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Higher-order corrections to the stopping power proportionalto z° are evaluated. Both close
and distant collisions are considered. The energy-loss formula can be written dE/dx =z
+2%WJ,+J;), where I is the customary lowest-order energy loss and J, and J; are the close-
and distant-collision parts of the 23 term, respectively. The close-collision contribution J,
is a relativistic effect, first estimated in unpublished work by Fermi. It has the simple form
J,=naC/28, where C is the standard constant multiplying B~%times the Bethe—Bloch logarithm
in I and o is the fine~structure constant. At high energies J, gives a constant-2z3 contribution
to the energy loss and causes a range difference AR roughly proportional to the range R for
stopping particles of the same mass and energy, but opposite charge. For 2<P/Mc <20, AR/
R changes by less than + 6% and depends only slightly on the stopping material, varying from
1.9x 10~2 for carbon to 2.5x 10~ for lead for 2 =+ 1. The distant-collision effect is important
only at low velocities. The calculation of this contribution is patterned after a recent work of
Ashley, Ritchie, and Brandt, but differs from it in detail. Using a statistical model for the
atom it is found that at low velocities the relative 2% contribution can be writtenJ;/I=F(V)/
(2)1?, where Z is the atomic number of the stopping medium and F(V) is a universal func-
tion of the reduced velocity variable V=137y8/(2)"/% 1In the region where J;/I is appreciable
(1<V<10), F(V) varies as V™" with n=~2.0-2.5. These results on the z° effect at low veloci-
ties are in good agreement with available data on comparison of the energy loss of helium ions
and protons of the same velocities. Range differences are calculated for carbon, copper,
lead, and emulsion absorbers, including the effects of both close and distant collisions. The
results are in rough agreement with data on slow-stopping pions and = hyperons in emulsions
and in good agreement with very recent measurements of fast positive and negative muons.
The upper limit of the range of validity of the results is examined in some detail. It is found
that the approximations begin to fail for dynamic reasons above y =~ 20 for muons, and presum-
ably also for other heavy particles.
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For a heavy particle of charge ze and velocity
v = B¢ passing through a medium of atomic number
Z, the standard expression for energy loss in
MeV cm?/g is!—®
dE

d—x=z21=c %iL(B, z), (1)

where

and L(B, Z ) is given at velocities well above the
orbital velocities of the atomic electrons by

o (2Pme?\ e
L(B,Z)—ln( e ) & 3)

The parameter [, characterizes the medium;
empirically it varies somewhat over the Periodic



4132 J. D.

Table, ranging from 12.0 for Z=13 to 9.9 for
Z=82. At high energies (3) must be modified by
the density effect, while at low velocities the in-
ner-shell corrections enter. Equation (1), based
on the first Born approximation, gives an energy
loss proportional to 2. As a consequence, parti-
cles of opposite charge are predicted to lose en-
ergy at the same rate, helium ions are predicted
to lose energy four times as rapidly as protons of
the same velocity, and sc on.

In the stopping of slow particles, small charge-
dependent effects at variance with Eq. (1) have
been known experimentally for a long time, usual-
ly in connection with precise measurements of @
values and the masses of particles."’5 For exam-
ple, Barkas, Dyer, and Heckman® found that the
fractional difference in range in emulsions for
negative and positive Z hyperons of f=~0.14
amounted to slightly more than 3X 102, the nega-
tive = having the greater range. Direct observa-
tion of differences in energy loss for slow positive
and negative pions (0. 05<8<0.18) in emulsion
has been made by Heckman and Lindstrom.® They
found a 14% greater loss by positive pions at 8
~ (.05, but no difference at the level of accuracy
of 1% for 8>0.14. In comparisons of energy loss-
es and ranges of hydrogen and helium ions with
kinetic energies of the order of a few MeV, dis-
crepancies with the 2% dependence in Eq. (1) have
also been known for some time, but systematic
errors have prevented identifying the source of the
difﬁculty.7 In 1969, however, careful experiments
with an absolute accuracy of 0.3% were made by
Andersen, Simonsen, and Sgrensen.® In a com-
parison of the energy loss in aluminum and tan-
talum by hydrogen and helium ions of the same
velocity they found that helium ions lost energy at
a rate slightly larger than four times that of the
hydrogen ions. For g=0.073 the fractional excess
was 2.6% in tantalum, 1.3% in aluminum, and
varied roughly as B2 over the range 0.07< B
<0.12. The inference from these experiments is
that the energy-loss formula should read

-d—li=221+z3J, (4)
dx
where J/Iis a small positive quantity that decreas-
es with increasing velocity, being of the order of a
few percent for g=~0.1.

