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A solution to the Hubbard model is presented which invokes the single assumption that the
low-energy peak in the spectral weight function can be well approximated by a function which
duplicates its zeroth, first, and second moments to a given order in the bandwidth. The solu-
tion takes advantage of the rigorous moment relations of Harris and Lange. A simple, exact,
and unambiguous technique to evaluate the correlation functions, required for the moment rela-
tions, in the atomic limit is developed. These functions are used to calculate the moments
which in turn generate a spectral weight function with no restriction on the electron density.
The ground-state energy for the paramagnetic and ferromagnetic configurations are calculated
and compared. The model is found to be ferromagnetic for moderate densities.

I. INTRODUCTION

The vast preponderance of literature on mag-
netism starts from either the Heisenberg-model
or the Stone r- Har tree- Fock-model approximation.
Both of these approaches have certain drawbacks.
The Heisenberg model, in its traditional form,
assumes well-defined localized moments. This is
in contradiction with mobility measurements in
most ferromagnets. The Stoner-Hartree-Fock
approach begins with the correct itinerant-elec-
tron picture. However, the approach predicts
magnetic order only for strongly interacting elec-
trons. Since the Har tree- Fock approximation is
only valid for weakly interacting electrons, we
would like to have an approach that starts from
the itinerant-electron picture but which treats the
correlations between electrons in a more careful
manner. The Hubbard model can be such an
alternative. As we shall see, conceptually it is
an extremely simple model. It is a single-band
model which includes the Coulomb interaction be-
tween electrons on the same site, but neglects
interatomic interactions and (in the form we use
here) orbital degeneracy. However, as we point
out in Sec. II, good solutions to even this sim-
plified model are difficult to obtain. Clearly we
should treat the simple model before generalizing.

It is the aim of this paper to present a solution
to the Hubbard model which is based on a minimum
of mell-established assumptions. In the region of
interest, the spectral weight function (SWF) con-
sists of two separated peaks. 3 In essence our
only assumption is to approximate each of the
peaks by a function which is generated from the
known zeroth, first, and second moments of the
given peak. Finite lifetime effects are included
by considering the second moment. Including ef-
fects up to, but not beyond, a finite lifetime is
consonant with the majority of literature on the
many-body problem. Indeed, much of the litera-

ture stops at the quasiparticle approximation
which neglects lifetime effects.

One may rightly ask whether it is meaningful
to seek magnetic order for such a simplified
model. The Heisenberg model includes only in-
teratomic interactions and does not even treat
intra-atomic interactions. We neglect these in-
teractions and in addition neglect orbital degen-
eracy, Nevertheless, we will answer the question
"Can magnetic ordering occur in the Hubbard
model for some values of its parameters?" in the
aff irmative.

Section II reviews past solution attempts for
the Hubbard model. It is emphasized that one
major difficulty is that it has not been recognized
what one should properly mean by a "solution" to
the Hubbard model. Section III presents some
def initions and a formalism. Section IV outlines
the solution approach, while the results and con-
cluding remarks are given in Sec. V.

II. SOLUTIONS TO MODEL —SYNOPSIS

In the following, we present a somewhat longer
than usual review of proposed solutions to the
Hubbard model. The purpose is twofold. First,
a comprehensive review is needed, but is un-
available, for this particular problem. The fol-
lowing is offered in lieu of such a review. No
attempt is made to cover all contributions by all
authors. However, we tried to critically analyze
representatives of the various modes of attack in
a somewhat synoptic fashion. Second, it is the
aim of this paper to present a systematic approach
to the Hubbard model that is based on a minimum
of well-established assumptions. This will be
contrasted with some earlier approaches based on
an uncertain, and sometimes incorrect, founda-
tion. We should point out that because of the
nature of this review it will be necessary to focus
mainly on the negative aspects of the various
theories, and many of the positive aspects will not
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be treated in as much depth.
The Hubbard model is a cell model describing

electrons hopping in a lattice, interacting only
when two electrons are on the same site. We
postpone the complexities of interatomic inter-
actions, orbital degeneracy, and interband effects
to a later work. The Hamiltonian is

H=4Z' t«c( cg +pIZ n( n;
Qe fgfy

Here, c&, creates an electron in a Wannier state
associated with site i and with spin o (= + l); n„
is the number operator for site i, spin 0; t&&

are geometric factors describing the hopping
(f« = 0); and & and I are measures of the band-
width and intra-atomic interactions, respectively.

