aluminum were calculated
for a stress of 10 kg/cm in order to keep the
computational error small. The four-OPW y
orbits for stressed and unstressed aluminum are
shown in Fig. 8.

The pressure derivative of the y-orbit area can
also be calculated from Eq. (6) (a = b and c = d in
this case). The changes in the wave vectors were
obtained from the elastic constants and the change
in Ez from the NFE model as before. Use of the

q dependence of the Heine- Abar enkov form factor
for the changes in the matrix elements leads to a.n

area change of —0. 41'%%up/kbar. This value is in
satisfactory agreement with Melz's experimental
value of (- 0. 47+0.06)%/kbar. Ina somewhatmore
involved calculation based on the four-OPW model,
Hepfer and Rayne" obtained a pressure derivative
of —0. 43/p/kbar. The matrix element changes
predicted by the Heine-Abarenkov model were
used in their calculations.

The y-orbit pressure derivative is more sensi-
tive to the model for the pseudopotential than is
the stress derivative. The point-ion potential
with P= 43. 8 Ry/atomic unit of volume leads to a
pressure derivative of —0. 70/p/kbar, for example.
It should be noted that the NFE model, which pre-
dicts an area increase of 0. 074'%%up/kbar, is entirely
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inadequate for this calculation.
A satisfactory fit to the y-orbit alloy dependence

can be obtained from the equation

eE„BA. ,

(6)eE (~

in which 6E~ derives entirely from the change in
effective number of conduction electrons N, and
BA/&Elz is obtained from the band structure ef-
fective mass. ' This procedure is equivalent to
calculating the area change directly from the four-
QPW model with no change in the matrix elements
and neglecting any change in the wave vectors and
Fermi energy arising from the small volume
change. The result is an area decrease of 7. 0/o
for a 0. 33% decrease in N, (She.pherd and Gordon
show a calculated value of —7 7%, b.ut a 7. 00/o de-
crease is not a worse fit to their data. ) The effects
of the volume change can be estimated from the
pressure dependence and the room temperature
changes of the lattice constant with alloying. ' In-
cluding these effects would lead to a 6% decrease
for a 1% magnesium alloy and a 7. 3/0 decrease
for a 1'%%uo zinc alloy. The data are not adequate to
detect these differences. The NFE result, an area
decrease of 4. 6/0 for a 0. 33% change in N„ is
definitely too small, however.

All of the y-orbit data can thus be well explained
by the four-QPW model. There are several addi-
tional potential sources of difficulty which should
be mentioned. First of all, the matrix elements
obtained by Ashcroft and by Anderson and Lane
should be regarded as matrix elements of the form
co(q), defined by the relation

w(q —q')u(q ')
sv(q) =su(q)+ Z

(~ (

where q and q
' are reciprocal lattice vectors. '

It is not entirely clear whether the change in ma-
trix elements calculated from the various models
(in particular, the Heine-Abarenkov model) should

be regarded as more appropriate for so or m matrix
elements. They were used as zv matrix elements
for better or worse. For the stress dependence
this makes little difference since the stress de-
pendence was not very sensitive to the choice of
pseudoyotential. The difference might be more
important for the pressure dependence, although
the fit based on the Heine-Abarenkov model is
satisfy'.

ctory.
The matrix elements could also be k dependent,

but this effect should be of minimal importance
for an orbit as NFE-like as the y. The energy de-
pendence of the matrix elements arising from the
energy dependence of the square well in the Heine-
Abarenkov model could be of some importance in
calculating the pressure and alloy dependence, but
should be unimportant in calculating the stress
dependence, since the change in Fermi energy i.s
very small. There is also some question of
whether the volume dependence of the screening
is adequately treated by the Heine-Abarenkov
model as used here. The data are not adequate
for a definitive test for these effects, which are
expected to be small in any event.