The idea of z® (and higher) corrections to the
basic energy-loss formula is, of course, fairly
obvious. Higher-order Born approximations bring
in such terms. But only recently has there been
theoretical work specifically directed at a calcula-
tion of the z° effect at low velocities for energy
loss. Ashley, Ritchie, and Brandt® and Hill and
Merzbacher'® have considered the contribution
from distant collisions, treating the heavy incident
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particle as a classical source of a Coulomb poten-
tial. Hill and Merzbacher treat the atom (a har-
monically bound electron) quantum mechanically,
while Ashley, Ritchie, and Brandt treat it classi-
cally. The two calculations agree, as is expected
for harmonic oscillators. Ashley, Ritchie, and
Brandt use a Thomas—Fermi statistical model to
generalize their prototype calculation to actual
atoms. With one adjustable parameter they ob-
tain good agreement with the data of Ref. 8.

Less well known and certainly less well docu-
mented experimentally are z° effects in energy
loss and range for fas¢ particles. Systematic com-
parisons of the energy losses of fast positive and
negative muons have shown equality at the level
of 1% precision."!2 Expected relative differences
from higher-order electromagnetic effects are of
the order of the fine-structure constant or smaller
and so need an order of magnitude improvement
in accuracy for their verification. There are,
however, high-precision experiments for which
knowledge of energy loss and range differences be-
tween positive and negative particles may be im-
portant. One such experiment is the measurement
of the charge asymmetry in the K? - nuv decay
mode.”® ™ A muon range difference of a few tenths
of a percent in these particular experiments,
where none has been assumed, would necessitate
an appreciable correction to the quoted asymme-
try.” We show that the fractional difference in
range at high energies is indeed of this order of
magnitude.

Calculations of the differences in energy loss
and range for fast muons or other heavy particles
do not seem to exist in the published literature.!®
Higher-order electromagnetic corrections have
been considered in connection with the density ef-
fect at ultrahigh energies.!””!® Zhdanov et al.!® re-
port a “Tsytovich effect” of the order of (5-8)%
for electrons with v>200. Crispin and Fowler!®
discuss the existing data on the density effect and
conclude that the work of Ref. 18 is the only evi-
dence for as large an effect as Tsytovich!” pre-
dicted. None of these authors discusses the ques-
tion of differences in energy loss dependent on the
sign of the incident charge.

The calculations of Refs. 9 and 10 on the 2% ef-
fect at low velocities give results that fall off rap-
idly with increasing velocity and become quite
negligible for P/Mc=y8>1. There are two ques-
tions that arise here. One is whether a relativis-
tic generalization of these calculations of the ef-
fect of distant collisions does or does not give a
nonvanishing z® contribution as g~ 1. The other
is whether there is a z® contribution from close
collisions. The first question is answered in Sec.
ITI where it is shown thatthe distant-collision con-
tribution to J varies as 1/9%g° times a logarithm
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and so is confined exclusively to the low-velocity
domain. What about close collisions where the
atomic electrons can be treated as free and the en-
ergy loss computed from the scattering of the elec-
trons by the incident particle? The usual argu-
ment!? is that there is no z* term from close colli-
sion because the Rutherford scattering formula is
-strictly proportional to z%. This argument is valid
at low velocities, but is not correct at relativistic
speeds. This fact was recognized over 18 years
ago by Fermi and

“2TCommunicated in a letter dated October 8,
1953, to W. H. Barkas. Professor Fermi
pointed out that the Mott theory of scattering
[see G. Wentzel, Handbuch der Physik (Ver-
lag, Julius Springer, Berlin, 1933), Vol. 24,
Sec. 1, p. 708] may be applied to the scatter
ing of negative electrons by both negative and
positive mesons (in the coordinate frame in
which the meson is at rest). He found in this
way that the average impulse transmitted to
the negative meson is less than that received
by the positive meson.”*

We repeat the simple and elegant calculation of
Fermi in Sec. II and obtain the close-collision
contribution to the z* part of the energy loss.?’ In
Sec. III the relativistic generalization of the cal-
culation of Ref. 9 is given. A different treatment
of the minimum impact parameter leads to a uni-
versal function F(V) for (2)"2J,/I, where V
=137yp/(2)"/ ?is a reduced velocity variable. In
Sec. IV the numerical results for energy loss and
range differences are given and compared with
available data. In Sec. V a number of factors are
considered including the proper quantum-electro-
dynamic calculation of muon-electron scattering
to order o®, in order to identify the range of in-
cident momenta over which the Fermi calculation
for the close-collision part of the difference in en-
ergy loss is a good approximation.