The physically interesting region for the Hub-
bard model is k T« ~« I, where T is the temper-
ature, ~ is a measure of the bandwidth or hopping
strength, and I is the intra-atomic Coulomb inter-
action (interatomic interactions are neglected in
the model). One reason for interest in this region
is that the other limiting cases can be easily
handled. In addition, even at room temperature
kT= 0. 03 eV is usually much less than &. But
more importantly, this is the region of interest in
reference to magnetic order. Hartree-Fock
(HF) predicts magnetic order for I~ &. Because
HF neglects correlations between antiparallel
electrons, then magnetic order (if it exists at all
within the context of this model) must occur in the
region I» ~.

Before pr oceeding to the various proposed solu-
tions, it would be well to recall some rigorous re-
sults of relevance to this section. (Some additional
exact properties of the model will be discussed
in later sections. ) They are the following: (i) the
Harris-Lange sum rules which give the moments
of the spectral weight function to a given order in
&/I in terms of certain equal-time correlation
functions; (ii) Bari's exact solution of the two-
electron N-site Hubbard model; (iii) certain rigor-
ous relations among the correlation functions in
the atomic limit which will be derived below; and

(iv) the observation of Esterling' —any solution to
the Hubbard model which is "correct to lowest or-
der in ~" would be equivalent to an exact solution
to a dynamical excluded volume problem. Since
we are some distance from a complete exact solu-
tion of e~~en the static excluded volume problem,
it follows from (iv) that any proposed solution to
the Hubbard model which claims to be correct to
lowest order in b, is most probably in error.

Most solutions to the Hubbard model employ
some sort of Green's-function decoupling. They
fall into two categories. First, there are those
which are equivalent to a Hartree —Fock-like solu-
tion, such as that used by Langer, Plischke, and

Mattis. These are invalid for any discussion of
magnetic order since such approximations are
only valid for»& I. They all have the property
that the self-energy diverges as I- ~. The second
category factors some higher-order correlation .

function, separating operators referring to dif-
ferent lattice sites, claiming this procedure is
correct to lowest order in ~. This is the original
approach by Hubbard as well as by Tahir-Kheli
and Jarrett, ' Roth, Kishore and Joshi, and Arai
and Parrinello. ~ This violates property (iv),
they do not in general preserve the sum rules
fproperty (i)], and the simple factoring is incor-
rect to zeroth order in ~ as we will show below
fproperty (iii)].

Another set of solutions employs some sort of
perturbation expansion. Expansions in I/6 have
been employed by Kanamori, ~~ Hubbard, ~ and
others. Kanamori (who used the model before it
was "invented" by Hubbard) developed a T-matrix
approximation which is limited to, but certainly
valid for, low enough densities. This has been
applied to spin waves by Edwards and by Calla-
way. '3 Any other such expansion (e.g. , Hubbard's',
for arbitrary densities is clearly divergent in our
region of interest. Esterling and Lange~ derived
a mass operator perturbation expansion in 4/I.
This preserved the sum rules of Harris and Lange.
However, they also claimed a solution correct to
4/I. In fact, the series did not converge. For
example, the second-order terms in & for the
mass operator Z(~) included both terms like & /I
and terms like & /&u. Since the frequencies (e)
of interest are of order ~, the latter class of
terms is not small. This was demonstrated ex-
plicitly by Bari fproperty (ii)].

