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Appropriately defined modified moments of the frequency distribution provide a powerful new
tool for studying the properties of solids in the harmonic approximation. They can be calcu-
lated much more easily than power moments and stably determine the thermal and dynamic
properties of harmonic solids with great accuracy. We define a set of modified moments ap-
propriate for harmonic solids and show how they can be computed directly from the dynamical
matrix by algebraic techniques. As an illustration of the method, forty exact modified mo-
rrj.ents are given for the cubic close-packed solid with nearest-neighbor interactions. The
method is stable for the computation of approximate modified moments for models where
exact computation is not feasible. In contrast to approximate power moments, approximate
modified moments contain sufficient information about the frequency distribution to determine
thermal and dynamic properties of harmonic solids.

The harmonic approximation to crystalline solids
occupies a central role in solid-state physics. '
When the temperature is sufficiently low, the
harmonic approximation may itself be quite accu-
rate, and, in addition, more sophisticated treat-
ments often rely upon it as a starting point. In
spite of the fundamental and relatively simple na-
ture of the harmonic model, the vibrational fre-
quency spectrum is known exactly for only a few
very special cases, ~ and approximate methods
must be used to investigate the properties of most
examples, even some of the simplest,

Power moments have often been used to charac-
terize the vibrational frequency spectrum of har-
monic crystals. ' Recently considerable prog-
ress has been made in the calculation of these mo-
ments and in determining other properties of the
crystals from them. Numerical "and algebraic '~

procedures have been used to compute substantial
numbers of power moments for a variety of crys-
tal structures, both with nearest-neighbor and with
longer- (but finite) ranged forces. Wheeler and
Gordon"' have shown that Gaussian quadrature
methods can be used to determine the thermody-
namic properties of harmonic solids extremely
accurately from the moments.

A serious limitation to these promising develop-
ments arises because the power moments are only
sensitive to the high-frequency portion of the vi-
brational spectrum. As a consequence, the deter-
mination of quadrature formulas from power mo-
ments is numerically unstable. This severely
limits the number of moments which can be used
in practice, both because the moments themselves
must be known exactly (or to extremely high pre-

cision) in order to convey accurate information
about the frequency spectrum, and because increas-
ingly high precision must be used to obtain reliable
quadrature formulas from the moments.

In this paper we show how both of these difficul-
ties can be surmounted. Sack and Donovan" and
Gautschi'4 have observed that suitably chosen
modified moments determine Gaussian quadrature
rules for classical weight functions far more
stably than do the power moments. This suggests
that modified moments may be useful in the study
of harmonic solids. We have found that the vibra-
tional spectrum of a harmonic solid can be charac-
terized by modified moments which are more
sensitive to the spectrum than are the power mo-
ments, which determine the quadrature rules ex-
tremely stably, and which are easier to calculate
than the power moments themselves.

The even-power moments p,„are defined as the
average of the 2nth power of the frequency ~:

p. = f & p(&)d& ~ (&)

where p(v) is the spectral density. Modified mo-
ments v„may be defined analogously by

v„= j ~ p„((u') p((o) d(o, (2)

where the p„are polynomials of degree n satisfying
a three-term recursion relation:

p„„(x)= (x —a„)p„(x) —b„p„,(x),

(P, =o, P, =l) (3)

We have found that shifted Chebyshev polynomials
of tl. ~, =econd kind, for which

s„= (~~ ), b„= (4~ )'
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independently of n, are particularly appropriate
for the harmonic solid.

Isenberg has shown that the dynamical matrix
for a simple harmonic crystal with finite-ranged
force constants can be manipulated algebraically
to obtain the even power moments of the vibrational
spectrum. The elements of the dynamical matrix
D can be expressed as finite multinomials in
formal parameters x, y, z, and their inverses,
x ', y ', and s . The powers of D are obtained
algebraically as functions of the formal parameters,
and the nth even power moment is given by the
term independent of the parameters x, y, and z
in the trace of the mth power of D.

This method can be adapted to obtain modified
moments. We define a, sequence of matrices P„
by the recursion relation

PO=I, P i
—-0. (5)

The elements of D are formed in terms of the for-
mal parameters x, y, and z, as above, and the a„
and g„are the recursion coefficients of the P„ in
Eqs. (3) and (4). The modified moment v„ is then
just the term independent of x, y, and z in the
trace of &„.

Exact modified moments clearly contain precise-
ly the same information as exact power moments.
The modified moments, however, enjoy significant
advantages over the power momeg. ts.

First, the exact computation of modified moments
is easier than the exact computation of power mo-
ments because the modified moments are much
smaller and many more can be calculated before
special multilength arithmetic procedures must be
employed. As an illustration, we have computed
the first 40 even modified moments for the cubic-
close-packed (ccp) crystal with nearest-neighbor
central-force interactions. (This is more than
twice the number of exact power moments pre-
viously reported. ) These modified moments are
presented in Table I in terms of the dimension-
less variables v„=16"v„/&u~"~. (When the problem

TABLE I. Modified moments for cubic-close-packed
(ccp) harmonic solid with nearest-neighbor force constants.

