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The crystallographic and magnetic phase transitions in the rare-earth vanadates TmVO4,
DyVO4, and TbVO4 are studied. Symmetry-adapted spin Hamiltonians, involving quadrupolar
and dipolar interactions, are constructed and treated in the molecular-field approximation.
The competition between Jahn-Teller distortion and magnetic ordering is illustrated by the
comparison of TmVO4 and TbPO4. The two phase transitions found in DyVO4 are repro-
duced and it is shown that a dipolar phase transition might appear in TbVO4 at a very low tem-
perature. We also determine the influence of a magnetic field applied along the various sym-
metry axes.

I. INTRODUCTION

Rare-earth vanadates (and also phosphates and
arsenates) display an interesting variety of crys-
tallographic and magnetic phase transitions. For
instance, DyVO4 ' undergoes a crystallographic
phase transition at 14 'K in which the symmetry is
lowered from that of the tetragonal zircon struc-
ture (D4„) to the orthorhombic symmetry Da„, anti-
ferromagnetic ordering appears below 3 'K, with

the ordering axis along the a or b axis of the
tetragonal cell. TbVQ4 and TmVO4 undergo only
a crystallographic phase transition, at 33 and

2. 3 'K, respectively, in which the symmetry is
lowered to D~„.

In Ref. 4 it has been shown that magnetic systems
with dipolar and quadrupolar interactions may show
two successive phase transitions: A quadrupolar
phase transition followed, at a lower temperature,
by an ordinary dipolar magnetic phase transition.
Although only Ising-like interactions were intro-
duced, the theory gave a good qualitative picture of
the magnetic properties of DyVO4. However,
quadrupolar ordering in DyVO4 is nonaxial, and
dipolar ordering appears in the basal plane.

In this paper, a similar theory is presented and

applied to TmVQ4, DyVO4, and TbVQ4. More
realistic interactions are introduced: nonaxial
quadrupolar interactions, in-plane dipolar inter-
actions, an axial crystalline field, and Zeeman in-
teractions along the symmetry axis. Similar
molecular-field calculations have already been
performed by Pytte and Stevens. These authors
considered only the crystallographic phase tran-
sition; their order parameter is a lattice distor-
tion whose value is determined self-consistently.
This lattice model and the present author's mo-
lecular-field treatment of an interacting system are
equivalent. In the author's formalism, only the
spin system is considered; magnetic as we11 as
crystallographic phase transitions can be de-
scribed, and the influence of a magnetic field on

the crystallographic phase transition is easily
studied. This treatment is pur ely phenomenological
and the origin of the various dipolar and quadru-
polar phase transitions are not discussed, as
Pytte and Stevens did. Elliott et al. have also
presented a molecular-field treatment of the crys-
tallographic phase transition in DyVQ4. They con-
sidered the coupling of the Dy

' ion to both the dy-
namic phonon modes and to the static elastic
strain and they solved the coupled equations of
motion for the long-wavelength acoustic phonons.

This paper is organized as follows. In Sec. II
the spin Hamiltonian adapted to each compound is
determined, using simple group-theoretical argu-
ments. In Sec. III the elementary case of
TmVO, is considered. In Secs. IV and V, re-
spectively, the phase transitions in DyVQ4 and
TbVQ4 are described. It is shown in particular
that the application of a magnetic field along the
c axis can suppress the orthorhombic distortion,
and that a dipolar phase transition might appear in
TbVO4 below 1 'K.

II. SPIN HAMILTONIAN

The three ions Tm ', Dy ', and Tb ' in rare-
arth vanadates have low-lying crystalline field

levels well separated from the excited levels: a
non-Kramers doublet I 5 for Tm '; two Kramers
doublets I'6 and I', for Dy' ', two singlets 1", and
I 3 and a doubl et I"5 for Tb '. In the fol lowing,
we shall neglect entirely the other excited states
and describe each ion by a spin Hamiltonian. We
need to know the form of the operators S", S', S',
(S') —~S(S+ I), (S") —(S'), and S"S'+S'S".
The transformation properties of these operators
under the operations of the point group D2„—-—42m
are shown in Table I (x and y are chosen along the
a and b axes of the tetragonal cell).