Another approach to the Hubbard model has been
taken by Sokoloff~' and by Brinkman and Rice~
based on Nagaoka's path formulation. ~~ This con-
sists of calculating the quantity of interest (e.g. ,
partition function) by following the path of a single
hole in an otherwise half-filled band. The gen-
eralizations by Sokoloff (ferromagnetic path ap-
proximation) and Brinkman and Rice (self-re-
tracing paths only) to multiple holes at best can
only be trusted near the half-filled band case. The
latter technique is further restricted to nearest-
neighbor hopping only. While this approach seems
to work well (within the above restrictions, at
least in the sense of good agreement with the cal-
culated moments) for the simple cubic lattice, re-
cent calculations by Sokoloff'~ indicate a deteriora-
tion of the technique for other Bravais lattices
such as fcc. We would also like to question the
use of a "'random" spin configuration by these
authors as one of the states of the system. This
corresponds to a simple average over all possible
spin configurations. This will be valid for high
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temperatures, i.e. , kT» &, but is not valid in the
region explored by these authors . The interesting
state —paramagne tic —has equal not arbitrary num-
bers of spin-up and spin-down electrons. Pne
might argue that the difference between a random
and paramagnetic configuration is unimportant.
But if that is so, then we may equally argue that
the diff er ence between, say, a ferromagnetic and
paramagnetic state is unimportant as well, since
the ferromagnetic state is one state that is aver-
aged into the random configuration. However,
this is precisely the difference of interest. Most
likely, the random configuration will tend to be
intermediate between the strictly paramagnetic
and ferromagnetic configurations . Finally, the
mobility calculation by Brinkman and Rice has
serious difficulties. They req uire a tw o-par tic le
correlation function. They assume that this fac-
tors into a simple product of single-particle cor-
relation functions. As we shall see, this factoring
is incorrect to zeroth order in the bandwidth.

A variational approach has been used by Kaplan
and Bari and has more recently been applied by
Kaplan~o to a tw o-band Hubbard-like model pro-
posed by Falic ov and Kimb all ~

3 Kaplan considers
extended (Bloch) states as well as localized (Wan-
nier) states as possible states for the valence
band in the var iational calculation of an appr oxi-
mate free energy. It is shown that the conclusion
of Falicov and Kimball (localization of valence
electrons) is not valid at low temperatures. How-

ever, both of the sets used by Kaplan are app roxi-
mations to the exact correlated states. While
the ir use is probably justified at low temperatures
(when there are few valence holes and hence a
small probability for tw o holes being close enough
to correlate), correlation effects must certainly
become important at moderate temperatures or
hole densities . Even for low hole densities we
should be cautious —again r eferri ng to the small
energy differences discussed above for this limit.
These small effects could be vital in obtaining good
expressions for the approximate free energy.

Finally, there is the recent functional integral
(F&) approach by Kimball and Schrieffer. The de-
tails of the calculation are as yet unpublished.
However, one should regard any results of this
technique with extreme caution. The technique
is known to break down for trivial problems. This
is indicated by Keiter, ~3 in particular, by the dis-
cussion of his Eq. (64). [This is for the random-
phase approximation (RPA), which is a generaliza-
tion of the static approximation used by Kimb al1

and Schrieffer. ] Recently, Bari~~ has shown that
this technique (the static approximation) gives
incorrect behavior for tee specific heat in the
zero-bandwidth case. Finally, one of us (D. M. E. )
in collaboration with Hassing ' has shown that the

In this section we introduce the model, define
some quantities of interest (Green's function,
spectral weight function), and present some exact
properties (equation of motion, moment relations).
In this particular work, we restrict ourselves to
zero temperature (hence 4/kT» 1 even for 4- 0
in the atomic limit).