')I'
n

is formulated in terms of these variables, the
coefficients in D are integers and the a„and b„of
Eq. (3) become the integers 6 and 16, respectively. )
The power moments, which can be calculated from
the modified moments by use of Eq. (3), grow
much more rapidly than do the modified moments.
For example, pro/v, 0=5&10' and p»/v»=3x102 .
The computation of 40 modified moments required
only standard double precision arithmetic, where-
as direct computation of the same number of power
moments is unfeasible because of the multiple pre-
cision arithmetic required.

A second and more important advantage of the
modified moments is that they need to be known
only approximately to reliably determine the prop-
erties of the solid. Approximate modified mo-
ments determine quadrature formulas very stably.
There was no detectable buildup of error when the
40 modified moments given above were used with
single precision arithmetic to determine the quad-
rature formulas used by Wheeler and Gordon. In
contrast, the quadrature formulas could not be
determined at all from 40 power moments, even
with double precision arithmetic, because of the
exponential growth of rounding errors. Details of
these calculations as well as some procedures for
the manipulation of modified moments and methods
for the very accurate determination of thermal
and dynamic properties will be presented in a more
extensive paper.

In view of the utility of approximate modified
moments, it is of interest to determine the stabili-
ty of the procedure for computing them. This is
particularly important because, in all but the sim-
plest models, the coefficients of the formal param-
eters in the dynamical matrix are functions of force
constant ratios and cannot be represented as inte-
gers. (The moments can be found exactly as func-
tions of the force constant ratios, but this is very
cumbersome. 7"0) An investigation of the ccp
model with both nearest- and next-nearest-neigh-
bor central-force interactions indicates that the
computation of approximate modified moments is
very stable. It is therefore possible to carry out
the entire computation of accurate thermodynamic
properties of a complex solid, from the dynamical
matrix, through modified moments, to quadrature
formulas, within single precision arithmetic.

We believe that modified moments provide a
powerful new tool for the study of harmonic solids.
Moment techniques have the advantage over root-
sarnpling procedures that thermal and dynamic
properties can be expressed by simple quadrature
formulas. which involve only a few numbers and whi ch
provide error bounds. Modified moments enjoy the
additional important advantage that they determine
these properties stably even when they are known
only approximately, and can themselves be com-
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puted stably with limited precision arithmetic.
More complex models, long-ranged forces and
other procedures for computation are being inves-
tigated.
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A modified-Bloch-wave expansion is used to develop a theory of high-energy-electron dif-
fraction from imperfect crystals. To compute these new Bloch waves one must solve a linear
hyperbolic system in n unknowns. Scattering among the Bloch waves is controlled by the ma-
trix elements of the perturbing potential, and various approximations to this scattering are
discussed. The hyperbolic system is transformed to normal form; in making this transfor-
mation, the unknown functions become the plane-wave amplitudes of the Darwin representa-
tion. The normal form reveals the region of determinacy of the system; a cone generated
by the diffracted beams. The contraction of this cone to a line (the column approximation) is
discussed in terms of the Bloch-wave scattering.

I. INTRODUCTION

In the analysis of high-energy-electron diffrac-
tion from crystal defects, one never loses sight of
the periodicity of the perfect crystal. This mo-
tivates one to begin with one of the well-understood
representations for the perfect-crystal wave func-
tion, and then modify it in such a fashion as to
render theoretical calculations and experimental
analysis tractable.

The two common representations for the wave
functions are the Bloch representation and the
Darwin representation. In the Bloch representa-
tion, the wave function g is expressed as a jinear
combination of the eigenfunctions of the perfect-
crystaL Hamiltonian, which is always of the form
E,( r )e'", where E~(r ) is a periodic function of the
crystal lattice. In the Darwin representation, one
expands g as a summation of plane waves, with

spatially varying amplitudes, traveling in the
various diffraction directions as specified by
Bragg's law.

Surprisingly, the modification of these represen-
tations to include nonperiodic distortions associated
with crystal defects has been almost exclusively
directed toward the Darwin representation. ' In
order to complement these approaches, we shall
here begin with a modified Bloch representation in
which the amplitudes to excite various Bloch states
are changed from the constants e~ of the perfect
crystal to slowLy varying functions of position 8~(r)
in the defect crystal. Wilkenss and later Howie and
Basinski have considered expansions with modified
Bloch waves, but either initially (Howie and
Basinski) or early in the derivation (Wilkens) they
restrict the variation in 8~(r) to z dependence,
where z is a coordinate parallel to the zone axis of
the diffracting planes. These treatments involve