II. CALCULATION OF FERMI

As indicated in Sec. I, both close and distant
collisions contribute to the z* term in the energy
loss [Eq. (4)]. In contrast to the z® term, in
which close and distant collisions contribute rough-
ly equally at all but the lowest velocities, 2 the
Z° term is dominated by the effects of distant colli-
sions at low velocities and by the effects of close
collisions at high velocities. For the close colli-
sions the binding of the atomic electrons can be
neglected. We will see below that for the z* con-
tribution the collisions are “harder” than for the
z® term. The neglect of binding is therefore even
better justified for the calculation of the z® term
at high energies than for the z? part. For this
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close-collision contribution we follow the path
clearly spelled out by Fermi.

If the fast incident particle is much heavier than
an electron, it is advantageous to consider the col-
lision in the rest frame of the incident particle.
Then, provided the momentum of the electron in
that frame is small compared to the mass of the
incident particle, the collision can be treated as the
elastic scattering of the electron by a fixed center
of force and the energy loss simply related to the
momentum and scattering angle. Specifically, if
the fast heavy particle has a laboratory momentum
and energy E=yMc?, p=yMv then the energy loss
per collision, in which the electron is deflected by
an angle 6 in the rest frame of the incident par-
ticle, is

€=2v*2m sin® 6 . (5)
Here m is the mass of the electron. Equation (1)
is valid provided y <M/m. This restriction on the
kinematics is easily removed and will be removed
in Sec. V. But for the present we are doing the
calculation as did Fermi.

The probability of a given energy loss ¢ is given
by the differential scattering cross section do/de.
In the limit M-, yBm << M, this cross section
for the scattering of electrons by a fixed center of
force of charge ze is the well-known result of
Mott.?! Mott’s formulas have been expanded in
powers of ze® by McKinley and Feshbach.?? Their
result, correct to third order in ze? is

do _ ______5264 [
aQ 4y m*'sin* 16

+7zaBsini0(1 - sinke)], (6)

1-82sin®16

where g=v/c, y=(1-p%)"Y2 =g, and the
charge convention is such that the proton has z=1.
Use of Eq. (5) allows us to transform (6) into

do 2me* 22 2 € 'S 1/2 P
de  mv® & {I—B PR [(e,,,) _em]} ’
(7)
where ¢, = 2v%?%m is the maximum energy transfer
in the collision.
The energy loss from close collisions, ex-

pressed as energy loss per g/cm? is

€
dE Z ™ do
az =N, % —de , 8
(dx )close 0 A €0 € de ae ( )

where N; is Avogadro’s number, Z and A are the
atomic number and atomic weight of the absorber,
and ¢y is a minimum energy loss, below which
binding effects become important. The first two
terms in (7) give the standard result for the close-
collision contribution to the z? term in Eq. (4):

R =
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where C is given by Eq. (2). When combined with
the contribution from the distant collisions, this
leads to the Bethe-Bloch result [Eq. (1)].

The last terms in (7) contribute to J in Eq. (4).
The presence of the factors of €/2 and ¢ or,
equivalently, the factors of sin39 and sin?6 in Eq.
(8), shows that these terms correspond to “hard”
collisions. They vanish relative to the leading
term as €~ 0 (6~ 0). In fact, in the energy-loss
expression (8), they lead to a finite result in the
limit €y~ 0. This is in contrast to the logarithmic
divergence of the leading contribution. Since €m/
€p is typically 10°-10° we make a negligible error
in taking the lower limit in (8) to be zero in cal-
culation of the 2% part. The close-collision con-
tribution to J in Eq. (4) is therefore

J:naC “m il/a_e_ de _maC (10)
° 26 0 €m €m € 2B ’

where C is given by Eq. (2). This is the basic
Fermi result.?’ It is a purely relativistic effect.?
Its g~ dependence compared with the g-2L(g, Z)
variation of the z% term makes it unimportant at
low velocities. But as -1, J, contributes a
roughly constant fractional amount in the region
of minimum energy loss (3<y<30). This means
that at high energies the fractional difference in
range AR/R from the z° term in (4) is more or
less energy independent and given in magnitude for
z=+1by 2J,/I~7aL™?, With L~10-15, AR/R is
of the order of (1.5-2.3)x107%. This estimate is
borne out by detailed numerical calculations (see
Fig. 4).

The mode of derivation of J, implies that its
validity is restricted to momenta such that y < M/
m. This limitation on the kinematics is shown in
Sec. V to be not required, but one might be con-
cerned that a proper quantum-electrodynamic cal-
culation, including radiative corrections consis-
tently, would lead to appreciable modifications.
This question is also explored in Sec. V where it
is found that the Fermi result is a reasonable ap-
proximation for muons of momenta up to several
GeV/c.