The fol lowing 6ree n' s functions will be of in-
ter est:

11'&r 1((Cl&C1'v)+)

F„.,-=—i ((n, ,c„clt,.),),
as'

G121'2' ( —1) ((Clvc2&r car err Cl r )+) r

VVI p llr2r( 1) ((nl gclgc2gr C2'g Clr rg)+ )

(2a)

(2c)

(2d)

Here 1 refers to (Rl, tl) and ( ), refers to positive
time ordering. Higher- order Green's functions
will be defined analogously. The Green' s func-
tions defined in Eqs. (2a) and (2c) will be referred
to as G, and G2, respectively. G, has the following
spectral representation:

d(d A&~(&d)

2m &u —«' +i5 sgn(& —g)

where we have Fourier transformed G ~. This is
one definition of A ~,(& ')—the spectral weight func-
tion (SWF). An equivalent expression for its
Fourie r transform is 3

A 11r ~ = ((C la r C 1' &r )) r (4)

where the curly brackets denote antic ommutation.
The moment relations follow immediately from

Eq. (4) (see Ref. 3):

+11' (~) (lcl cl"f) I 1 -1, (»)

static approximation yields incorrect predictions
for the ground- state energy of the Anderson model
in the zero-mixing limit (analogous to the Hub-
bard atomic limit), if the impurity energy level
&~ is in the range 0~ &, - ,'I o—r , I ~—&'~—". (The
chemical potential is chosen to be zero. ) The dis-
crepancy is equal to 4 1 and should persist for
finite mixing. The nature of the FI appr oximations
involved for a general model are in an unsettled
state. This particular approach only discusses
the exactly half -filled band case. There are some
simplif ications which prevail in this limit. The
ground state does not exhibit the extreme deg en-
eracy discussed by Harris and Lange, 3 Esterling
and Lange, and Esterling . ' Hence the difficulties
discussed therein do not arise . Any general iza-
tion of this treatment for arbitrary densities
must grapple w ith the ambiguities that arise when
&- 0, but &/kT» 1.

III. MODEL AND SOME FORMALISM



MOMENT-GENERATED SOLUTION TO THE HUBBARD NARROW- ~ . ~ 4279

(~)~ = (Gc1

(5b)

mls =— All a((d)(i(2)
~

d&
277

= ({[[c... 0], 0], c', ..]) [ .. . (5c)

where

0 -i
(G 12) =1 &12 ~

et, (7)

Finally we derive some equations of motion in
a form suitable for Sec. IV. The equation of
motion for Gl is (there is an implied sum and/or
integration over repeated indices)

(G'„) 'C„,.= &„,+tat„c„,.+Ir„.. .

ditional assumption. The technique may be gen-
eralized to include higher-order moments and to
include expressions for the moments to higher
order in t3/I. In summary, we generate an ex-
pression for the SWF, for arbitrary density,
using the moments of the SWF to a given order in
&/I. These moments involve equal-time correla-
tion functions expressed in terms of the self-con-
sistently determined atomic-limit momeritum dis-
tribution. We do not determine the SWF to a
given order in t3/I.

The first step will be to generate expressions
for the moments of each subpeak of the SWF to a
given order in 6/I. The technique has already
been derived by Harris and Lange. ' The first two
moments are as follows (the third moment is
given in the Appendix):

The equation of motion for G2 is m„".' = (1-n .)+O(t/I), (10a)
13) 321'2' ~ll' 22'a' ~12' G21'a ~aa'

+ +t 13 G sal'2' + I rial a ~ (8)

We next multiply both sides of Eq. (8) by G, and
obtain

( 13+Irlsa)csal'2' Gll'aG22'a' aa' G12'ac21'a

+Ic„.r,",,', , (9)

It is to be noted that there are no explicit ~'s in
Eq. (9). This will be useful in Sec. IV.