Tm3+

Since r', = r, + r, + r, + r„(r,js"
I r, ) =0,

(I', (
S'

~
I', ) = 0, and (I", ( S 'i I",) o 0, we may then
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TABLE I. Transformation properties of the dipolar
and quadrupolar operators in group D2d =42m.

r,
I'2
I'3

r,

A1g

A2g
B1
82'

(s")'+ (s')'; (s')'
Sz

In the same basis

write
(,), S(S+1)

(I'& l (S') —&S(s+ 1) I I', ) is different from zero, and

in the eigenbasis of S',

with —,'(2q4+ 2q7) = Qo. We look for S", which de-
pends on three parameters, and (S")'—(S")', which
depends only on one parameter. We may take

(s')'- -,'s(s+ I) = -,'q,
I

Q, is the average of (S')'- 3S(S+1) above the
transition temperature. We look for the operator
S"S'+ S' S"whose average measures an ortho-
rhombic distortion along [110j. This operator de-
pends on one parameter, since I'4 appears only
once in I'5, and is nondiagonal in the eigenbasis of
S' since the eigenfunetions of S' have an axial sym-
metry, so that we may take

and

$ X l'- )

Since I'6 = I 7
= I', + I + I'4 and I' I', = I'3+ I'

+ I."„we have

Tb'+

Since r', = r,' = r„r, r, = r„r, r5 = r, r5 = r„
and I', = I', + I'z + I",+ I'4, then S', (S') ——,'S(S+ 1), S",
and S"9"+S'S" depend, respectively, on 1, 1, 2,
and 1 parameters;

r5 r,

S— S(S+ 1)S
q5

q5

+g35

l
kg1

g15 g15

We shall write later S"S'+ S'S"=P»P»+P55&55
and S —g15 S15+g35 S35.

As explained in the Appendix, it is possible to

describe the crystal field band (I', + I', + I 3) of Tb'
using two effective spins 2, o and 7'. ' In the follow-
ing, however, we shall not use the expressions of
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FIG. 1. Competition between dipolar and quadrupolar
ordering when the ground crystalline level is I'5 (YmVO4
and TbPO4).

the dipolar and quadrupolar operators as a function
of g and 7'.

approximately to TbVO4. " The second situation is
found in TmVO4 and TmAsO4. ' The ground crystal-
line level of Ho" in HoPO4 is I „"but no phase
transition in HoPO4 has been reported yet.

Suppose now J=O. A magnetic field along the e
axis stabilizes the quadratic phase'" (in the dis-
torted phase, I', —I'2+ I'4, (I'2 i

S'
~
I',) e 0). The

Hamiltonian of the system is similar to that of an
S'= 2 Ising dipolar system in a transverse field'
and in fact the operators P and (S")' are identical;
if H, WO, there is a distortion only if L is larger
than a threshold value proportional to K,. A field
in the a-b plane has no effect on the distortion
since (r, IS"

I r, ) = (r, IS'ir, ) =0.

IV, PHASE TRANSITIONS IN DyVO4

Because of the lack of experimental information
and in order to simplify the problem, we shall use
the following values for the parameters of the spin
Hamiltonian:

1gs= »
III. PHASE TRANSITION IN TmVO4

q6= —1, qv =+1,

We consider the following Hamiltonian X for a
lattice of spins S'= &, and the corresponding molec-
ular-field Hamiltonian 3Co (we choose g, = 1 to sim-
plify the notations):

K= —Z J;,S( S,' — Z L;; P; P),

which means using a true spin -', to describe the
levels I'6(S' = + &) and r~(S'= + —', ) of the Dy

' ion.
We shall consider first the following quadrupolar
Hamiltonian (D &0):

Q/N= —HS;' —r)P( . (2)
&=DE Q; —Z K), Q;Qq —Z Lo PP;, (6)

P, =S";S';+S';S";. H and q are the molecular fields
associated with the order parameters M = (Sf) and
P= (P, ). The choice of the nonaxial guadrupolar
parameter [S"S'+S"S ', and not (S") —(S') or a
linear combination of these two operators] allows
only distortions along [110], as observed experi-
mentally. This procedure, although not general,
avoids the introduction of a fourth-order anisot-
ropy in the a-b plane.