8. P Orbit

The NFE model successfully predicted the sign
and order of magnitude of the y orbit stress deriv-
ative. This model predicts a stress derivative
of (-3.3x10 )/o/(kg/cm ) for the P orbit which is
nearly the opposite of the experimental value. The
change in the pseudopotential matrix elements with
stress thus dominates the geometrical changes in
determining the P-orbit stress derivative, and we
must turn to the four-OPW model in order to cor-
rectly predict even the sign of the stress deriva-
tive. This is hardly surprising considering the
major differences between the NFE and four-OPW
P orbits (Fig. 10).

The four-QPW secular equation for an aluminum
crystal compressed along [010] can be written as

(k, +6@,)'- (E,+6E,)
SUp+ 5
SU(+ 0
AJy+ 0

SUy+ 0
se, +a

(k3+ 6&3) —(EJ, + 6E~)
SD3+ C

ZUy+ Q

iV)+ 0
ZUp+ C

(k4+ 5@4)' —(E~+ 5E~)

=0

The k,. are now most conveniently written in terms
of departures from the symmetry point S', for
example,

k, = [2, 0, 1]+[1, 0, 0]x+[0, 1, 0] y+[0, 0, 1)z .
(11)

The P orbit is obtained by solving for z as a func-
tion of x for the y = 0 cross section. The changes

in wave vectors, Fermi energy, and matrix ele-
ments with stress were obtained in the same man-
ner as for the y orbit.

For no change in the matrix elements, Eq. (10)
leads to a P-orbit stress derivative of (-0.6
&&10 )%%uo/(kg/cm ). This is still of the wrong sign,
although it is a definite improvement over the NFE
result. A much improved result of (1.8 x10 )%/
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FIG. 10. NFE and four-OPW P orbits. Curve 1, NFE,
T = 0; curve 2, NFE, T =10 kg/cm; curve 3, four-OPW,
T=0; curve 4, four-OPW, T=10 kg/cm .

(kg/cm ) is obtained when the changes in the matrix
elements are found from the q dependence of the
Heine-Abarenkov form factor. Although the result
is 45/o too low, it is at least of the proper sign and
order of magnitude. Finally, the point-ion poten-
tial leads to a stress derivative of (4. 4x10 ')%/
(kg/cm'), which is slightly larger than the experi-
mental value plus the experimental error. The
possible computational error is estimated to be
about 5'%%uo of the calculated derivatives of the P-
orbit area.

The pressure dependence of the P orbit can be
calculated in the same manner as for the y orbit.
Use of the Heine-Abarenkov model for the change
in matrix elements leads to an area increase of
1.48%/kbar, which is not far from Melz's experi-
mental value of (1.20+0. 15)%/kbar. The result
of Hepfer and Rayne's calculation was 1.37'%%uo/kbar.

Use of the point-ion potential for the changes in
matrix elements results in an area increase of
1.77/o/kbar. The NFE result, an area increase of
0 074%/kb.ar, is inadequate, as itwas for the y orbit.

The dependence of the P orbit on alloying cal-
culated from Eq. (9) using Ashcroft's value for
the band structure effective mass is a 32% de-
crease in area for an 0. 33/o decrease in N, The.
result calculated from the four-OPW model on the
assumptions of no change in the matrix elements and
neglecting any volume effects is an area decrease
of 27%%uo for the same decrease in N, . The differ-
ence probably arises from a small energy depen-
dence of the matrix elements that Ashcroft as-
sumed in his calculations of the effective mass.
The 32% decrease is clearly a better fit to the

experimental data. The NFE result, an area de-
crease of 22%, is too small.

Small orbits such as the P orbit are in general
very sensitive to the effects of the pseudopotential.
The effects of the difference between se and se ma-
trix elements and the k and energy dependence of
the matrix elements will accordingly be more im-
portant in calculating the P-orbit derivatives than
for calculating the y-orbit derivatives. Unfortu-

nately, it is not simple to include these details in
the calculations, but the results of the calculations
based on the point-ion potential should represent
an upper bound to their importance.

It should be noted that a slightly larger change
in the matrix elements than that predicted by the
Heine-Abarenkov model as used here would im-
prove the calculated stress derivative for the P
orbit without changing the calculated y-orbit stress
derivative much. A similar increase in the change
in so~ would also improve the fit to both pressure
derivatives. Considering the high sensitivity of
the y orbit and the relative simplicity of the four-
OPW model, the agreement between theory and ex-
periment for the P-orbit results is reasonably
satisfactory. However, in view of the recent work
of Van Dyke, agreement with the four-OPW model
may well be fortuitous.