IV. SOLUTION

In Sec. II, we critically reviewed previous so-
lution schemes for the Hubbard model. Although
there were many approaches, there were also
many difficulties. Further, the viable solutions
were limited to special values of the density. In
this section we present a solution in the physically
interesting region kT«&« I. In this particular
paper we will only work at zero temperature. We
assert the solution has the following two charac-
teristics: (i) it is based on a minimum of well-
established assumptions and (ii) it is not limited
to any density region. Indeed we make only one
assumption —that the spectral weight function can
be approximated by a function (a Gaussian in this
case) which has the same zeroth, first, and
second moments, to lowest order in &. (We in-
clude finite lifetime effects. ) More precisely,
the SWF splits into two peaks in the region of in-
terest and we approximate each of the subpeaks
by a Gaussian using the first three moments of
each subpeak. Further, the moments will be ex-
pressed (exactly) in terms of the momentum dis-
tribution in the atomic limit. This distribution
(and hence the moments) will finally be determined
self-consistently from the approximate SWF. One

may view this self-consistency condition as an ad-

nl, ." = (1 -n, )'&~„—1' a+L„, a+O(ts'/I), (10b)

where &e„(the Bloch energy) is the Fourier trans-
form of &t&&, v, is the average kinetic energy of
electrons of spin v,

7' = ~ tgy (Cl C1 )
i,j

and L,„is the Fourier transform of

L;, ,= t„((n; .n, .) -n', +(c,', c, ,c', .c;.))
(12)

The important point is that to lowest order in &,
the nth moment involves up to an (n+ 1)-order
correlation function (see the expression for m'2'

in the Appendix). We appear to be heading for the
same trap as the Green's-function decouplers.
The further we go, the higher the order of the
required correlation function. However, we make
the observation that if we could evaluate the re-
quired equal-time correlation functions to zeroth
order in 4 (i.e. , in the atomic limit), then we
could have our required moment expressions to
lowest order in &. The atomic limit is ~ot a
trivial limit as has been emphasized by Esterling
and Lange, and by Esterling. ' What we will do,
however, is derive expressions for the various
higher -order atomic-limit correlation functions
in terms of the atomic-limit single-particle cor-
relation function (or, equivalently, the momentum
distribution function). These expressions will
be exact (in contrast to usual factoring schemes).

Hence th! second step in the solution will be to
derive the required expressions for the higher-
order correlation functions in terms of the single-
particle correlation function. We first present
the Fourier transform of the single-particle
Green's function G,&., in the atomic limit,
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G„(z)=( . ' +
j. —n,
+z~

nq, n, , 0)=0 (14)

where 0) denotes the atomic-limit ground state.
Further, it has been shown earlier that in the
atomic limit, the c operators obey the following
anticommutation relations even for unequal times:

+2'& & m~, ,(' -I+z&
(13)

where n„ is the Fourier transform of lim(c~, c&,&

as ~- 0. The last term has been neglected by
many authors, but is responsible for the nonlocal
nature of G& in the atomic limit. The nonlocality
property is central to an understanding of the

atomic limit. There is no way to further specify
~„,without specifying how the limit is taken, i.e. ,
without specifying the coefficients I&&. Some may
find the nonlocality surprising for vanishing hop-

ping, but a similar term may be easily found for
the free-electron gas G, in the atomic limit.

Next we consider the atomic limit G2. Equation
(9) is in a useful form since it has no explicit
&'s. The form of the equation remains the same
in the atomic limit. We note that the usual equa-
tion [Eq. (8)] is not in a useful form since, among
other items, it contains a factor (Go) '. This fac-
tor Fourier transforms into a frequency factor
which when multiplying G2 could annihilate im-
portant terms in G2 which are analogous to the
last term in G, . We have G2 in terms of G, and
I'2. The latter is a three-particle Green's func-
tion [see Eq. (2d)]. Our goal is to express G3 in
terms of G, (exactly). This has been done for the
general G2, but for simplicity we present the ap-
proach for the specific two-particle correlation
functions required for our m' '. In particular, we
will express I'2 in terms of G2. We may then find
G2 in terms of G~.