Following the method used in Ref. 4, we easily
get H= 2JM and g= 2LP, whence the two self-con-
sistent equations for M and P:

M = 2 JM(tanhPA. )/X,

P = 2LP(tanhPX )/A. ,

with

Q; = (S;)'- —.
' S(S+ 1),

P = (Sq) —(Sq) .
We restrict ourselves to positive values of K=K(0)
=g& J„and L=L(0)=g&LO If L/K= —,

' and D=0
only, X is isotropic.

If o and g are the molecular fields associated to
the order parameters Q=(Q, ) and P=(P,) the
molecular-f ield Hamiltonian is

K /No= (D —o)Q; —gP; .

The molecular-field etiuations are o = 2KQ and
g=2LP, whence the self-consistency relations for
Qand P:

with

X —4J'M +4L P

Q = (2KQ —D)(tanhPX)/X,

P = 6LP(tanhPX)/X,

(6)

J and E are the Fourier transforms of the interac-
tions J,~ and K;~; for instance, J=-J(0)=g~ J,J.

The phase diagram in the (kT/L, J/L) plane is
shown in Fig. 1. There is either dipolar or quad-
rupolar ordering (except for J =L, in which case
the ratio M/P is not determined) and the transition
is second order. The first situation corresponds

with

A. = (D —2KQ) p12L P .
The free energy per ion is given by

$0/N = —(1/P) ln(4 coshPA)+KQ'+ LP'. (ll)
A first solution of the coupled equations (8)-(10)
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FIG. 2. Axial and nonaxial ordering in DyVO4, the
phase diagram in the g T/X, L/X) p'jane is shown for
D=O (dashed lines) and D=0.3 (full line).

Q= Qp D/(2K- 6——L),
P =X /12L -3Qp,
X = 6L tanhPX .

(12a)

(12b)

(12c)

At 0 K, X=6L and P= v 3(1 —Qp)
~ . The condi-

tion iQpi 1 gives the stability condition of the
orthorhombic phase

L & —3m+ —,'a. (13)

If this condition is fulfilled, the transition in P is
second order; the transition temperature T~ (P~
= I/IpT~) is given by

Qp = tanh6P~ LQp .
The phase diagram in the (k T/K, L/K) plane is

shown in Fig. 2. For D=O (dashed lines) there is

is P=0, Q=tanh[P(2KQ —D)]. It describes an axial
phase. A second solution describes an orthorhom-
bic phase (the sign of P is not determined, P &0 and
P&0 describe two domains a/b &1 and a/b & 1):

a phase transition either in Q(L & pK) or in P(L &-,'K)
(if L= pK only P +3Q is determined as a function
of T). For DWO, the second-order transition in Q
disappears; if L» D, K one has k T~ ~ 6L.