III. CONTRIBUTION OF DISTANT COLLISIONS

The effect of distant collisions in higher ap-
proximation has been considered by Ashley, Ritch-
ie, and Brandt® and Hill and Merzbacher.!® These
authors assume nonrelativistic motion and treat
the incident heavy particle of charge ze and speed
v as moving classically. The struck atom is thus
acted upon by a time-dependent external field.

It is well known that, provided M/m > 1, this meth-
od is mathematically equivalent to a quantum-me-
chanical description of both atom and incident par-
ticle, at least for the first Born approximation.

In Ref. 10 the atom is approximated by a quantum-
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mechanical harmonic oscillator with level spacing
hiwy, while in Ref. 9 the electronic oscillator is
treated classically. Hill and Merzbacher!® have
shown that for a straight-line path of the incident
particle the two methods yield the same result for
the z® contribution. This exact agreement un-
doubtedly follows from the special properties of
the quantum oscillator, but it is plausible that for
more realistic models of the atom the equivalence
of the classical and quantum treatments follows
upon summing over all possible transitions (as oc-
curs in the z® energy loss via the dipole and gen-
eralized oscillator strength sum rules).

Since one of our concerns is a possible distant-
collision contribution to J at high energies, we re-
peat the classical calculation of Ashley, Ritchie,
and Brandt® without the approximation of nonrela-
tivistic motion of the incident particle. In addi-
tion, we make a different choice of the minimum
impact parameter g and are led to a simpler uni-
versal form for J, /I with no adjustable parameters.
Since the calculation is described in detail in their
paper and the only modifications in the expressions
for a single-electron atom are appropriate factors
of y occurring in the Lorentz-transformed fields,
we merely state the results. The distant-colli-
sion contribution to Iin Eq. (4) is well known®
to be

® 1
Id=§2— [ x<K§(x)+;z‘ K%(x>) dx (11)

where £=wga/yv. For £ <1, this can be written

approximately as

2
e

The corresponding contribution to J in (4) is

Jd:y%% % <11(£)+-71—2 12(5)> , (13)
where I (¢) and L(£) are integrals defined and tabu-
lated by Ashley, Anderson, Ritchie, and Brandt.2®
For small values of their arguments the integrals
are given numerically by L(¢)~3 71n(3/8¢) and
L(£)~2.175. For large argument they vanish ex-
ponentially. In the nonrelativistic limit y—~ 1, Eq.
(13) reduces to the corresponding result of Ref. 9,
with their integral I=1;+I,. At high energies
(y2 2) the presence of the factor y~ 2 rapidly sup-
presses J; compared to J, [Eq. (10)].

To make the distant-collision contributions to I
and J well defined it is necessary to specify the
minimum impact parameter a. Our choice is

~ h‘ 1/2 h—w 1/2
a_<2mwo> ’ £ﬁ<2mvzvz> : (a4)

The justification of this value for a is that it is the
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magnitude of the dipole matrix element x,, for the
harmonic oscillator or, equivalently, a measure
of the amplitude of a classical oscillator with en-
ergy E=7w, It is thus the impact parameter
where the expansion of the interaction energy into
multipoles fails and the dipole approximation for

I (and dipole plus quadrupole for J) can no longer
be trusted. It is completely analogous to the mo-
mentum transfer K,=qa"! that divides the soft colli-
sions from the hard collisions in Bethe’s calcula-
tion of .77 With the choice (14) in Eq. (12) for I,
and €y=7%w, in Eq. (9) for I, the sum yields the
standard result (1) for the total 22 energy loss with
I)Z in (3) given by I,Z =fiw,/1.123.

The result (13) for a single harmonically bound
electron (multiplied by Z) is too stylized for im-
mediate comparison with experiment. Like Ash-
ley, Ritchie, and Brandt, we use the Thomas-—
Fermi statistical model of the atom in the manner
described in detail by Lindhard and Scharff?® to
give an approximate description of a many-elec-
tron atom. The basic idea is to specify the num-
ber of electrons per unit volume in the atom by
means of the number density p(r) of the statistical
model and to relate the effective oscillator fre-
quency w, for the various electrons to the plasma
frequency w, () corresponding to p(»). Thus, for
example, the logarithm in (12) is replaced by an
integral,

2y mv?®\ 3 2y°mv?
1n<—————h_wO )-—f dyp(r)ln(xﬁw,,(v)) , (15)
where
wi(r)=(4nZe?/m)plr) (16)

and p(r) is the statistical-model number density
for atomic number Z, normalized to unity. If the
electrons in the atom acted independently, the pa-
rameter x in the argument of the logarithm would
‘be expected to be unity. Inside an atom, however,
the electrons respond both individually and col-
lectively (polarization effects). Lindhard and
Scharff?® present arguments that y~v2 in heavy
atoms.