We first illustrate the reduction process for
I"&. The steps for I"2 are similar but more com-
plex. The following is restricted to the atomic
limit. Further, with no loss in generality (we
have electron-hole symmetry), we may assume
that the number of electrons is less than or equal
to the number of sites. Expectation values are
taken over th," ground state which then has no
doubly occupied sites. We will often use the con-
dition

2 OQD33,= (n«na, &
——n, = —G33g+3+

r a-. e
12,e= ~ci-0 C ia C20 C2-e / ~ t22+1+

(19)

(2o)

where the atomic limit is implied. Putting in com-
plete sets of states again and using the condition
that the atomic-limit ground state has no doubly
occupied sites, the corresponding I"2's become
(for R,XR3)

vo'
F331'2+ ((nl- c1 n2 ' cl'

and

= b,s3 ~(4- ti ) e ""& '&'&(n«n«), )

(21)

I )33~ = —((ng Cg C3 c3 c3 ) )

8(t, -t„)e-""i-''
2t

x((c«c3'-eca ca-s)+)

Finally, doing similar manipulations on the right-
hand side of Eq. (9), we obtain (integrating over t3)

(~13+IF/3 ) G33$+3 ( gnn3 )

= —i8(t, —t,.)(n, ,c„c,'.,)

$8(tl tl') BiR&i (n1-vc«cl'e&

In the third equality we used the fact that the
ground state has no doubly occupied sites, and in
the last equality we used, in addition, the fact that
the c operators obey unequal-time anticommuta-
tion relations of the same form as equal-time re-
lations, when the c's refer to different sites.
By putting in a complete set of states we obtain
for Ri ——Ri.

(n~, c«c~~.,&=K,(o~n, c,~a&(a~c~~o&e 's "3 't'
=Z, &Oin, c,

i
a&&a

i
c,'i 0&e-"" -' '

= &0~n ~ c'~ 0& e-""r'~'
&1(tg fgg )

mt'

where in the second equality we used that fact that
either F-, =I or the first factor vanished. Hence

I"».,= —i&(t~ —
t& )&», e ' "~ '~' n, .

We now outline the reduction procedure for
I'2 The required G2's are

Cgg~ Cl~oir= 8 R (rc
1

(15a) x[1+(—i)I&(t~ —t )e ' "& '3'n, ]

(cg ~, c 1'v'] = 0 (15b) = —(1 —n, )(n«n3; & (23)

We are now prepared for the formal manipulations:

1'„.,= —i((n, ,c„c~,,).&

= —iS(t, —t, , )(n, .c,.c,',.&

+i'«~ -4)&c~"n~-.ci.&

(OJ3+IIJ3 )G333 $+ =(1 —n, )(c3,c«c3,c3, &

(24)
For simplicity we consider the paramagnetic

case (n, =n, =n, D"=D ' ', etc ). The op. erators
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where

(1) (0)Eke™kv/mac

2 (2) / (0) ~2
&k ™k/™k k (3o)

This gives the SWF as a functional of nk, . Finally
the momentum distribution may be obtained from
the SWF in the usual way,

(31)
ol m(g

where the chemical potential p. is determined in
the usual way by the requirement that it correspond
to a given number of electrons N, :

I I i

N =
e

k, a
(32)

0.2 0.4 0.6 O. 8
OKNSirY

FIG. 1. Ground-state energy vs total electron density
for paramagnetic (solid line) and ferromagnetic (dashed
line) configurations in a simple cubic lattice with near-
est-neighbor hopping. The scale of energy is chosen so
that the hopping parameter for nearest neighbors is
unity.

n1, and c1,c1,are time independent since they
commute with the atomic-limit Hamiltonian, and
hence D and S are time independent. It follows
from the above equations that for R14R2,