In DyVO4,
' kT~=14'K and 2D=3 cm '=4. 5'K so

that if K=O, L=2. 36'K (if 2D=9 cm ', L=2. 6'K).
Figure 3 represents the phase diagram for %=0,
Fig. 4 the thermal variation of P and Q (full lines);
Qp = —0. 16 and Pp = 1.71. Since the only experi-
mental result is the value of T~, it is not possible
to evaluate L and K independently. (The splitting
between the two Kramers doublets near the satura-
tion is known experimentally, but is not indepen-
dent of T~ in the molecular-field approximation;
we have chosen to fit L to the value of T~. )

Equations (8)-(10) are very similar to the
molecular-field equations for an Ising model in a
perpendicular field. ' In the two problems, a
threshold value of the interaction between ions is
found. Here the axial crystalline field opposes an
orthorhombic distortion, and such a distortion is
stable only if it can lower the energy of the ground
state. The same situation ir found in the problem
of magnetic ordering among non-Kramers ions
whose single-ion ground state is made of two non-
magnetic singlets. "

A magnetic field H, along the c axis stabilizes
the axial phase. The threshold value for L is in-
creased as shown in Fig. 3 (dashed line) for K,
= 10 'K (in practice a large field would be necessary
to lower the transition in P since the spectroscopic
gp and g7 factors of DyVO4 are very small). Fig-
ure 4 shows the thermal variation of P, Q, and
M, =(S) for K, =10 'K. Q is no longer a constant
below T~ and may be positive. The saturation
value of P is decreased by H, ; the saturation of M,
is opposed by the distortion, whence the plateau of
M, (T) around T~.

A magnetic field H„along the a axis suppresses
the second-order transition in P as shown in Fig.

2.35

I.? I

I.45—
P(Hz 0

L( K)

D

6

T('K)

I

Io
I

I4

N

&.I.O6

CL

0.58

I 0 I I.? I4

FIG. 3, Phase diagram in the (T, L) plane for DyVO4,
X=O, D=2. 25 K; H, .=O and H»=10 K. The dashed line
corresponds to D=O and H»=O.

FIG. 4. Thermal variation of P, Q, and M, in DyVO4
for H» =10 K. The dashed line represents the thermal
variation of P for H»=0.
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FIG. 5. 5. Thermal var&ation of P and Q in DyVO4,.~ ~

H„=O (full lines) and H„=5 'K (dashed lines).

the u

S dashed line) since it induces a deformat' fma ion o
e quadrupoles in the basal plane already at high

temperature. Moreover, the field H„ favors the
domains with P &0, and the saturation value of P
is increased slightly. Similarly, a field H, favors
the domains with P& 0.

Dipolar Ordering

(i4)

(is)

1.46

P, Q Mx Mz

-0.22
I

14
T('K)

FIG. 6. Diipolar and quadrupolar ordering in DyVO4,.
I =2. 35 'K; J=0.72 K (T~ —-3 'K T =14'K) The

ashed lines correspond to H =5 oK
g

We now add to the quadrupolar Hamiltonian (6)
an X- F dipolar Hamiltonian

Kd„= —Z J;,(S";S,"+S';S',.).
1lj

We neglect dipolar interactions of the z compo-
nents of the m moments since at low temperature the
moments are mainly in the a-b plane. We first
suppose that J=—J(0)=g, J,&

is positive (as long as
no external field along a or b is introduced, the
sign of J'is not important), We look for the possi-
bility of ordering in the three parameters
P= S";) —(S~&) ), M„=(S";), and M, =(S',). The
molecular-field Hamiltonian is

Ko/N=DQ( —rlP) —Hp",. —H S,

IO

T('K)
14

FIG. 7. Phase diagram in the (T J) lp y

transiti ' ' '
in

e dashed line represents first- d
s'tions, A xs a tricritical point F

-or er

of J th
in . or large values

e transition becomes second order

Remark

In the preceding calculations t 'is convenient
to quantize along the x axis, so that all matrices
are real if no external H, field is applied. In the

The molecular fields are given by H„= 2JM„,
H =2JM and g= 2LP, whence the self-consistent
equations

M„=(S",.)„M,=(S;)„P=(P,. ), (16)

and the free energy

$0/N= —(1/P)lnZo+ J(M„+M,)+LP . (17)

Qne finds that if M„W 0, M, = 0 and P & 0.
For L=2 35 and J=O. 72 two successive second-

order phase transitions in P and M (or M
foundn, as shown in Fig. 6 (full lines). For larger
values of J~L onl y one phase transition is found;
it may be first or second order (Fig. 7). The
saturation value of M„ is slightly less than —,