With the choice (14) for ¢ and the Lindhard-—
Scharff Ansatz wy— yw, (), we have the statistical-
model generalization of (13):

Jd=2—;‘3‘9— dsrp(r)sz’(11(£)+yl—z Iz(£)> ; (17)

where £ = [x%w,(r)/2my*v*]"/ 2. The corresponding
expression for the function L(8, Z) in Eq. (1) is

L= & pr)[in(1/£%) - 7] . (18)

For the logarithm term in (18) it is necessary to
put a lower limit »=7,, defined by £(r,) =1, in or-
der to avoid spurious negative contributions to the
integral. A nonzero 7, represents the statistical

approximation to the inner-shell corrections.® At
large velocities, 75—~ 0, and (18) becomes equal to
(3). With the Lenz—Jensen approximation®%3? for
p(r) and x =v2, Lindhard and Scharff found I,
=10.7 eV in (3), in reasonable agreement with
empirical values for all but the lightest elements.

Because the statistical model has a length scale
proportional to (Z)/3, p(r) scales like Z and so
does the plasma frequency w, (). This scaling
property has as its consequence that the integrals
in (17) and (18) are not functions of y8 and Z sepa-
rately, but depend only on the combination y8/
(z)Y2. 1t is convenient therefore to introduce a
reduced variable V defined by

V=137yp/(2)"/2 . (19)

In the low-velocity region where J, is important,
Eq. (17) can then be written in nonrelativistic ap-
proximation as

J};R:-*ﬂ—ca m?‘/‘a ‘Il;fds’}’p(”}’)gz[11(£)+12(£)] )
(20)
while
IR =-Bc—zf &rplr)In(1/€2) . (21)

Since the integrals are functions only of V, at low
velocities the fractional difference in energy loss
J, /I is given for all pure substances in universal
form

JYR/INR = R(V)/(Z)V 2, (22)

where F(V) is the appropriate ratio of integrals
from (20) and (21). Ashley, Ritchie, and Brandt®
did not obtain a universal dependence on V for
(2)2J,/I. This can be traced to their different
choice of the minimum impact parameter a. They
identified a with the radius » associated with the
plasma frequency w,(r), writing a=nr, withn a
parameter expected to be of order unity. As a
result their expression for (2)Y2J, /I depends on
the parameter 1 and (2)'/%, as well as V.

IV. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENT

A. Energy Loss at Low Velocities

In the velocity range 8<0.2, the z® term in the
energy loss is given almost entirely by the con-
tribution from distant collisions. With the descrip-
tion of the atom by means of the statistical model,
the energy loss (4) at low velocities for a stopping
material of atomic number Z can be written by
means of (22) in the form

iz_i =2 %L(V) (1+ G% F(V)) , (23)
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FIG. 1. Functions L(V) and F(V) for evaluation of the
z? and 2° contributions to the energy loss. For conve-
nience inuse of the figure, L(V)—2 InV —1.60 and V’F(V)
are displayed, rather than L and F. Because of inade-
quacies in the statistical model of the atom, the curves
are not reliable for V¢ 0.8. The solid curves are calcu-
lated for the Lindhard—Scharff parameter x2=2; the
dashed curves labeled1 and 3 are for x*=1 and 3.

where L(V) is defined by (18) or (21) and V is given
by (19). The functions L(V) and F(V) were cal-
culated numerically using the Lenz-Jensen approx-
imation for p(r) and the numerical values of I; and
L, of Ref. 26. The results are shown graphically
in Fig. 1. The logarithm function L(V) rapidly ap-
proaches the form given by Eq. (3) with the g2
term missing. For the reader’s convenience, we
plot L(V)-21nV -1.6. This quantity rapidly ap-
proaches a constant value of 0. 0244, correspond-
ing to Eq. (3) with I,=10.72 eV. The rise near
V=1 reflects the presence of the inner-shell cor-
rections at low velocities. Our L(V) is basically
the Lindhard-Scharff result; it agrees within 10%
with the empirical curves for Z=29 and Z=82
shown in Fig. 5 of Ref. 3.

The function F(V) decreases rapidly with in-
creasing V. It is found to vary as V-", with »n
~2.0for 0.5<V<1.5 n~2.3for 1.5< V<4, and
n=~2.5, for 4<V<10. We have therefore plotted
the more slowly varying function V2F(V) in Fig.

1. Because of the rather crude description of the
inner atomic shells, the results for L(V) and F(V)
are not reliable below V=~0. 8.