1-n
D12 1 2 g12ag21a

a a Pl

D12 =
1 2 g12ag21a

1
12,a 1 —2Ã +12a2ia

41/2 (0)
I 5 ( I mug ((g Q )2/~2ka

&ka
(zs)

where 1 refers to R, and 2 refers to R2. Here
g&3, =(c&,c2, ) is the Fourier transform of n„,.
Similar manipulations were required in order to
obtain the expressions for G~ in terms of G& (re-
quired for m' '). Note that although the above ex-
pressions for D and S are fairly simple, they are
not the expressions one would obtain in a usual
factoring scheme. Furthermore, in the sort of
factoring approach used by Hubbard and others,
these correlation functions are assumed to vanish
if R1R2 and &- 0. Finally, the full two-particle
correlation function has a very complicated depen-
dence on g,2 and could not be obtained from almost
any conceivable factoring scheme.

We now have m' ', m' ', and m' ' as functions of
the atomic limit v„,. The next step is to use these
moments to approximate the SWF. The functional
form for the SWF was taken as follows:

V. RESULTS: APPLICATION TO MAGNETIC ORDER

In this section we will use a result derived by
Bari and Lange in order to obtain ground-state
energies for the paramagnetic and ferromagnetic
configurations. The result, which follows from
coupling-constant differentiation, is

E(a)= f dn Z c,n„,(o. )0' ka

= ~ Z ~„n,.(O')+O(~'/I), (33)

where E(&) is the ground-state energy for a given
bandwidth ~, &k is the Fourier transform to t&&,

and n„(n) is the momentum distribution when the
bandwidth is equal to n. Since nk, is dimension-
less, it can be expressed in a power series in
b/I. The second equality gives the required re-
sult which is consistent with the accuracy pursued
in this paper.

Given a total density and an energy dispersion
(E,) we may use the equations in Sec. IV to ob-
tain an expression for the SWF and for the mo-
mentum distribution. This was done for nearest-
neighbor hopping on a simple cubic lattice. In
Fig. 1, we plot the total energy of the paramag-
netic and the ferromagnetic ground states, assum-
ing nearest-neighbor hopping. As is well known,
the ferromagnetic state is exactly soluble. Since
we employed a Monte Carlo approach in the self-
consistent evaluation of nk, , there is some lack
of internal precision in the results. This is in-
dicated by the error bar in the figure. The error
estimate was obtained by comparing successive
solutions. It is roughly the same for both curves.

Although the two curves are very close, it is
reasonable to conclude that if we restrict our-

We now have a closed set of equations. In Sec. V
we will discuss the results. In particular, we
will use the SWF to calculate ground-state energies
in the ferromagnetic-versus-paramagnetic con-
figurations and discuss the question of magnetic
stability.
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0.8—
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1

0,4 0.6 0.8
x m]a

FIG. 2. Momentum distribution n& ~ in [100] direction
for a total electron density of 0.2. The lower peak in
the SWF has a total weight of 1-n, or 0. 9 in this case.
It follows that nz, ~l -n, .

selves to spatially uniform solutions (paramag-
netic or ferromagnetic), then the model is ferro-
magnetic for 0. 5~ n~ 1. 5 (we extend the results
for n & 1.0 using electron-hole symmetry) and is
paramagnetic for n&0. 5. For n&0. 2 or 0. 8&v
& l. 0, the data are not sufficiently accurate to
distinguish between the two unambiguously.
Clearly, we need to calculate each energy more
accurately by sampling more points in our Monte
Carlo caiculations. Alternatively, we may take
advantage of some additional approximations
which are valid in the low-density and half-filled
band limits such as those discussed in Sec. II.
These results are in agreement with the conclu-
sions of Nagaoka that the model is ferromag-
netic for one electron less than a half-filled band.
We have not considered spatially nonuniform

(e. g. , antiferromagnetic) solutions in this work
and so we do not obtain the usual antiferromagnetic
solution for an exactly half -filled band.