' be-
cause DAO0, and Q is no longer constant below
T~„. In fact, the ground-state doublet of the s s-
tem is at O'K:

u e o e sys-

o. 46 +-', )+o. s4 I+-,')
xn the absence of dipolar interactions (Q= —0. 16
at T= 0'K) and

o 446(l-. &+ I--.&)+o ss(I-'&
I

-'&)

when J=0.72 (Q= —0. 21 at T=o'K).
An external field. H, lowers both T~„and T~, as

ig. 6 shows. In larger fields, the dipolar tran-
sition then the quadrupolar transition, are sup-
pressed. An external field along x sup
wo transitions. Figure 8 sho thows e successive

splittings of the quadruplet S= —,
'

by dipolar and
quadrupolar interactions.
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3CO/N=3C, - H$3P$3 H55 P6S . (lg)

E(4K)

14—

Mx
I

Tp,
I

X„P», and P„have been defined in Sec. II. P»
and P» are two independent operators, so that two
molecular fields H» and H» must be introduced.
Of course since the quadrupolar transition in
TbVO4 is characterized by a single-order param-
eter P=P„(P»)+P„(P„),the two molecular
fields are not independent; both are related to the
value of the orthorhombic distortion. H» de-
scribes the separation of the levels I", and I'3 H55
the splitting of the level I"5:

3CQ

with 6' = —,'(6, + &~), the eigenvalues of + are H„
and 1=6 ~R, R = 4' +H». We now have

I

l4
T( K)

FIG. 8. Splitting of the quadruplet S = 2 by dipolar and

quadrupolar interactions in DyVO4.

Z, = 2 coshPH„+ 2 e coshPR, (2Oa)

low-temperature phase, the eigenstates are al-
most ia-', ), i+ —,'); in the guadrupolar phase, (1/
+)(i—', ) + i ——', )) and (1/+)(1 —,') a i

——,')), and in the
disordered phase

o. sv i+-', )+o. 5o i+-,')
and

o. so I+l) —o. svl+2)

We consider now antiferromagnetic dipolar in-
teractions. In a zero external field along x, the
phase diagrams for J&0 and J&0 are the same.
When a low field H„ is applied, the magnetic struc-
ture remains antiferromagnetic; the transition at
TI, is suppressed and T~„ is decreased.

Below T~„, H„connects the two doublets, as is
obvious from the above remark, but since the
splitting between these doublets is large compared
to J and H„, the system is almost Ising like. '
Figure 9 shows the phase diagram in the (T, H„)
plane. A spin-flop phase would appear only if the
quadrupolar interactions were much weaker.

V. PHASE TRANSITIONS IN TbVO„

We consider first the following quadrupolar
Hamiltonian and the corresponding molecular-field
Hamiltonian:

H„(' K}

K=NK, — Z L;) P, PJ, (ls) FIG. 9. Phase diagram. of DyVO4 in the (T, H„) plane
for J= —0.72 'K.
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second order, is given by

2+2e s coshPA'

= 4p, s Le (sinhph')/a' ~ 4 pp~» I, , (24)

0.5

which gives for AT@» 6g

&~~ = (&is+Pcs) L (as)

TM IO
2

20 30 33

FIG. 10. Thermal variations of the order parameter
P in TbVO4 for vsrious values of the interaction I..

Zo(P, s&= 2e H,s (sinhPR)/R,

Zo (Pss &
= 2 sinhPHss

4o = (1/P) "Zo+Hts (Pis&+Hss 0 ss&

(20b)

(20c)

I )3
——2P(3 LP,

&ss = 2Pss LP

whence

(22a)

(aab)

—L(~„(P„&.~„&P„&)'. (»)
The conditions spo/BH, s = spo/ass = 0 give

Figure 10 shows the thermal variation of the or-
der parameter P for various values of L (T~
=33 'K for I, = 16.75 'K) supposing pcs pss —1.
Figure ll shows the phase diagram in the (T, L)
plane; for low values of L, there is no phase tran-
sition; for 5. 2 & L & 6. 3 there are two second-or-
der phase transitions at Tz, and T~2. Figure 12
shows the thermal variation of the four single-ion
levels for L=16.75.