The solid curves in Fig. 1 are calculated for the
preferred value y®=2. The dashed curves for
V2F(V) correspond to x2=1 and x?=3. The differ-
ences are of the order of (15-20)%. We adopt the
viewpoint that x®~ 2 is determined empirically by
L(V), and that F(V) is thereby specified complete-
ly within the framework of the model.

In the experiments of Andersen, Simonsen, and
Sgrensen® comparison was made between the ener-
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gy loss of helium ions and four times the energy
loss by protons of the same velocity stopping in
tantalum (Z=173) and in aluminum (Z=13). The
results are displayed as the fractional difference
(He —4H)/He. From Eq. (23) we see that this
fractional difference is F(V)/(Z)"%. A compari-
son of these data with F(V) is presented in Fig. 2.
The velocity interval covered in the experiment is
0.07< B<0.12 for both absorbers, but the use of
the reduced variable V separates the tantalum and
aluminum data. Within errors the data are in ex-
cellent agreement with the calculated curve.
Again, the dashed curves correspond to x2= 1 and
3. If the error bars are ignored, one might argue
that the aluminum data require y%>2. If this
tendency is real, it probably reflects the fact that
the empirical value of I, in (3) for light elements
tends to be larger than the statistical value of
10.7 eV. In any event, the existing data on the

2° effect in Al and Ta are in very satisfactory
agreement with the theory. Other comparisons of
the stopping powers of protons with kinetic ener-
gies from 0.4 to 1.0 MeV and « particles of the
same speeds, in copper and gold,* and in argon,®?
are in general agreement with the curves in Figs.
1 and 2, although the errors are so large that only
the order of magnitude and a rough energy depen-
dence can be established.

For emulsion (or other mixtures) the simple
result (23) must be properly averaged over the
various ingredients. For the standard nuclear
emulsion® we have evaluated the appropriate aver-
ages of L(V) and L(V)F(V) and computed the quanti-

10°
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FIG. 2. Comparison of the data of Ref, 8 with F(V) as

a function of the reduced velocity variable V, Eq. (19).
The plotted quantities are (Z)!/2 times the fractional dif-
ference between the energy loss of helium ions and four
times the energy loss of hydrogen ions of the same speed.
The triangles are He’and the solid dots are He®. The
dashed curves are the same as in Fig. 1.



6

1.OF T T T T T T 3
— Ci —
S 10 F B
- —+ :
.‘ [~ T |
™~
‘,\' -
3
- 10F

10-3 1 1 14 ] 1 1

002 006 0.10 o.14

p/Mc=rB
FIG. 3. Fractional difference in energy loss in emul-
sion for singly charged particles of opposite charge as a
function of p/Mc =yB. Data are for slow positive and
negative pions (Heckman and Lindstrom, Ref. 6).

ty 2JY®/I"® as a function of p/Mc=vB. This is
shown in Fig. 3 for the range 0.02<yB<0.16, along
with the data of Heckman and Lindstrom® on the
difference in energy loss for slow positive and
negative pions in emulsion. The agreement here
is not as satisfactory as that shown in Fig. 2, al-
though the velocity-dependence comparison is rea-
sonable and the errors are large. An added con-
sideration is the fact that the conversion from ob-
served grain density differences to differences in
energy loss does involve a model of that phenome-
non.

The comparisons shown in Figs. 2 and 3 indicate
that the z° contribution to stopping power at low
speeds is reasonably well described by Eq. (23).
As already mentioned, because of the relative
crudeness of the statistical model, its validity is
restricted to V20.8. An additional limitation is
the neglect of the complicated effects of capture
and loss of electrons by the incident particle when
its speed is near the orbital speeds in the atoms.
Note also that we have implicitly assumed that
(ze?/mw)< 1 or, equivalently, V>2z/(Z)/2, and so
have excluded slow highly charged ions from con-
sideration. At the high-energy end, the nonrela-
tivistic approximations (y=1) that led to (22) and
(23) must be abandoned. Equation (17) must be
used for the distant-collision contribution and the
close-collision term (10) must be included. For
such speeds, however, the z° term is extremely
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small. It is probably observable only indirectly
via range differences (see Sec. IV B).