We can understand the behavior of the two curves
by looking at the corresponding momentum dis-
tributions. In Fig. 2 we give the momentum dis-
tribution along the [100] direction at a moderately
low total density (0. 2). Already there is con-
siderable smearing out owing to the electron
scattering. The model is ferromagnetic at
moderate densities since the broad momentum dis-
tribution in the paramagnetic case forces the
k summation in Eq. (33) to include high-energy
states with significant weight. Although the ferro-
magnetic momentum distribution must contain
more volume in 0 space than the corresponding
paramagnetic distribution for a given spin, it
still does not sample the very high energy levels
because it has a sharp cutoff. This argument
breaks down at very low (or very high) electron
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FIG. 3. Ground-state energies in a one-dimensional

lattice for paramagnetic (solid line) and ferromagnetic
(dashed line) configurations.

density. There is less scattering and the para-
magnetic distribution is sharper.

In future work we hope to generalize to other
Bloch energy dispersions. However, the general
behavior of the momentum distribution should be
similar and yield similar ordering as a function
of the density. We have calculated a curve similar
to Fig. 1, but for the one-dimensional case. This
case is important because of an exact theorem by
Lieb and Mattis that a system with a symmetric
potential cannot exhibit ferromagnetic order in
one dimension (see also Ghosh ). They argue
that this should serve as a very strong constraint
on any theory of magnetism —theories that predict
magnetic order in three dimensions generally pre-
dict (incorrectly) order in one dimension. The
theorem applies here and our results in one di-
mension are depicted in Fig. 3. It may be ob-
served that the paramagnetic state has significant-
ly lower energy for all densities.

We hope to extend these results to finite tem-
peratures in a later publication. We replace ex-
pectation values over the ground state by thermal
averages. However, as long as kT is very small
compared to I, then excited states with double
occupancies will have negligible weight and the
expressions for the moments in terms of the mo-
mentum distribution remain valid. Hence the gen-
eralization should be straightf orward. In addition,
it would be of interest to calculate the magnetic
susceptibility and the specific heat.

We have not discussed spin-density waves. Since
the SWF is not in general positive definite for this
case, then the approach taken here is not im-
mediately amenable. However, we would like to
point out the somewhat neglected result that the
Hubbard model is exactly soluble for any spin
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wave of unit amplitude. This follows from a peru-
sal of Eq. (6) in a paper by Morris and Cornwell. ~o

The ferromagnetic situation is only a special case
of this more general result. Hence comparison
may still be made with systems with spin-wave
states including antiferromagnetic ordering.
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APPENDIX

The techniques developed by Harris and Lange
and described in Sec. IV may be used to obtain
the following expression for the second moment
of the low-energy peak of the spectral weight func-
tion in the Wannier representation:

mI,",= t 't„ t„[&(1—n;, )(1-n, .)(1 —ng, ))

+& a), a&, a, ,a«(1 —nq, ))

+ & a[,a„a[,a&,(l —n„))

+& a„a, ,(1 —n&, ) aJ, a„)]

+ t t, , t„&(1 n—, ,) a, ,a', ,)

Q2—& t;g t;g &ag, a, ,(1-n, ,))
+a t„t„&a„a,,a„a, , &

2

+ t;, t ~&a&a& a& a& )Q2

+ 6„&'t„t„&[n„-n, , ]n, ,)

+ &o & t;, t, &a„af,a),a~, )

2+5&&6 t&rt„, &a, ~a«a, ~am, )

where a;,—= (1 —nq, )c ~, and we implicitly sum over
repeated indices (except i and j). These expres-
sions may be further simplified if we restrict
ourselves to no doubly occupied sites. In par-
ticular, if we introduce the convention that —with
the exception of the first four terms in the bracket
above —each of the site indices is restricted to be
different from any other index in the same term
(i. e. , we restrict our sums), then we may re-
place the a's by simple c's.
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