The influence of an applied field along z is shown
in Figs. 13(a) and 13(b). H, stabilizes the quadratic
phase and may introduce a second phase transition
at low temperature from the orthorhombic to the
quadratic phase. Figures 14(a} and 14(b) show the
influence of a fieM H„. The transitions in P are
suppressed since they are second order; the crys-
tal is always orthorhombic.

We look now for the possibility of purely dipolar
ordering in the parameter M„=g» (S» &+gss (S35&:

K=NK, —5 J()S(S), (26)

with

&f& = —(1/P) lnZ + IP (23a)

Zo = 2 cosh2PPss LP+ 2 e coshPR, (23b)

R = 6' + (2P,s LP) (23c)

Zo P=4Pss LPe (sinhPR)/R

+ 2Pss sinhaPPss LP . (23d)

The temperature of the transition in P, which is

S„=g~sSss+gss Sss ~

Q/N=3C, —H, s S,s
—H35S35

30—

20—

(2'7)

IO—

20—

I 6.75—
E('K)

IO—

rs

IO—
20—

I

IO
I

20

T( K)

I I

30 33

FlG. 11. Quadrupolar transition in TbVO4, phase
diagram in the (T, I ) plane. The dashed line corre-
sponds to 6s =Q = 0.

40—

IO
I t I I I

20 40
T('K)

FIG. 12. Thermal variation of the energy levels of
Tb+ in TbVO4 (in dashed lines for the case of a possible
dipolar transition),
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(a) (a)

0.5 0.5—

10 20
I

10 20
T( K)

30 33

(b)

P=O 0.5

(b)

20— PAO

I

10 20 30 33
T( K)

FIG. 18, (a) Influence of a field H» on the thermal
variation of P in TbVO4. (b) Phase diagram in the (T,
H, ) plane.

10
TP K)

15

FIG. 14. Influence of a field H„on the thermal varia-
tion of P in TbVO4, (a) fork=16. 75 'K (b) forI =8 'K.

We have now

eZo
zo(si5) = ee„ (28a)

1 BZpz, (s„)=—
35

y, =- (s/p) inz, +e„(s„)+e„(s„)

(28b)

20— FIG. 15. Phase diagram in the
(7.', J) plane for the dipolar tran-
sition in TbVO4, (a) F5 ——g35 (b)
g35=0; (c) g~5=0 (the transition
is then first order).

IO—

I

IO
I

20 T('K)

I

30 40
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—J(g»(S»)+g35( 35))' . (29)

The conditions egp/eH» = &Pp/8H3g= 0 give H»
=2g„JM and H» = 2g3, JM. Suppose that g» =g„
and 6, = 63= d. The eigenvalues of K are 0, 0,
+X, with A =6 ~2H»..

Inclusion of excited crystalline levels should re-
move the difficulty by introducing anisotropy in 'he
I110]or [001]plane. Inclusion of excited levels in
the case of TbVO4 and DyVO4 would on the contrary
bring no new feature to the descriptio~ of the phase
transitions.

Zo = 2 (1+coshPA. ), (30) ACKNOWLEDGMENTS

with

48M„sinh @,
1+cosh' (31) The author wishes to thank Dr. M. Blume and

Dr. H. A. Bari for a critical reading of the manu-
script.

X' = a'+ 8J'M'„. (32) APPENDIX

The temperature of the possibly second-order phase
transition in M„ is given by

4J (sinh pb, )/6 = 1+cosh pb, (33)

and for ph«1, ATES&„=2J.
If g»=g», as well as if g»WO and g35 0, the

transition is in fact second order, and there is a
threshold value of J (Fig. 15). If g»=0 and g35e0
the threshold value of J is much higher and the
transition is first order.