B. Range Differences

The mean range of a particle of initial energy
E=yMc? stopping in matter is defined by

(*® aE
R(E)~chz iE/dx (24)

Since dE/dx is a function of the speed of the par-
ticle, the range of a particle of a given speed is
proportional to its mass. The quantity R/M is thus
a function only of speed and charge. Because the
dominant energy loss is proportional to 2%, the re-
duced range z?R/M is approximately a function
only of speed g and the properties of the stopping
medium. The presence of a z® term in the energy
loss causes departures from this standard be-
havior. In particular, it leads to range differences
for particles of the same mass and initial energy,
but opposite charge. For definiteness, we shall
consider the range difference AR for particles of
the same mass and initial speed and z=+1. To
first order in small quantities, the calculated AR/
R can be used in an obvious way to evaluate de-
partures from the z2R/M form for other ions.*
The first-order difference in range follows from
substitution of (4) into (24):

E
ARER_-R*:J‘ 21—‘§dE. (25)
Mc2

For comparison, the z? range is

(¢ 4E
Ro(E)“‘Lca —I— . (26)

Equations (25) and (26) show that, to the extent that
(J/I) is constant in energy, AR is proportional to
R. This is true at high energies in the region of
minimum ionization, but is far from true at low
speeds. We thus expect that AR/R will be rela-
tively large at low speeds, decrease rapidly with
increasing speed, and ultimately level off to a
more or less constant plateau. The numerical
calculations shown in Fig. 4 bear out this behavior.
The integration of (25) and (26) was done nu-
merically using relativistic kinematics and Eqgs.
(10) and (17) for the close- and distant-collision
contributions to J. For I, the statistical model
equation (21) was used for L(B, Z) at low speeds,
and augmented by the — g% term in (3) and correc-
tions for the density effect at high energies. Fig-
ure 4 presents values of AR/R for carbon, copper,
lead, and emulsion as a function of p/Mc=yB. The
calculated values of AR/R are probably not reli-
able for values greater than about 10%. Available
data from emulsions indicate that the calculated
ratios of AR/R are in rough agreement with ob-
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TABLE 1. Estimates for AR/R derived from Eq. (27).

Material H C Al Fe Cu Pb
10°AR/R  1.67 1.98 2.10 2,21 2.24 2,45
servation. For example, in Ref. 5 a value of

AR/R of (3.6+0.7)% was found for stopping -
hyperons compared to Z*at 8=0.144. The value
from Fig. 4 is 2%. Similar agreement is found for
stopping 7* and 7-.°

It can be seen from Fig. 4 that the values of
AR/R for a given substance are constant within
10% over the range 2<p/Mc <10, and then fall
slowly as the logarithmic rise in I begins to occur.
In the plateau region values for other materials
can be estimated by a simple recipe based on (10)
for J:

AR _3.52(2z/A)x10-3
R (dE/dX)pu ’

27

where (dE/dx)y,, is the minimum energy loss in
MeV cm?/g. Estimates derived from Eq. (27) are
given in Table I. The agreement of these values
with the curves in Fig. 4 and the similarity in
shapes indicate that satisfactory estimates of
AR/R for any substance can be made using (27) to
interpolate between the curves.

Very recently, measurements have been made of
the range difference for stopping positive and nega-
tive muons with initial momenta from 0.5to 1.6
GeV/c.%® In a Pb/C/Fe absorber (mostly Fe at the
highest momentum), the values of 103AR/R are
2.46+0.30, 2.19+0.30, and 2.09+0.40 for the

JACKSON AND R. L. McCARTHY

|o

¥B intervals (4.8, 7.5), (7.5, 10.2), and (10. 2,
14.7), respectively. These results are in good
agreement with the predictions shown in Fig. 4,
although they are not precise enough to establish
the shape of AR/R vs yB with any accuracy.

V. LIMITATIONS OF FERMI CALCULATION

The high-energy range of validity of the Fermi
calculation presented in Sec. II appears to be
limited by both kinematic and dynamic considera-
tions. We first show that the kinematic restric-
tions are not real and that Eq. (10) holds for ar-
bitrary incident velocities provided that the center-
of-mass-system (cms) scattering is described by
the Mott formula, suitably interpreted. We then
address ourselves to the question of whether or
not the Mott formula is an adequate dynamic de-
scription of the scattering of electrons by the in-
cident particle. As a typical example, we con-
sider the o® quantum-electrodynamic (QED) cal-
culation of muon-electron scattering.