IV. SUMMARY

The stress dependence of the y and P orbits of
the aluminum third-zone Fermi surface was mea-
sured by means of a de Haas-van Alphen phase-
shift technique. The y- and P-orbit areas in-
creased by (4. 6 + 0. 3)x10 3/o and (3.4 +0. 7) x10 /o/

(kg/cm ), respectively, under compression. The
estimated errors are fairly conservative to allow
for the possibility of systematic errors.

A four-OPW model was used to calculate the de-
pendence of the orbits on uniaxial stress, hydro-
static pressure, and alloying. The calculated re-
sults for the y orbit agreed with experiment within
the experimental error when the changes in the
pseudopotential matrix elements were obtained
from the Heine-Abarenkov model for the pseudo-
potential or, in the case of the alloy dependence,
were assumed to be zero. Discrepancies roughly
twice as large as the experimental error remained
in similar four-OPW calculations for the P orbit.
In all, the four-OPW model provided a reasonably
satisfactory, if possibly fortuitous, explanation
for the dependence of the two orbits on uniaxial
stress, hydrostatic pressure, and alloying.
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Presented here are the first systematic measurements of the low-field (0-80-Oe) microwave
surface impedance of cadmium. The surface impedance is dominated by transitions be-
tween magnetic surface states. The magnetic fields at which these transitions occur were
measured as a function of the orientation of the magnetic field in the three principal crystal
planes of cadmium. Five distinct series are presented and the ratios of the observed transi-
tion fields agree with the Prange —Nee theory. These series are assigned to points on the
Fermi surface and the Fermi velocities on the third-band lens are presented.

I. INTRODUCTION

The purpose of this paper is to report the re-
sults of an extensive experimental investigation
and analysis of the cadmium magnetic-surface-
states spectra as a function of sample orientation.
These low-field surface-impedance oscillations
were first reported by Khaikin' in 1960 and were
later studied experimentally by Koch and Kuo. ~

They reported two features of the surface-resis-
tance-derivative maxima that were uniquely differ-
ent from cyclotron resonance. First, the magnet-
ic fields ot the maxima scaled as &u3~ (where &u„
is the microwave field frequency), in contrast to
cyclotron resonance where the magnetic fields
scaled as w„. Second, no great loss of signal oc-
curred when the field was tipped out of the surface
of the sample. In 1968 Prange and Nee proposed an
elegant mechanism to explain the low-field oscilla-
tions. They proposed that the electrons which partic-
ipate in the low -field power absorption are those which
are reflected specularly from the surface of the metal
and repeat identical skipping orbits in the microwave
skin depth. Since at these very low magnetic fields a
skip subtends a very small arc, the electrons which
are responsible for the low-field oscillatory sur-

face impedance are located on a narrow band near
p, =0 on the Fermi surface, where p, is the veloci-
ty normal to the surface of the metal. They also
suggested that the point on this band where the
resonance parameter is stationary with respect to
the momentum parallel to the magnetic field, k„,
will contribute most strongly to the resonance.
Since the Nee-Prange theory was published, Koch
and his collaborators have experimentally con-
firmed many aspects of the theory. Mathematical-
ly, the electrons involved are magnetically induced
quantum surface states. Prange and Nee solved
the Schrodinger equation for electrons in a poten-
tial well formed on one side by the essentially in-
finite surface potential of the crystal and on the
other side by the nearly linear attractive potential
due to the magnetic field. From the resulting
wave functions and energy eigenvalues, they cal-
culated the surface impedance. The equation
giving the magnetic field IJ „, at which the re n
transition occurs, is

=a',"(ce/e)(a —a„) "'(2z, /v', )"'
where a is the mth negative root of the Airy func-
tion Ai(z). Here K, is the radius of curvature of
the electron's orbit in k space at the resonance