We study now the possibility of successive di-
polar and quadrupolar ordering in TbVQ4, although
no dipolar transition has been yet reported below
1 'K. The Hamiltonian is then

K=HZ, —Z Lo P;P; —Z J;gS(S~ .

If J is large enough, the quadrupolar transition
is followed by a dipolar transition (Fig. 12, dashed
lines). Figures 16(a) and 16(b) show the phase
diagram in the (T, J) plane for values of L such that
there is one or two quadrupolar transitions; for
L = 8 'K, one, two, or three successive transitions
are possible.

20—

I5—

J(o K) I 0 PAO

/
/'

/'

/
/

/ P=0
M„=p

Because of the complexity of the crystal field
band (I",+ I', +I', ) of Tb", it is not possible to de-
scribe it by using an effective spin —,'. As suggested
by Pytte and Stevens, we may use two effective
spins 2, e and w, and express the dipolar and
quadrupolar operators as functions of the compo-
nents of o and 7 (a similar method has been used to
describe the system singlet-triplet). 'o However,
the form chosen in Ref. 6 to represent the crys-

VI. CONCLUSION
IP 20

I

30
I

40 50
We have given a molecular-field treatment of the

dipolar and quadrupolar phase transitions observed
in rare-earth vanadates. Pytte and Stevens have
provided a physical explanation for these transi-
tions, based on the semiclassical theory of crys-
talline field. '~ We note that our description of the
phase transitions is correct only when the whole
crystal field band" (determined by the classical
minima of the crystalline potential) is considered.

This was the case for TbVO4, DyVO4, and
TmVO4, but not for TbPO4 where the minima are
neither along the c axis nor in the a-b plane. As
noted in Sec. II, the consideration of only the
ground crystalline level I", describes dipolar or-
dering along the c-axis or quadrupolar ordering in
the a-b plane. However, in TbPQ4, the moments
are oriented 40 off the c axis, and a distortion
follows dipolar ordering. Similarly, in DyAsQ4, '
the moments are oriented 22' off the a or b axis,
in the a-b plane, below T„.
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FIG. 16. Dipolar and quadrupolar ordering in TbVO4,
phase diagram in the (T, J) plane; (a) for L =16.75 'K;
(b) for L = 8 K. First-order transitions are represented
by dashed lines.
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talline field energy X, is not symmetrical in 0 and
7 and we shall choose a slightly different one:

K = b, (1+5o )(1+ 5 7' )+ 6
We want the levels l

—,
' ——,') = I+ —) and l

——,
'

—,')
= 1-+) to have the same energy, whence 5 = 6',
and we take this energy as an origin, whence
6' = —b, (1 ——,'5 ). 6 and 5 are now found easily as
functions of the separations 6& and 4, between the
doublet I', and each singlet I'&(l++)) o»s(l )):

g = 2(a, —a, )/(a, a, )

alld

l+ —) and l
—+) being the basis of the doublet I'„

S' is diagonal if S'=ps (o"- 7'). But S* is repre-
sented by g(o"-r") only if gss ggs g, and in this
case S'=g(o' —r') If gss. eg», the expression of

S" is more complicated. As suggested by the ex-
pression of X„ the axial operator Q may be rep-
resented by

Q = Q, (1+qo')(1+ q~')+ Qs,

with

q = 2(q, +q, —2q, )/(q, —qs)

Qg = (qg —qs)/2q, Qs = Qo —Qi

Finally, we have

I'=P„cr" 7."+P,a' v",
with

p*= (p»+pss)~ p~=2(pu-pss)

P„=2(o "
7

" o' r-'),
Pss=2(o" 7'"+o'v') .

~Work performed under the auspices of the U. S.
Atomic Energy Commission.
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