A. Removal of Kinematic Restriction, ym << M

The energy-loss expression (5) is valid for ym
<« M. The exact expression is®®
___2/%’msin®30

1+(2m/M)‘y+m2/M2 ’

€ (5")
where 6 is now the scattering angle in the cms and
all other quantities are the same as in Sec. II.
Once we drop the restriction ym <M, the meaning
of the Mott formula (6) becomes ambiguous. Can
it be interpreted as the cross section in the inci-
dent particle-electron cms? Are the factors of ¥
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and B to be interpreted as cms quantities for the
electron? Dynamics apart, it seems obvious that
the touchstone should be agreement at small mo-
mentum transfers (where spins are unimportant)
with the relativistic form of Rutherford’s cms
scattering cross section. This relativistic Ruther-
ford formula is

do\ _  2%a’m®
(da)cm,”wzqz sin*36 ’ (28)
where B¢ is the velocity of the incident particle in

the laboratory, as before, and

_ ymBce
=1+ @m/ My +m2/ 272

(29)

is the electron’s cms momentum. Since f=~1 when
¥m << M no longer holds, we see that the Mott for-
mula agrees with (28) at small angles provided we
interpret the factors of y in (6) as y, of the elec-
tron in the cms. With this Ansatz for the inter-
pretation of the Mott formula, it is elementary to
show that do/de is still given by (7), with =1 and
€, given by Eq. (5’) with §=7. There is thus no
change in the calculation of the z* energy loss
from close collisions when the kinematics are
treated exactly, rather than in the approximation
of Sec. II, provided the Mott formula describes the
cms scattering accurately.

B. Dynamic Limitations for Incident Muons

While it is amusing that the kinematics can be
treated exactly, the real question is one of dy-
namics. As soon as the momentum of the elec-
tron in the cms becomes comparable to the mass
of the incident particle, dynamic effects beyond the
static Coulomb approximation begin to come into
play. The incident particle not only has finite
mass, it may have spin and a magnetic moment;
a consistent treatment beyond the one-photon-ex-
change approximation must include radiative cor-
rections. Only for an infinite mass scattering
center can one make separate expansions in the
strength Ze of the external potential and in the
coupling e of the electron to the electromagnetic
field. As an important special case, we consider
the incident particle to be a muon.

Quantum -electrodynamic calculations of muon-
electron scattering, correct to order o®, have
been published by Eriksson,®” Nikishov,% and
Eriksson, Larsson, and Rinander.® Reference
39 is the most complete and explicit, with care
taken to exhibit clearly the differences between
positive and negative muons scattering from elec-
trons. Numerical tables of cross sections and
radiative correction factors are given for repre-
sentative incident muon momenta.

For muons of 0.2 GeV/¢ incident momentum,
comparison of the Mott formula with the results
of Ref. 39 shows that the difference in cross sec-
tion is given accurately (to a few parts in 10% or
better) by Eq. (6) for the angular range 0<6<120°.
At larger angles, the difference given by Eq. (6)
begins to underestimate the actual difference some-
what. At such large angles the cross section is so
small that these departures are of negligible im-
portance for the energy-loss difference. For ori-
entation on the importance of various angular re-
gions to J,, Eq. (10), we note that 50% of J, comes
from 6<34° (¢/¢,<0.086) and over 90% comes
from 6<90° (¢/€,<0.5). At 0.2 GeV/c incident
momentum, the radiative correction to the differ-
ence in cross section increases with increasing
angle, but is only at the relative level of 2X 10-*
at its largest, and so is quite insignificant.

The next higher incident muon momentum for
which results are tabulated in Ref. 39 is 10 GeV/c,
corresponding to y8=~95. At 10 GeV/c with exact
kinematics, the lowest-order Mott cross section
agrees with the lowest-order QED cross section
to an accuracy of 6% or better for §<90°, but is
a factor of 2 smaller at 105°. The cross section
diffevence from the Mott formula is in error by
15% at 90° and has a somewhat different angular
variation from the QED result. As a consequence,
the Mott difference in energy loss, which involves
an integral over angles, is actually only in error
by approximately 4%. The radiative correction
difference, not included above, is not more than
15 or 20% in integrated effect. This is because it
is largest fractionally at backward angles where the
cross section is very small.

The net conclusion from these comparison with
the o® QED calculations is that, provided exact
kinematics and the interpretation of Sec. V A above
are employed, the use of the Mott formula is per-
fectly adequate for muon momenta up to 2 GeV/c
(yB=~20). At higher momenta the neglect of dy-
namic effects becomes more important, but even
at 10 GeV/¢ for (muons) the Fermi expression
(10) for the z° energy loss from close collisions
is probably reliable to 30%.%° At still higher muon
momenta, radiative effects, including emission of
hard photons, become so important that the values
computed here are only of order of magnitude
validity.

For other incident particles, for example, pions,
the dynamic effects are different. A rough rule
of thumb, based on the examination of muon-elec-
tron interactions, might be that the Fermi resuilt
(10) can be trusted to (25-30)% for 20<y<M/2m.
For hadrons, finite-size effects manifest through
electromagnetic form factors will enter eventually.
These will not be important, however, until y~10°%,
corresponding to (a%),,.~1 (GeV/c)%
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